21-301 Combinatorics

Homework 3

Due: Monday, September 18

1. (a) How many strings $a_{1} a_{2} \cdots a_{n}$ of length n consisting of 0 's and 1's have no two consecutive 1's?
(b) How many strings $a_{1} a_{2} \cdots a_{n}$ of length n consisting of 0's and 1's have no three consecutive 1's and no three consecutive 0's?
[Hint: define the string $b_{1} b_{2} \cdots b_{n-1}$ as follows: $b_{i}=1$ iff $a_{i}=a_{i+1}$.]
2. Find a_{n} if

$$
a_{n}=6 a_{n-1}+7 a_{n-2}, a_{0}=2, a_{1}=10 .
$$

3. A row of n lightbulbs, initially all off, must be turned on. Bulb 1 can be turned on or off at any time. For $i>1$, bulb i can be turned on or off only when bulb $i-1$ is on and all earlier bulbs are off. Let a_{n} be the number of steps needed to turn all on; note that $\left(a_{n}\right)$ begins $(0,1,2,5, \ldots)$. Let b_{n} be the number of steps to turn on bulb n for the first time. Let c_{n} be the number of steps until we have that bulb n is the only bulb on.
(a) Show that $c_{1}=1$ and $c_{n}=2 c_{n-1}+1$, for $n \geq 1$.
(b) Why is $b_{n+1}=c_{n}+1$?
(c) Why is $a_{n}=b_{n}+a_{n-2}$ for $n \geq 2$?
(d) Solve the recurrence for a_{n}.
[Hint: suppose that we represent the state of the n light bulbs by a $\{0,1\}$ vector \mathbf{x} of length n where $x_{i}=1$ iff light-bulb i is on. Suppose that $\mathbf{x}(k)$ is the state after k steps. Argue that $\mathbf{x}\left(c_{n}-t\right)=\mathbf{x}(t)+(0,0, \ldots, 0,1)$ for $t=0,1, \ldots, c_{n-1}$.]
