21-301 Combinatorics
 Homework 5
 Due: Monday, October 2

1. Fix $k \geq 1$. We say that a family of sets $A_{1}, A_{2}, \ldots, A_{m} \subseteq[n]$ is k-intersection safe if there do not exist $i \neq j$ and $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ such that $i, j \notin\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$ and $A_{i} \cap A_{j} \subseteq$ $\bigcup_{t=1}^{k} A_{\ell_{t}}$. Show that there exist k-intersection safe families of size c_{k}^{n} for some $c_{k}>1$.
2. Let $G=(V, E)$ be a graph and suppose each $v \in V$ is associated with a set $S(v)$ of colors of size at least $10 d$, where $d \geq 1$. Suppose that for every v and $c \in S(v)$ there are at most d neighbors u of v such that c lies in $S(u)$. Use the local lemma to prove that there is a proper coloring of G assigning to each vertex v a color from its class $S(v)$. (By proper we mean that adjacent vertices get distinct colors.)
3. Show that if $4 \cdot \frac{k^{2}(n-1)}{k-1} \cdot \frac{1}{2^{1-k}}<1$ then one can 2 -color the integers $1,2, \ldots, n$ such that there is no mono-colored arithmetic progression of length k. (An arithmetic progression of length k is a set $\{a, a+d, \ldots, a+(k-1) d\}$.)
