Selections and Binomial Coefficients

Permutations

Let X be any fixed set of size n e.g. $X = [n] = \{1, 2, \dots, n\}$.

A *permutation* of X is a sequence of length n in which each element of X appears exactly once.

p(n) denotes the number of permutations of X.

E.g. n = 3, $X = \{a, b, c\}$. p(3) = 6.

abc, acb, bac, bca, cab, cba,

 $egin{array}{rll} p(1) &=& 1 \ p(n) &=& np(n-1), & n\geq 2 \end{array}$

n choices for the first element x_1 . For each choice of x_1 there are p(n-1) ways of completing the sequence.

Thus

$$p(n) = n!.$$

Ordered selection without repetition

p(n,m) is the number of sequences of length m in which each element of X appears at most once.

E.g. n = 4, m = 2, $X = \{a, b, c, d\}$, p(4, 2) = 12.

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

$$p(n,0) = 1$$

 $p(n,m) = np(n-1,m-1), \qquad m \ge 1$

n choices for the first element x_1 . For each choice of x_1 there are p(n-1, m-1) ways of completing the sequence.

$$p(n,m) = n(n-1)\cdots(n-m+1)$$
$$= \frac{n!}{(n-m)!}$$

2

Ordered selection with repetition

q(n,m) denotes the number of sequences of length m with elements from X.

E.g.
$$n = 3, m = 2, X = \{a, b, c\}, q(3, 2) = 9$$
.
 $aa, ab, ac, ba, bb, bc, ca, cb, cc.$

$$q(n,0) = 1$$

 $q(n,m) = nq(n,m-1), \qquad m \ge 1$

So

$$q(n,m)=n^m.$$

Unordered selection without repetition

What if the order of selection is immaterial?

c(n,m) is the number of ways of choosing a set of m elements from [n].

p(n,m) = m!c(n,m).

Each of the c(n, m) unordered choices of a set can be ordered in m! ways to make a sequence of length m from [n].

$$c(n,m) = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Here n! = 0, n < 0 and 0! = 1

Unordered selection with repetition

f(n,m) is the number of ways of choosing m elements from a set of size n where order does not matter and repetitions are allowed.

$$f(n,m) = \binom{n+m-1}{n-1}.$$

What if each element must be chosen at least once? If n = 3, m = 4:

2R + 1B + 1W1R + 2B + 1W1R + 1B + 2W

Let

$$X = \{ (x \in \{1, 2, ...\}^n : x_1 + \dots + x_n = m \} \\ X' = \{ x' \in \{0, 1, 2, ...\}^n : x'_1 + \dots + x'_n = m - n \}.$$

We claim that $|X| = |X'| = \binom{m-1}{n-1}$.

Consider $f: X \to X'$ where $f(x_1, x_2, \ldots, x_n) = (x_1 - 1, x_2 - 1, \ldots, x_n - 1).$ f is a bijection with inverse g $g(x'_1, x'_2, \ldots, x'_n) = (x'_1 + 1, x'_2 + 1, \ldots, x'_n + 1).$ This implies

$$|X| = |X'| = {\binom{n + (m - n) - 1}{n - 1}} = {\binom{m - 1}{n - 1}}$$

6

Summary of Selection

 ${\color{black} S}$ is a set of ${\color{black} n}$ distinct objects and we must choose ${\color{black} m}$ objects:

Order matters	No repetion allowed:	P(n,m)
Order matters	Repetion allowed:	n^m
Order does not matter	No repetion allowed:	$\binom{n}{m}$
Order does not matter	Repetion allowed:	$\binom{n+m-1}{n-1}$