21-301 Combinatorics

Homework 10

Due: Wednesday, November 29

1. Find the set of P-positions for the take-away games with subtraction sets
(a) $S=\{1,3,7\}$.
(b) $S=\{1,4,6\}$.

Suppose now that there are two piles and the rules for each pile are as above. Now find the P positions for the two pile game where in one pile S is as in (a) and the other pile is as in (b).

Solution:

(a) The first few numbers are

$$
\begin{array}{lllllllllllr}
j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
g_{1}(j) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

It is apparent that $g_{1}(j)=j \bmod 2$ and this follows by an easy induction: If j is even then $j-x, x \in S$ is odd and if j is odd then $j-x, x \in S$ is even.
(b) The first few numbers are

$$
\begin{array}{lllllllllllrrrrr}
j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
g_{2}(j) & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 2
\end{array}
$$

So, we see that the pattern 01012 repeats itself. Again, induction can be used to verify that this continues indefinitely.
(c) The P-positions are those j, k for which $g_{1}(j) \oplus g_{2}(k)=0$.

Thus $P=\{j:(j \bmod 5=4)$ or $(j \bmod 10 \geq 5)\}$.
2. Consider the following game: There is a pile of n chips. A move consists of removing any proper factor of n chips from the pile. (For the purposes of this question, a proper factor of n, is any factor, including 1 , that is strictly less than n.) The player to leave a pile with one chip wins. Determine the N and P positions and a winning strategy from an N position.
Solution: n is a P-position iff it is odd. If n is even then the next player can simply remove one chip. If n is odd, then any factor of n is also odd.
3. In a take-away game, the set S of the possible numbers of chips to remove is finite. Show that the Sprague-Grundy numbers satisfy $g(n) \leq|S|$ where n is the number of chips remaining.
Solution: Observe that for any finite set $A, \operatorname{mex}(A) \leq|A|$ since $\operatorname{mex}(A)>|A|$ implies that $A \subseteq\{0,1,2, \ldots,|A|\}$ which is obviously impossible. In the take-away game $g(n)$ is the mex of a set of size at most $|S|$ and the result follows.

