21-301 Combinatorics Homework 11 Due: Wednesday, December 6

1. How many ways are there to k-color an $n \times n$ chessboard when n is odd. The group G is the usual 8 element group e, a, b, c, p, q, r, s.

Solution: All we need do is compute the number of cycles in the permutations as applied to the chessboard. Let n = 2m + 1. In the table, $r \times s$ is short for r cycles of length s.

Permutation	Number of cycles
e	$n^2 \times 1$
a	$m(m+1) \times 4 + 1 \times 1$
b	$2m(m+1) \times 2 + 1 \times 1$
С	$m(m+1) \times 4 + 1 \times 1$
p	$mn \times 2 + n \times 1$
q	$mn \times 2 + n \times 1$
r	$mn \times 2 + n \times 1$
s	$mn \times 2 + n \times 1$

Thus the number of colorings is

$$\frac{1}{8}(k^{n^2} + 2 \times k^{m(m+1)+1} + k^{2m(m+1)+1} + 4 \times k^{mn+n}).$$

2. How many ways are there to arrange 2 M's, 4 A's, 5 T's and 6 H's under the condition that any arrangement and its inverse are to be considered the same.

Solution: The group G consists of $\{e, a\}$ where a is a reflection through the middle of the word. Now

$$|Fix(e)| = \frac{17!}{2!4!5!6!} = 85765680$$
$$|Fix(a)| = \frac{8!}{1!2!2!3!} = 1680$$

A sequence is in Fix(a) if it is a palindrome i.e. looks the same backwards as forwards. It must have middle letter T. Then we arrange 1 M, 2 A's, 2 T's and 3 H's in any order and then complete the sequence uniquely to a palindrome.

Thus by Burnside's theorem, the number of sequences is $\frac{85765680+1680}{2} = 42883680$.

3. How many ways are there of k-coloring the squares of the cross below if the group acting is e_0, e_1, e_2, e_3 where e_j is rotation by $2\pi j/4$. Assume that instead of 13 squares there are 4n + 1.

Solution:

So the total number of colorings is

$$\frac{k^{4n+1} + k^{n+1} + k^{2n+1} + k^{n+1}}{4}.$$