21-301 Combinatorics

Homework 3

Due: Monday, September 25

1. Suppose that $A_{1}, A_{2}, \ldots, A_{n} \subseteq A$ and $\left|A_{i}\right|=k$ for $i=1,2, \ldots, n$ and that q is a positive integer. Show that if $n q\left(1-\frac{1}{q}\right)^{k}<1$ then the elements of A can be q-colored so that each A_{i} contains an element of each color.
Solution: Randomly color the elements of A with q colors. Let $\mathcal{E}_{i, j}$ be the event that A_{i} is missing color j and let $\mathcal{E}_{i}=\bigcup_{j=1}^{q} \mathcal{E}_{i, j}$ and let $\mathcal{E}=\bigcup_{i=1}^{n} \mathcal{E}_{i}$. We need to show that $\mathbf{P}(\mathcal{E})<1$. Now

$$
\begin{aligned}
P(\mathcal{E}) & \leq \sum_{i=1}^{n} \mathbf{P}\left(\mathcal{E}_{i}\right) \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{q} \mathbf{P}\left(\mathcal{E}_{i, j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{q}\left(1-\frac{1}{q}\right)^{k} \\
& =n q\left(1-\frac{1}{q}\right)^{k} \\
& <1 .
\end{aligned}
$$

2. Let $G=(V, E)$ be a graph on n vertices, with minimum degree $\delta>1$. Show that G contains a dominating set of size at most $n \frac{1+\log (\delta+1)}{\delta+1}$.
(S is a dominating set if every $v \notin S$ has a neighbor in S.)
(Hint: Choose $S_{1} \subseteq V$ by placing v into S_{1} with probability p. Let S_{2} denote the vertices in $V \backslash S_{1}$ that are not adjacent to a vertex in S_{1}. Choose p carefully and use $1-p \leq e^{-p}$.)
Solution: Following the hint we have $\mathbf{E}\left(\left|S_{1}\right|\right)=n p$ and

$$
\mathbf{E}\left(\left|S_{2}\right|\right)=\sum_{v \in V}(1-p)^{d(v)+1} \leq n(1-p)^{\delta+1} \leq n e^{-(\delta+1) p} .
$$

So

$$
\mathbf{E}(|S|) \leq f(p)=n p+n e^{-(\delta+1) p} .
$$

Now

$$
f^{\prime}(p)=n-n(\delta+1) e^{-(\delta+1) p}=0 \text { when } p=\frac{\log (\delta+1)}{\delta+1} .
$$

(This is a minimum since $f^{\prime \prime}(p)>0$ here.)
Then we have

$$
f\left(\frac{\log (\delta+1)}{\delta+1}\right)=n \frac{\log (\delta+1)}{\delta+1}+\frac{n}{\delta+1}
$$

Now S is a dominating set and G must contain a dominating set of size at most $\mathbf{E}(|S|)$.
3. Prove that there is an absolute constant $c>0$ with the following property. Let A be an $n \times n$ matrix with pairwise distinct real entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$.

The following inequalities might be useful:

$$
\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k} \text { and } 1+x \leq e^{x} \text { and } n!\geq\left(\frac{n}{e}\right)^{n}
$$

Solution: Let π be a random permutation of the rows of A. For $S \subseteq[n]$ we let $\mathcal{E}_{i, S}$ be the event that elements of column i restricted to the rows in S form an increasing sequence. Let $\mathcal{E}_{i}=\bigcup_{S \in\binom{[n]}{s}} \mathcal{E}_{i, S}$ be the event that column i contains an increasing subsequence of length at least $s=c \sqrt{n}$ and let $\mathcal{E}=\bigcup_{i=1}^{n} \mathcal{E}_{i}$. We need to show that $\mathbf{P}(\mathcal{E})<1$. But,

$$
\begin{aligned}
\mathbf{P}(\mathcal{E}) & \leq \sum_{i=1}^{n} \sum_{S \in\binom{[n]}{s}} \mathbf{P}\left(\mathcal{E}_{i, S}\right) \\
& =\sum_{i=1}^{n} \sum_{S \in\binom{[n]}{s}} \frac{1}{s!} \\
& =n\binom{n}{s} \frac{1}{s!} \\
& \leq n\left(\frac{n e}{s}\right)^{s}\left(\frac{e}{s}\right)^{s} \\
& =n\left(\frac{e^{2}}{c^{2}}\right)^{s} \\
& =n e^{-2 s} \\
& <1
\end{aligned}
$$

for $c=e^{2}$ provided n is big enough so that $e^{c n^{1 / 2}}>n$. This is a good enough. I should have said for n large.

If one wants make the claim for all n then observe that $e^{e^{2} n^{1 / 2}}>n$ for $n \geq 10$ say. Then all we need to do now is increase c so that $e^{c n^{1 / 2}}>n$ for $n \leq 10$ as well.

