21-301 Combinatorics

Homework 5

Due: Monday, October 2

1. Fix $k \geq 1$. We say that a family of sets $A_{1}, A_{2}, \ldots, A_{m} \subseteq[n]$ is k-intersection safe if there do not exist $i \neq j$ and $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ such that $i, j \notin\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$ and $A_{i} \cap A_{j} \subseteq$ $\bigcup_{t=1}^{k} A_{\ell_{t}}$. Show that there exist k-intersection safe families of size c_{k}^{n} for some $c_{k}>1$.
Solution: Suppose that we choose our family at random as for the case of $k=1$. Let Z_{k} denote the number of $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}$ such that $B_{1} \cap B_{2} \subseteq \bigcup_{i=1}^{k} A_{i}$. Then,

$$
\mathbf{E}(Z) \leq\binom{ m}{k+2}\left(1-\frac{1}{2^{k+2}}\right)^{n} \leq m^{k+2} e^{-n / 2^{k+2}}=\exp \left\{(k+2) \log m-n / 2^{k+2}\right\}<1
$$

if $m<c_{k}^{n}$ where $c_{k}=e^{1 /\left((k+2) 2^{k+2}\right)}$.
2. Let $G=(V, E)$ be a graph and suppose each $v \in V$ is associated with a set $S(v)$ of colors of size at least $10 d$, where $d \geq 1$. Suppose that for every v and $c \in S(v)$ there are at most d neighbors u of v such that c lies in $S(u)$. Use the local lemma to prove that there is a proper coloring of G assigning to each vertex v a color from its class $S(v)$. (By proper we mean that adjacent vertices get distinct colors.)
Solution: Assume that each list $S(v)$ is of size exactly 10d. Randomly color each vertex v with a color c_{v} from its list $S(v)$. For each edge $e=\{v, w\}$ and color $c \in S(v) \cap S(w)$ we let $\mathcal{E}_{e, c}$ be the event that $c_{v}=c_{w}=c$. Thus $P\left(\mathcal{E}_{e, c}\right)=1 /(10 d)^{2}$.
Note that $\mathcal{E}_{\{v, w\}, c}$ depends only on the colors assigned to v and w, and is thus independent of $\mathcal{E}_{\left\{v^{\prime}, w^{\prime}\right\}, c^{\prime}}$ if $\left\{v^{\prime}, w^{\prime}\right\} \cap\{v, w\}=\emptyset$. Hence $\mathcal{E}_{\{v, w\}, c}$ only depends on other edges involving v or w. Now there are at most $10 d \times d$ events $\mathcal{E}_{\left\{v, w^{\prime}\right\}, c^{\prime}}$ where $c^{\prime} \in S(v) \cap S\left(w^{\prime}\right)$. So the maximum degree in the dependency graph is at most $20 d^{2}$. The result follows from $4 \times 20 d^{2} \times 1 /(10 d)^{2}<1$.
3. Show that if $4 \cdot \frac{k^{2}(n-1)}{k-1} \cdot \frac{1}{2^{1-k}}<1$ then one can 2 -color the integers $1,2, \ldots, n$ such that there is no mono-colored arithmetic progression of length k.

Solution: Color the integers randomly. For an arithmetic progression $S=\{a, a+$ $d, \ldots, a+(k-1) d\}$ of length k, let \mathcal{E}_{S} denote the event that S is mono-colored. Then $\operatorname{Pr}\left(\mathcal{E}_{S}\right)=2^{-(k-1)}$.
Now consider the dependency graph of these events. $\mathcal{E}_{S}, \mathcal{E}_{T}$ are independent if S, T are disjoint. A fixed progression S intersects at most $\frac{k^{2}(n-1)}{k-1}$ others: choose $x \in S$ in k ways and x 's position in T in k ways then choose d in at most $(n-1) /(k-1)$ ways. Now apply the Local Lemma.

