21-301 Combinatorics Homework 6 Due: Wednesday, October 27

- 1. Let $r_n = r(3, 3, \ldots, 3)$ be the minimum integer such that if we *n*-color the edges of the complete graph K_N there is a monochromatic triangle.
	- (a) Show that $r_n \leq n(r_{n-1}-1)+2$.
	- (b) Using $r_2 = 6$, show that $r_n \leq |n!e| + 1$.

Solution: Let $N = n(r_{n-1} - 1) + 2$ and consider an *n*-coloring σ of the edges of K_N . Now consider the $N-1$ edges incident to vertex N. There must be a color, n say, that is used at least r_{n-1} times, Pigeon Hole Principle. Now let $V ⊆ [N - 1]$ denote the set of vertices v for which the edge $\{v, N\}$ is colored n. Consider the coloring of the edges of V induced by σ . If one of these $\{v_1, v_2\}$ has color N then it makes a triangle v_1, v_2, N with 3 edges colored n. Otherwise the edges of V only use $n-1$ colors and since $|V| \geq r_{n-1}$ we see by induction that V contains a mono-chromatic triangle.

Solution: Divide the inequality (a) by n! and putting $s_n = r_n/n!$ we obtain

$$
s_n \le s_{n-1} - \frac{1}{(n-1)!} + \frac{2}{n!}.\tag{1}
$$

We write this as

$$
s_n - s_{n-1} \le -\frac{1}{(n-1)!} + \frac{2}{n!}
$$

$$
s_{n-1} - s_{n-2} \le -\frac{1}{(n-2)!} + \frac{2}{(n-1)!}
$$

$$
\vdots
$$

$$
s_3 - s_2 \le -\frac{1}{2!} + \frac{2}{3!}
$$

Summing gives

$$
s_n - s_2 \le -\frac{1}{2!} + \frac{1}{n!} + \sum_{k=3}^n \frac{1}{k!} \le \frac{1}{n!} + e - 2.
$$

Now $s_2 = 3$ and multiplying the above by n! gives $r_n \leq n!e + 1$. We round down, as r_n is an integer.

2. Show that $r(C_4, C_4) = 6$, where C_4 denotes a cycle of length 4.

Solution: (a) Color the edges of the 5-cycle $(1,2,3,4,5,1)$ Red and the edges of the remaining 5-cycle (1,3,5,2,4,1) Blue. There are no mono-chromatic 4-cycles.

(b) Each vertex is incident with at least 3 edges of the same color. So, we can assume that 1,2,3 each have at least 3 red neighbors N_1, N_2, N_3 . If $N_1, N_2 \subseteq \{3, 4, 5, 6\}$ then $|N_1 \cap N_2| \geq 2$ and then there is a C_4 containing vertices 1,2.

We can sssume then that 1,2,3 form a red triangle. If $4 \in N_1 \cap N_2$ then we have that $1,3,2,4,1$ is a red C_4 .

So we can assume that $|N_i \cap N_j| = 1$ for all i, j and that $N_1 = \{2,3,4\}, N_2 =$ $\{1,3,5\}, N_3 = \{1,2,6\}.$ If $\{4,5\}$ is red then 1,2,5,4,1 is a red C_4 . So we can assume that 4,5,6, form a blue triangle. If $\{1,5\}$ is red then 1,5,3,2,1 is a red C_4 . So we can assume that

 ${1, 5}, {1, 6}, {2, 4}, {2, 6}, {3, 4}, {3, 5}$ are all blue.

But then $1,5,4,6,1$ is a blue C_4 .

3. Use Dilworth's theorem to show that if in a bipartite graph $G = (A, B, E)$ we have that $|N(S)| \ge |S| - t$ for all $S \subseteq A$, then there is a matching of size at least $|A| - t$.

Solution: Let $G = (A \cup B, E)$ be a bipartite graph which satisfies the given condition. Define a poset $P = A \cup B$ and define $\langle b \rangle$ by $a \langle b \rangle$ only if $a \in A, b \in B$ and $(a, b) \in E$. Suppose that the largest anti-chain in P is $A = \{a_1, a_2, \ldots, a_h, b_1, b_2, \ldots, b_k\}$ and let $s = h + k$.

Now

$$
N({a_1,a_2,\ldots,a_h}) \subseteq B \setminus {b_1,b_2,\ldots,b_k}
$$

for otherwise A will not be an anti-chain. From the given condition we see that

 $|B| - k \geq h - t$ or equivalently $|B| \geq s - t$.

Now by Dilworth's theorem, P is the union of s chains: A matching M of size $m,\,|A|-m$ members of A and $|B| - m$ members of B. But then

$$
m + (|A| - m) + (|B| - m) = s \le |B| + t
$$

and so $m \geq |A| - t$.