21-301 Combinatorics

Homework 5

Due: Wednesday, October 13

1. Subsets $A_{i}, B_{i} \subseteq[n], i=1,2, \ldots, m$ satisfy (i) $A_{i} \cap B_{i}=\emptyset$ for all i and (ii) $A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j$. Show that

$$
\sum_{i=1}^{m} \frac{1}{\substack{\left|A_{i}\right|+\left|B_{i}\right| \\\left|A_{i}\right|}} \leq 1
$$

Solution: Let π be a random permutation of $[n]$ and for disjoint sets A, B define the event $\mathcal{E}(A, B)$ by

$$
\mathcal{E}(A, B)=\{\pi: \max \{\pi(a): a \in A\}<\min \{\pi(b): b \in B\}\}
$$

The events $\mathcal{E}_{i}=\mathcal{E}\left(A_{i}, B_{i}\right), i=1,2, \ldots, m$ are disjoint. Indeed, suppose that $\mathcal{E}\left(A_{i}, B_{i}\right)$ and $\mathcal{E}\left(A_{j}, B_{j}\right)$ occur. Let $x \in A_{i} \cap B_{j}$ and $y \in A_{j} \cap B_{i} . x, y$ exist by (ii) and (i) implies that they are distinct. Then $\mathcal{E}\left(A_{i}, B_{i}\right)$ implies that $\pi(x)<\pi(y)$ and $\mathcal{E}\left(A_{j}, B_{j}\right)$ implies that $\pi(x)>\pi(y)$, contradiction.
Observe next that for two fixed disjoint sets $A, B,|A|=a,|B|=b$ there are exactly $\binom{n}{a+b} a!b!(n-a-b)!$ permutations that produce the event $\mathcal{E}(A, B)$. Indeed, there are $\binom{n}{a+b}$ places to position $A \cup B$. Then there are $a!b!$ that place A as the first a of these $a+b$ places. Finally, there are $(n-a-b)$! ways of ordering the remaining elements not in $A \cup B$.
Thus

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{E}\left(A_{i}, B_{i}\right)\right) & =\frac{n!}{\left(\left|A_{i}\right|+\left|B_{i}\right|\right)!\left(n-\left|A_{i}\right|-\left|B_{i}\right|\right)!}\left|A_{i}\right|!\left|B_{i}\right|!\left(n-\left|A_{i}\right|-\left|B_{i}\right|\right)!\frac{1}{n!} \\
& =\frac{1}{\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}}
\end{aligned}
$$

But then the disjointness of the collection of events $\mathcal{E}\left(A_{i}, B_{i}\right)$ implies that

$$
\sum_{i=1}^{m} \operatorname{Pr}\left(\mathcal{E}\left(A_{i}, B_{i}\right)\right) \leq 1
$$

2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that $x_{i} \geq 1$ for $i=1,2, \ldots, n$. Let J be any open interval of width 2 . Show that of the $2^{n} \operatorname{sums} \sum_{i=1}^{n} \varepsilon_{i} x_{i},\left(\varepsilon_{i}= \pm 1\right)$, at most $\binom{n}{\lfloor n / 2\rfloor}$ lie in J.
(Hint: use Sperner's lemma.)
Solution: For $A \subseteq[n]$ let $x_{A}=\sum_{i \in A} x_{i}-\sum_{i \notin A} x_{i}$. Let $\mathcal{A}=\left\{A: x_{A} \in J\right\}$. It is enough to show that \mathcal{A} is a Sperner family. Indeed, if $A, B \in \mathcal{A}$ and $A \subset B$ then $x_{B}-x_{A}=2 \sum_{i \in B \backslash A} x_{i} \geq 2$. Thus we cannot have both $x_{A}, x_{B} \in J$.
3. We say that a family $\mathcal{A} \subseteq 2^{[n]}$ is p-intersecting if for $X, Y \in \mathcal{A}$ either $X \cap Y \neq \emptyset$ or there exist $x \in X, y \in Y$ such that $x, y \leq p$. Prove that if $\mathcal{A} \subseteq\binom{[n]}{k}$ is p-intersecting
and $k \leq n / 2$ then $|\mathcal{A}| \leq\binom{ n}{k}-\binom{n-p}{k}$.
(Hint: partition $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ where $\mathcal{A}_{1}=\{A \in \mathcal{A}: p \notin A\}$ and use induction on p.)
Solution: If $p=1$ then the bound given is equal to $\binom{n-1}{k-1}$, from Pascal's triangle. Also, 1 -intersecting implies intersecting and so we have a basis for our induction. if $p>1$ then the induction hypothesis implies that $\left|\mathcal{A}_{1}\right| \leq\binom{ n-1}{k}-\binom{(n-1)-(p-1)}{k}$. Now $\left|\mathcal{A}_{2}\right| \leq\binom{ n-1}{k-1}$ and so the result follows from Pascal's triangle.
