21-301 Combinatorics

Homework 1

Due: Wednesday, September 6

1. How many sequences $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in[n]^{m}$ satisfy $a_{1}<a_{2}<\cdots<a_{m}$? How many satisfy $a_{1} \leq a_{2} \leq \cdots \leq a_{m}$?
2. For $S \subseteq[n]$, a run in S is a maximal set of consecutive integers in S. For example, $\{1,2,4,5,6,9\}$ is a subset of [9] with three runs; every element is in one run. How many subsets of $[n]$ have exactly k runs?

3 . Let π be a permutation of $[n]$. Show that

$$
\sum_{i=1}^{n}|i-\pi(i)| \leq\left\lfloor\frac{n^{2}}{2}\right\rfloor
$$

