21-301 Combinatorics Homework 5 Due: Monday, October 2

1. Fix $k \ge 1$. We say that a family of sets $A_1, A_2, \ldots, A_m \subseteq [n]$ is k-intersection safe if there do not exist $i \ne j$ and $\ell_1, \ell_2, \ldots, \ell_k$ such that $i, j \notin \{\ell_1, \ell_2, \ldots, \ell_k\}$ and $A_i \cap A_j \subseteq \bigcup_{t=1}^k A_{\ell_t}$. Show that there exist k-intersection safe families of size c_k^n for some $c_k > 1$. **Solution:** Suppose that we choose our family at random as for the case of k = 1. Let Z_k denote the number of $A_1, A_2, \ldots, A_k, B_1, B_2$ such that $B_1 \cap B_2 \subseteq \bigcup_{i=1}^k A_i$. Then,

$$\mathbf{E}(Z) \le \binom{m}{k+2} \left(1 - \frac{1}{2^{k+2}}\right)^n \le m^{k+2} e^{-n/2^{k+2}} = \exp\{(k+2)\log m - n/2^{k+2}\} < 1,$$

if $m < c_k^n$ where $c_k = e^{1/((k+2)2^{k+2})}$.

2. Let G = (V, E) be a graph and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10*d*, where $d \geq 1$. Suppose that for every v and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Use the local lemma to prove that there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v). (By proper we mean that adjacent vertices get distinct colors.)

Solution: Assume that each list S(v) is of size exactly 10*d*. Randomly color each vertex v with a color c_v from its list S(v). For each edge $e = \{v, w\}$ and color $c \in S(v) \cap S(w)$ we let $\mathcal{E}_{e,c}$ be the event that $c_v = c_w = c$. Thus $P(\mathcal{E}_{e,c}) = 1/(10d)^2$.

Note that $\mathcal{E}_{\{v,w\},c}$ depends only on the colors assigned to v and w, and is thus independent of $\mathcal{E}_{\{v',w'\},c'}$ if $\{v',w'\} \cap \{v,w\} = \emptyset$. Hence $\mathcal{E}_{\{v,w\},c}$ only depends on other edges involving v or w. Now there are at most $10d \times d$ events $\mathcal{E}_{\{v,w'\},c'}$ where $c' \in S(v) \cap S(w')$. So the maximum degree in the dependency graph is at most $20d^2$. The result follows from $4 \times 20d^2 \times 1/(10d)^2 < 1$.

3. Show that if $4 \cdot \frac{k^2(n-1)}{k-1} \cdot \frac{1}{2^{1-k}} < 1$ then one can 2-color the integers $1, 2, \ldots, n$ such that there is no mono-colored arithmetic progression of length k.

Solution: Color the integers randomly. For an arithmetic progression $S = \{a, a + d, \ldots, a + (k-1)d\}$ of length k, let \mathcal{E}_S denote the event that S is mono-colored. Then $\Pr(\mathcal{E}_S) = 2^{-(k-1)}$.

Now consider the dependency graph of these events. $\mathcal{E}_S, \mathcal{E}_T$ are independent if S, T are disjoint. A fixed progression S intersects at most $\frac{k^2(n-1)}{k-1}$ others: choose $x \in S$ in k ways and x's position in T in k ways then choose d in at most (n-1)/(k-1) ways. Now apply the Local Lemma.