21-301 Combinatorics Homework 3 Due: Monday, September 18

- 1. (a) How many strings $a_1a_2\cdots a_n$ of length *n* consisting of 0's and 1's have no two consecutive 1's?
 - (b) How many strings a₁a₂···an of length n consisting of 0's and 1's have no three consecutive 1's and no three consecutive 0's?
 [Hint: define the string b₁b₂···bn-1 as follows: b_i = 1 iff a_i = a_{i+1}.]

$$a_n = 6a_{n-1} + 7a_{n-2}, a_0 = 2, a_1 = 10.$$

- 3. A row of *n* lightbulbs, initially all off, must be turned on. Bulb 1 can be turned on or off at any time. For i > 1, bulb *i* can be turned on or off only when bulb i 1 is on and all earlier bulbs are off. Let a_n be the number of steps needed to turn all on; note that (a_n) begins $(0,1,2,5,\ldots)$. Let b_n be the number of steps to turn on bulb *n* for the first time. Let c_n be the number of steps until we have that bulb *n* is the only bulb on.
 - (a) Show that $c_1 = 1$ and $c_n = 2c_{n-1} + 1$, for $n \ge 1$.
 - (b) Why is $b_{n+1} = c_n + 1$?

2. Find a_n if

- (c) Why is $a_n = b_n + a_{n-2}$ for $n \ge 2$?
- (d) Solve the recurrence for a_n .

[Hint: suppose that we represent the state of the *n* light bulbs by a $\{0, 1\}$ vector **x** of length *n* where $x_i = 1$ iff light-bulb *i* is on. Suppose that $\mathbf{x}(k)$ is the state after *k* steps. Argue that $\mathbf{x}(c_n - t) = \mathbf{x}(t) + (0, 0, \dots, 0, 1)$ for $t = 0, 1, \dots, c_{n-1}$.]