21-301 Combinatorics

Homework 3

Due: Monday, September 25

1. Suppose that $A_{1}, A_{2}, \ldots, A_{n} \subseteq A$ and $\left|A_{i}\right|=k$ for $i=1,2, \ldots, n$ and that q is a positive integer. Show that if $n q\left(1-\frac{1}{q}\right)^{k}<1$ then the elements of A can be q-colored so that each A_{i} contains an element of each color.
2. Let $G=(V, E)$ be a graph on n vertices, with minimum degree $\delta>1$. Show that G contains a dominating set of size at most $n \frac{1+\log (\delta+1)}{\delta+1}$.
(S is a dominating set if every $v \notin S$ has a neighbor in S.)
(Hint: Choose $S_{1} \subseteq V$ by placing v into S_{1} with probability p. Let S_{2} denote the vertices in $V \backslash S_{1}$ that are not adjacent to a vertex in S_{1}. Choose p carefully and use $1-p \leq e^{-p}$.)
3. Prove that there is an absolute constant $c>0$ with the following property. Let A be an $n \times n$ matrix with pairwise distinct real entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$.

The follwing inequalities might be useful:

$$
\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k} \text { and } 1+x \leq e^{x} \text { and } n!\geq\left(\frac{n}{e}\right)^{n}
$$

