21-301 Combinatorics Homework 8 Due: Monday, November 6

1. Let the sequence of integers M_1, M_2, M_3, \ldots , be defined by the recurrence relation

$$M_1 = 3$$
 and $M_k = kM_{k-1} - k + 2$ $(k > 1)$.

Show by induction on k that if the edges of K_{M_k} are coloured in k colours then there is a monochromatic triangle.

(Hint: let V_i denote the set of vertices v for which edge $\{1, v\}$ has color i.)

Solution: The result is true for k = 1 as only one colour is used. Assume it is true for k' < k. Let $M = M_k$ and suppose that K_M is k-edge coloured. Let $V_i = \{v : (1, v) \text{ has colour } i\}$. There exists i such that $|V_i| \ge M_{k-1}$ else

$$kM_{k-1} - k + 1 = \sum_{i=1}^{k} |V_i| \le kM_{k-1} - k$$

contradiction.

But if $|V_i| \ge M_{k-1}$ then either V_i contains an edge (x, y) of colour i and (1, x, y) is monochromatic or V_i only uses k-1 colours and contains a monochromatic triangle by induction.

2. Let m = s(p-1) + 1 and $n = s^m(q-1) + 1$. Show that every s-coloring of the edges of $K_{m,n}$ using s colors contains a monochromatic copy of $K_{p,q}$.

(Hint: let X, Y be the two parts of the bipartition in $K_{m,n}$. Begin by showing that there must be q vertices $Q \subseteq Y$ such that c(x, y) = c(x, y') for all $x \in X$ if $y, y' \in Q$.)

Solution: label each vertex $y_j \in Y$ by an *s*-ary vector whose *i*th coordinate is the color of the edge (x_i, y_j) . Now we apply the Pigeonhole Principle twice. Since there are s^m such distinct vectors, there must be q vertices in Y with the same vector \mathbf{x} as label. Since only s colors are available as entries for the m coordinates of \mathbf{x} , \mathbf{x} must use some color at least p times. The p vertices of X in those positions and the q vertices of Y with label \mathbf{x} induce a monochromatic copy of $K_{p,q}$.

3. Prove that for n = 2m sufficiently large, every 2-coloring of the edges of $K_{n,n}$ contains a monochromatic copy of $K_{p,p}$.

(Hint: suppose that $X = \{x_1, x_2, \ldots, x_n\}, Y = \{y_1, y_2, \ldots, y_n\}$ are the two parts of the bipartition in $K_{n,n}$. Consider the 2-coloring of K_m induced by the colors of the edges (x_i, y_{j+m}) for $i, j \leq m$.)

Solution: We color edge $\{i, j\}$ of K_m with the color of (x_i, y_{j+m}) . If $m \ge R(2p, 2p)$, then the induced coloring of K_m will contain a monochromatic copy of K_{2p} on that subset S, |S| = 2p. Let $S = S_1 \cup S_2$ where $|S_1| = |S_2| = p$ and max $S_1 < \min S_2$. It follows that the bipartite graph induced by $x_i, i \in S_1$ and $y_{j+m}, j \in S_2$ is monochromatic. (We use |S| = 2p to avoid dealing with edges of the form (i, i + m).)