21-301 Combinatorics

Homework 3

Due: Monday, September 18

1. How many strings $a_{1} a_{2} \cdots a_{n}$ of length n consisting of 0 's and 1 's have no two consecutive 1's?

Solution:

(a) Let f_{n} be the number of strings made of zeros and ones with no two consecutive ones. If a_{n} ends in a 0 , we have a_{n-1} possible strings. If a_{n} ends in a 1 , it must end in a 01 , so we have a_{n-2} possible strings. So,

$$
f_{n}=f_{n-1}+f_{n-2} .
$$

There is one empty valid sequence, two valid sequences of length 1 and three of length 2. Therefore $a_{n}=F_{n+2}$, where F_{n} is the n 'th Fibonacci number.
(b) How many strings $a_{1} a_{2} \cdots a_{n}$ of length n consisting of 0 's and 1's have no three consecutive 1's and no three consecutive 0 's?

Solution:

Define $b_{1} b_{2} \cdots b_{n-1}$ as follows: $b_{i}=1$ iff $a_{i}=a_{i+1}$ and $b_{i}=0$ otherwise. The string $b_{1} b_{2} \cdots b_{n-1}$ has no two consecutive ones. From (a) above, there are F_{n+1} strings of the defined type. For each string $b_{1} b_{2} \cdots b_{n-1}$ there are 2 strings $a_{1} a_{2} \cdots a_{n}$. So, the answer is $2 F_{n+1}$.
2. Find a_{n} if

$$
a_{n}=6 a_{n-1}+7 a_{n-2}, a_{0}=2, a_{1}=10 .
$$

Solution: Let $F(x)=\sum a_{n} x^{n}$. Then

$$
\begin{aligned}
F(x)-2-10 x & =6 x(F(x)-2)+7 x^{2} F(x), \\
F(x) & =\frac{2-2 x}{1-6 x-7 x^{2}}, \\
F(x) & =\frac{3 / 2}{1-7 x}+\frac{1 / 2}{1+x} .
\end{aligned}
$$

So

$$
a_{n}=\frac{3}{2} 7^{n}+\frac{1}{2}(-1)^{n} .
$$

3. A row of n lightbulbs, initially all off, must be turned on. Bulb 1 can be turned on or off at any time. For $i>1$, bulb i can be turned on or off only when bulb $i-1$ is on and all earlier bulbs are off. Let a_{n} be the number of steps needed to turn all on; note that $\left(a_{n}\right)$ begins $(0,1,2,5, \ldots)$. Let b_{n} be the number of steps to turn on bulb n for the first time. Let c_{n} be the number of steps until we have that bulb n is the only bulb on.
(a) Show that $c_{1}=1$ and $c_{n}=2 c_{n-1}+1$, for $n \geq 1$.
(b) Why is $b_{n+1}=c_{n}+1$?
(c) Why is $a_{n}=b_{n}+a_{n-2}$ for $n \geq 2$?
(d) Solve the recurrence for a_{n}.
[Hint: suppose that we represent the state of the n light bulbs by a $\{0,1\}$ vector \mathbf{x} of length n where $x_{i}=1$ iff light-bulb i is on. Suppose that $\mathbf{x}(k)$ is the state after k steps. Argue that $\mathbf{x}\left(c_{n}-t\right)=\mathbf{x}(t)+(0,0, \ldots, 0,1)$ for $t=0,1, \ldots, c_{n-1}$.]

Solution:

(a) We go from (i) $0^{n} 0$ to (ii) $0^{n-1} 10$ to (iii) $0^{n-1} 11$ to (iv) $0^{n} 1$. In the moves (iv) we reverse the moves in (i)-(ii). This implies that $c_{n}=2^{n}-1$.
(b) This is just the move (ii) to (iii) in (a). This implies that $b_{n+1}=2^{n}$
(c) Once we have $0^{n-1} 11$, we can focus on changing the first $n-20$'s by 1's.
(d) $a_{n}-a_{n-2}=2^{n-1}$. So, for $m \geq 1$,

$$
\begin{aligned}
a_{2 m} & =2^{2 m-1}+2^{2 m-3}+\cdots+2=\frac{2\left(4^{m}-1\right)}{3} \\
a_{2 m+1} & =2^{2 m}+2^{2 m-2}+\cdots+2^{4}+5=\frac{4^{m+1}-1}{3} .
\end{aligned}
$$

