
21-301 Combinatorics
Homework 6

Due: Wednesday, October 27

1. Let rn = r(3, 3, . . . , 3) be the minimum integer such that if we n-color the edges of the
complete graph KN there is a monochromatic triangle.

(a) Show that rn ≤ n(rn−1 − 1) + 2.

(b) Using r2 = 6, show that rn ≤ bn!ec+ 1.

Solution: Let N = n(rn−1 − 1) + 2 and consider an n-coloring σ of the edges of KN .
Now consider the N − 1 edges incident to vertex N . There must be a color, n say, that
is used at least rn−1 times, Pigeon Hole Principle. Now let V ⊆ [N − 1] denote the
set of vertices v for which the edge {v,N} is colored n. Consider the coloring of the
edges of V induced by σ. If one of these {v1, v2} has color N then it makes a triangle
v1, v2, N with 3 edges colored n. Otherwise the edges of V only use n − 1 colors and
since |V | ≥ rn−1 we see by induction that V contains a mono-chromatic triangle.

Solution: Divide the inequality (a) by n! and putting sn = rn/n! we obtain
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1
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2

n!
. (1)

We write this as
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n!
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Summing gives
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2!
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+
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k=3

1

k!
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n!
+ e− 2.

Now s2 = 3 and multiplying the above by n! gives rn ≤ n!e+ 1. We round down, as rn
is an integer.

2. Show that r(C4, C4) = 6, where C4 denotes a cycle of length 4.

Solution: (a) Color the edges of the 5-cycle (1,2,3,4,5,1) Red and the edges of the
remaining 5-cycle (1,3,5,2,4,1) Blue. There are no mono-chromatic 4-cycles.

(b) Each vertex is incident with at least 3 edges of the same color. So, we can assume
that 1,2,3 each have at least 3 red neighbors N1, N2, N3. If N1, N2 ⊆ {3, 4, 5, 6} then
|N1 ∩N2| ≥ 2 and then there is a C4 containing vertices 1,2.

We can sssume then that 1,2,3 form a red triangle. If 4 ∈ N1 ∩ N2 then we have that
1,3,2,4,1 is a red C4.



So we can assume that |Ni ∩ Nj| = 1 for all i, j and that N1 = {2, 3, 4}, N2 =
{1, 3, 5}, N3 = {1, 2, 6}. If {4, 5} is red then 1,2,5,4,1 is a red C4. So we can assume
that 4,5,6, form a blue triangle.

If {1, 5} is red then 1,5,3,2,1 is a red C4. So we can assume that
{1, 5}, {1, 6}, {2, 4}, {2, 6}, {3, 4}, {3, 5} are all blue.

But then 1,5,4,6,1 is a blue C4.

3. Use Dilworth’s theorem to show that if in a bipartite graph G = (A,B,E) we have that
|N(S)| ≥ |S| − t for all S ⊆ A, then there is a matching of size at least |A| − t.
Solution: Let G = (A∪B,E) be a bipartite graph which satisfies the given condition.
Define a poset P = A ∪ B and define < by a < b only if a ∈ A, b ∈ B and (a, b) ∈ E.
Suppose that the largest anti-chain in P is A = {a1, a2, . . . , ah, b1, b2, . . . , bk} and let
s = h+ k.

Now
N({a1, a2, . . . , ah}) ⊆ B \ {b1, b2, . . . , bk}

for otherwise A will not be an anti-chain. From the given condition we see that

|B| − k ≥ h− t or equivalently |B| ≥ s− t.

Now by Dilworth’s theorem, P is the union of s chains: A matching M of size m, |A|−m
members of A and |B| −m members of B. But then

m+ (|A| −m) + (|B| −m) = s ≤ |B|+ t

and so m ≥ |A| − t.


