21-301 Combinatorics

Homework 11
Due: Wednesday, December 6

1. How many ways are there to k-color an $n \times n$ chessboard when n is odd. The group G is the usual 8 element group e, a, b, c, p, q, r, s.

Solution: All we need do is compute the number of cycles in the permutations as applied to the chessboard. Let $n=2 m+1$. In the table, $r \times s$ is short for r cycles of length s.

Permutation	Number of cycles
e	$n^{2} \times 1$
a	$m(m+1) \times 4+1 \times 1$
b	$2 m(m+1) \times 2+1 \times 1$
c	$m(m+1) \times 4+1 \times 1$
p	$m n \times 2+n \times 1$
q	$m n \times 2+n \times 1$
r	$m n \times 2+n \times 1$
s	$m n \times 2+n \times 1$

Thus the number of colorings is

$$
\frac{1}{8}\left(k^{n^{2}}+2 \times k^{m(m+1)+1}+k^{2 m(m+1)+1}+4 \times k^{m n+n}\right)
$$

2. How many ways are there to arrange 2 M's, 4 A's, 5 T's and 6 H's under the condition that any arrangement and its inverse are to be considered the same.
Solution: The group G consists of $\{e, a\}$ where a is a reflection through the middle of the word. Now

$$
\begin{aligned}
|F i x(e)| & =\frac{17!}{2!4!5!6!}=85765680 \\
|F i x(a)| & =\frac{8!}{1!2!2!3!}=1680
\end{aligned}
$$

A sequence is in $\operatorname{Fix}(a)$ if it is a palindrome i.e. looks the same backwards as forwards. It must have middle letter T. Then we arrange $1 \mathrm{M}, 2$ A's, 2 T's and 3 H's in any order and then complete the sequence uniquely to a palindrome.
Thus by Burnside's theorem, the number of sequences is $\frac{85765680+1680}{2}=42883680$.
3. How many ways are there of k-coloring the squares of the cross below if the group acting is $e_{0}, e_{1}, e_{2}, e_{3}$ where e_{j} is rotation by $2 \pi j / 4$. Assume that instead of 13 squares there are $4 n+1$.

Solution:

$$
\begin{array}{ccccc}
g & e_{0} & e_{1} & e_{2} & e_{3} \\
|F i x(g)| & k^{4 n+1} & k^{n+1} & k^{2 n+1} & k^{n+1}
\end{array}
$$

So the total number of colorings is

$$
\frac{k^{4 n+1}+k^{n+1}+k^{2 n+1}+k^{n+1}}{4} .
$$

