21-301 Combinatorics Homework 8 Due: Wednesday, November 24

- 1. Let \mathcal{M} be a matroid (without loops) on E and suppose that $r(E) = \ell$. Suppose that $\ell < k \leq |E|$ and \mathcal{B}_k is the set of k-subsets of E that contain a base of \mathcal{M} . Show that \mathcal{B}_k forms the set of bases of another matroid.
- 2. Let $\mathcal{H} = \{H_1, H_2, \dots, H_m\} \subseteq {E \choose k}$. Suppose also that $|H_i \cap H_j| \le k 2$ for $i \ne j$. Show that $\mathcal{B}_{\mathcal{H}} = {E \choose k} \setminus \mathcal{H}$ forms the set of bases of a matroid. $\binom{E}{k} = \{S \subseteq E : |S| = k\}.$
- 3. Let \mathcal{M} be a hereditary system and suppose the rank function r is submodular. Prove that \mathcal{M} satisfies the Weak Elimination Property for circuits. (WEP: if C_1, C_2 are circuits and $e \in C_1 \cap C_2$ then there exists a circuit $C \subseteq (C_1 \cup C_2) \setminus \{e\}$.)