21-301 Combinatorics

Homework 2
Due: Monday, September 11

1. Let M be a multiset consisting of two each of n types of letters. How many permutations of M are there in which no two consecutive letters are the same?

Solution: Suppose that $M=\left\{x_{1}, x_{1}, x_{2}, x_{2}, \ldots, x_{n}, x_{n}\right\}$. Let A_{i} be the set of permutations $\ldots, x_{i}, x_{i}, \ldots$ i.e. those permutation for which the two copies of x_{i} appear consecutively. Then if $S \subseteq\{1,2, \ldots, n\},|S|=s$,

$$
\begin{equation*}
\left|A_{S}\right|=\binom{2 n-s}{s} \cdot s!\cdot \frac{(2 n-2 s)!}{2^{n-s}} \tag{1}
\end{equation*}
$$

Finish by plugging the expression in the I-E formula to give the number of relevant permutations is

$$
\sum_{s=0}^{n}\binom{n}{s} \cdot(-1)^{s} \cdot\binom{2 n-s}{s} \cdot s!\cdot \frac{(2 n-2 s)!}{2^{n-s}}
$$

Explanation for (1): The binomial coefficient $\binom{2 n-s}{s}$ is the number of choices of s 1's and $2 n-s 0$'s such that each 1 is followed by at least one 0 . The 1 indicates the place of the first of the pair. The second factor s ! is the number of ways of allocating the pairs in S to the positions in the permutation. The remaining factor is the number of permutations of a multi-set of $n-s$ objects, each appearing exactly twice.
2. How many permutations π of $[n]$ are there such that $\pi(i)=j$ implies that $\pi(j) \neq i$. Here $i \neq j$.
Solution: If $e=\{i, j\} \in X$ then let A_{e} be the set of permutations in which $\pi(i)=j$ and $\pi(j)=i$. Then if $S \subseteq X$ contains pairs that intersect then $A_{S}=\emptyset$. If S consists of s disjoint pairs then

$$
\begin{equation*}
\left|A_{S}\right|=(n-2 s)!. \tag{2}
\end{equation*}
$$

Thus the total number is

$$
\begin{equation*}
\sum_{s=0}^{\lfloor n / 2\rfloor}(-1)^{s}\binom{n}{2 s} \frac{(2 s)!}{s!2^{s}}(n-2 s)!=n!\sum_{s=0}^{\lfloor n / 2\rfloor}(-1)^{s} \frac{1}{s!2^{s}} \sim n!e^{-1 / 2} \tag{3}
\end{equation*}
$$

Explanation for (2): a permutation in A_{S} fixes exactly $2 s$ values of the permutation. Explanation for (3): choose $2 s$ values in $\binom{n}{2 s}$ ways and then pair them up in $\frac{(2 s)!}{s!2^{s}}$ ways and then complete the permutation in $(n-2 s)$! ways.
3. How many ways are there of pairing n boys with n girls so that the i th tallest boy is not paired with the i th tallest girl, for all $i=1,2, \ldots, n$.
Solution: This is equal to the number of derangements of $\{1,2, \ldots, n\}$.

