21-301 Combinatorics Homework 4 Due: Wednesday, October 6

1. Let s_1, s_2, \ldots, s_m be binary strings such that no string is a prefix of another string. $(a = a_1 a_2 \cdots a_p \text{ is a prefix of } b = b_1 b_2 \cdots b_q \text{ if } p \leq q \text{ and } a_i = b_i \text{ for } 1 \leq i \leq p).$ Show that

$$\sum_{i=1}^{m} 2^{-|s_i|} \le 1$$

where |s| is the length of string s.

(Hint: Let $n = \max\{|s_i| : 1 \le i \le n\}$. Let x be a random binary string of length n. Consider the events $\mathcal{E}_i = \{s_i \text{ is a prefix of } x.\}$

- 2. Let G = (V, E) be a graph and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10*d*, where $d \geq 1$. Suppose that for every v and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Use the local lemma to prove that there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v). (By proper we mean that adjacent vertices get distinct colors.)
- 3. Show that if $4nk2^{1-k} < 1$ then one can 2-color the integers $1, 2, \ldots, n$ such that there is no mono-colored arithmetic progression of length k. (An arithmetic progression of length k is a set $\{a, a + d, \ldots, a + (k - 1)d\}$.)