21-301 Combinatorics
 Homework 6
 Due: Monday, October 9

1. Subsets $A_{i}, B_{i} \subseteq[n], i=1,2, \ldots, m$ satisfy (i) $A_{i} \cap B_{i}=\emptyset$ for all i and (ii) $A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j$. Show that

$$
\sum_{i=1}^{m} \frac{1}{\substack{\left|A_{i}\right|+\left|A_{i}\right| \\\left|A_{i}\right|}} \leq 1
$$

(Hint: Let π be a random permutation of $[n]$ and for disjoint sets A, B define the event $\mathcal{E}(A, B)$ by

$$
\mathcal{E}(A, B)=\{\pi: \max \{\pi(a): a \in A\}<\min \{\pi(b): b \in B\}\}
$$

Show that the events $\mathcal{E}_{i}=\mathcal{E}\left(A_{i}, B_{i}\right), i=1,2, \ldots, m$ are disjoint.)
2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that $x_{i} \geq 1$ for $i=1,2, \ldots, n$. Let J be any open interval of width 2 . Show that of the 2^{n} sums $\sum_{i=1}^{n} \varepsilon_{i} x_{i}$, $\left(\varepsilon_{i}= \pm 1\right)$, at most $\binom{n}{\lfloor n / 2\rfloor}$ lie in J.
(Hint: For $A \subseteq[n]$ let $x_{A}=\sum_{i \in A} x_{i}-\sum_{i \notin A} x_{i}$. Let $\mathcal{A}=\left\{A: x_{A} \in J\right\}$. Use Sperner's lemma.)
3. We say that a family $\mathcal{A} \subseteq 2^{[n]}$ is p-intersecting if for $X, Y \in \mathcal{A}$ either $X \cap Y \neq \emptyset$ or there exist $x \in X, y \in Y$ such that $x, y \leq p$. Prove that if $\mathcal{A} \subseteq\binom{[n]}{k}$ is p-intersecting and $k \leq n / 2$ then $|\mathcal{A}| \leq\binom{ n}{k}-\binom{n-p}{k}$.
(Hint: partition $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ where $\mathcal{A}_{1}=\{A \in \mathcal{A}: p \notin A\}$ and use induction on p.)

