21-301 Combinatorics Homework 8 Due: Monday, November 6

1. Let the sequence of integers M_1, M_2, M_3, \ldots , be defined by the recurrence relation

 $M_1 = 3$ and $M_k = kM_{k-1} - k + 2$ (k > 1).

Show by induction on k that if the edges of K_{M_k} are coloured in k colours then there is a monochromatic triangle.

(Hint: let V_i denote the set of vertices v for which edge $\{1, v\}$ has color i.)

- 2. Let m = s(p-1) + 1 and $n = s^m(q-1) + 1$. Show that every s-coloring of the edges of $K_{m,n}$ using s colors contains a monochromatic copy of $K_{p,q}$. (Hint: let X, Y be the two parts of the bipartition in $K_{m,n}$. Begin by showing that there must be q vertices $Q \subseteq Y$ such that c(x, y) = c(x, y') for all $x \in X$ if $y, y' \in Q$.)
- 3. Prove that for n = 2m sufficiently large, every 2-coloring of the edges of $K_{n,n}$ contains a monochromatic copy of $K_{p,p}$. (Hint: suppose that $X = \{x_1, x_2, \ldots, x_n\}, Y = \{y_1, y_2, \ldots, y_n\}$ are the two parts of the bipartition in $K_{n,n}$. Consider the 2-coloring of K_m induced by the colors of the edges (x_i, y_{j+m}) for $i, j \leq m$.)