21-301 Combinatorics Homework 4 Due: Wednesday, October 6

1. Let s_1, s_2, \ldots, s_m be binary strings such that no string is a prefix of another string. $(a = a_1 a_2 \cdots a_p \text{ is a prefix of } b = b_1 b_2 \cdots b_q \text{ if } p \leq q \text{ and } a_i = b_i \text{ for } 1 \leq i \leq p).$ Show that

$$\sum_{i=1}^{m} 2^{-|s_i|} \le 1$$

where |s| is the length of string s.

(Hint: Let $n = \max\{|s_i| : 1 \le i \le n\}$. Let x be a random binary string of length n. Consider the events $\mathcal{E}_i = \{s_i \text{ is a prefix of } x.\}$

Solution The events \mathcal{E}_i of the hint are *disjoint*. This follows from the assumption that no string is a prefix of another. Thus

$$1 \ge \sum_{i=1}^{m} \Pr(\mathcal{E}_i) = \sum_{i=1}^{m} 2^{-|s_i|}.$$

2. Let G = (V, E) be a graph and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10*d*, where $d \ge 1$. Suppose that for every *v* and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Use the local lemma to prove that there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v). (By proper we mean that adjacent vertices get distinct colors.)

Solution: Assume that each list S(v) is of size exactly 10*d*. Randomly color each vertex v with a color c_v from its list S(v). For each edge $e = \{v, w\}$ and color $c \in S(v) \cap S(w)$ we let $\mathcal{E}_{e,c}$ be the event that $c_v = c_w = c$. Thus $P(\mathcal{E}_{e,c}) = 1/(10d)^2$.

Note that $\mathcal{E}_{\{v,w\},c}$ depends only on the colors assigned to v and w, and is thus independent of $\mathcal{E}_{\{v',w'\},c'}$ if $\{v',w'\} \cap \{v,w\} = \emptyset$. Hence $\mathcal{E}_{\{v,w\},c}$ only depends on other edges involving v or w. Now there are at most $10d \times d$ events $\mathcal{E}_{\{v,w'\},c'}$ where $c' \in S(v) \cap S(w')$. So the maximum degree in the dependency graph is at most $20d^2$. The result follows from $4 \times 20d^2 \times 1/(10d)^2 < 1$.

3. Show that if $4nk2^{1-k} < 1$ then one can 2-color the integers 1, 2, ..., n such that there is no mono-colored arithmetic progression of length k.

(An arithmetic progression of length k is a set $\{a, a + d, \dots, a + (k-1)d\}$.)

Solution: Color the integers randomly. For an arithmetic progression $S = \{a, a + d, \ldots, a + (k-1)d\}$ of length k, let \mathcal{E}_S denote the event that S is mono-coloreed. Then $\Pr(\mathcal{E}_S) = 2^{-(k-1)}$.

Now consider the dependency graph of these events. $\mathcal{E}_S, \mathcal{E}_T$ are independent if S, T are disjoint. A fixed progression S intersects at most kn others: choose $x \in S$ in k ways and then choose d in at most n ways. Now apply the Local Lemma.