21-301 Combinatorics

Homework 8

Due: Monday, November 6

1. Let the sequence of integers $M_{1}, M_{2}, M_{3}, \ldots$, be defined by the recurrence relation

$$
M_{1}=3 \text { and } M_{k}=k M_{k-1}-k+2 \quad(k>1) .
$$

Show by induction on k that if the edges of $K_{M_{k}}$ are coloured in k colours then there is a monochromatic triangle.
(Hint: let V_{i} denote the set of vertices v for which edge $\{1, v\}$ has color i.)
2. Let $m=s(p-1)+1$ and $n=s^{m}(q-1)+1$. Show that every s-coloring of the edges of $K_{m, n}$ using s colors contains a monochromatic copy of $K_{p, q}$.
(Hint: let X, Y be the two parts of the bipartition in $K_{m, n}$. Begin by showing that there must be q vertices $Q \subseteq Y$ such that $c(x, y)=c\left(x, y^{\prime}\right)$ for all $x \in X$ if $y, y^{\prime} \in Q$.)
3. Prove that for $n=2 m$ sufficiently large, every 2 -coloring of the edges of $K_{n, n}$ contains a monochromatic copy of $K_{p, p}$.
(Hint: suppose that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are the two parts of the bipartition in $K_{n, n}$. Consider the 2-coloring of K_{m} induced by the colors of the edges $\left(x_{i}, y_{j+m}\right)$ for $i, j \leq m$.)

