21-301 Combinatorics Homework 6

Due: Wednesday, October 27

- 1. Let $r_n = r(3, 3, ..., 3)$ be the minimum integer such that if we *n*-color the edges of the complete graph K_N there is a monochromatic triangle.
 - (a) Show that $r_n \le n(r_{n-1} 1) + 2$.
 - (b) Using $r_2 = 6$, show that $r_n \leq \lfloor n!e \rfloor + 1$.
- 2. Show that $r(C_4, C_4) = 6$, where C_4 denotes a cycle of length 4.
- 3. Use Dilworth's theorem to show that if in a bipartite graph G = (A, B, E) we have that $|N(S)| \ge |S| t$ for all $S \subseteq A$, then there is a matching of size at least |A| t.