21-301 Combinatorics Homework 5 Due: Monday, October 2

- 1. Fix $k \ge 1$. We say that a family of sets $A_1, A_2, \ldots, A_m \subseteq [n]$ is k-intersection safe if there do not exist $i \ne j$ and $\ell_1, \ell_2, \ldots, \ell_k$ such that $i, j \notin \{\ell_1, \ell_2, \ldots, \ell_k\}$ and $A_i \cap A_j \subseteq \bigcup_{t=1}^k A_{\ell_t}$. Show that there exist k-intersection safe families of size c_k^n for some $c_k > 1$.
- 2. Let G = (V, E) be a graph and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10*d*, where $d \ge 1$. Suppose that for every v and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Use the local lemma to prove that there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v). (By proper we mean that adjacent vertices get distinct colors.)
- 3. Show that if $4 \cdot \frac{k^2(n-1)}{k-1} \cdot \frac{1}{2^{1-k}} < 1$ then one can 2-color the integers $1, 2, \ldots, n$ such that there is no mono-colored arithmetic progression of length k. (An arithmetic progression of length k is a set $\{a, a+d, \ldots, a+(k-1)d\}$.)