21-301 Combinatorics

Homework 8
Due: Monday, November 6

1. Let the sequence of integers $M_{1}, M_{2}, M_{3}, \ldots$, be defined by the recurrence relation

$$
M_{1}=3 \text { and } M_{k}=k M_{k-1}-k+2 \quad(k>1) .
$$

Show by induction on k that if the edges of $K_{M_{k}}$ are coloured in k colours then there is a monochromatic triangle.
(Hint: let V_{i} denote the set of vertices v for which edge $\{1, v\}$ has color i.)
Solution: The result is true for $k=1$ as only one colour is used. Assume it is true for $k^{\prime}<k$. Let $M=M_{k}$ and suppose that K_{M} is k-edge coloured. Let $V_{i}=\{v:(1, v)$ has colour $i\}$. There exists i such that $\left|V_{i}\right| \geq M_{k-1}$ else

$$
k M_{k-1}-k+1=\sum_{i=1}^{k}\left|V_{i}\right| \leq k M_{k-1}-k
$$

contradiction.
But if $\left|V_{i}\right| \geq M_{k-1}$ then either V_{i} contains an edge (x, y) of colour i and $(1, x, y)$ is monochromatic or V_{i} only uses $k-1$ colours and contains a monochromatic triangle by induction.
2. Let $m=s(p-1)+1$ and $n=s^{m}(q-1)+1$. Show that every s-coloring of the edges of $K_{m, n}$ using s colors contains a monochromatic copy of $K_{p, q}$.
(Hint: let X, Y be the two parts of the bipartition in $K_{m, n}$. Begin by showing that there must be q vertices $Q \subseteq Y$ such that $c(x, y)=c\left(x, y^{\prime}\right)$ for all $x \in X$ if $y, y^{\prime} \in Q$.)
Solution: label each vertex $y_{j} \in Y$ by an s-ary vector whose i th coordinate is the color of the edge $\left(x_{i}, y_{j}\right)$. Now we apply the Pigeonhole Principle twice. Since there are s^{m} such distinct vectors, there must be q vertices in Y with the same vector \mathbf{x} as label. Since only s colors are available as entries for the m coordinates of \mathbf{x}, \mathbf{x} must use some color at least p times. The p vertices of X in those positions and the q vertices of Y with label x induce a monochromatic copy of $K_{p, q}$.
3. Prove that for $n=2 m$ sufficiently large, every 2-coloring of the edges of $K_{n, n}$ contains a monochromatic copy of $K_{p, p}$.
(Hint: suppose that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are the two parts of the bipartition in $K_{n, n}$. Consider the 2-coloring of K_{m} induced by the colors of the edges $\left(x_{i}, y_{j+m}\right)$ for $i, j \leq m$.)
Solution: We color edge $\{i, j\}$ of K_{m} with the color of $\left(x_{i}, y_{j+m}\right)$. If $m \geq R(2 p, 2 p)$, then the induced coloring of K_{m} will contain a monochromatic copy of $K_{2 p}$ on that subset $S,|S|=2 p$. Let $S=S_{1} \cup S_{2}$ where $\left|S_{1}\right|=\left|S_{2}\right|=p$ and $\max S_{1}<\min S_{2}$. It follows that the bipartite graph induced by $x_{i}, i \in S_{1}$ and $y_{j+m}, j \in S_{2}$ is monochromatic. (We use $|S|=2 p$ to avoid dealing with edges of the form $(i, i+m)$.)

