21-301 Combinatorics Homework 3 Due: Monday, September 27

1. Suppose that $A_1, A_2, \ldots, A_n \subseteq A$ and $|A_i| = k$ for $i = 1, 2, \ldots, n$ and that q is a positive integer. Show that if $nq\left(1-\frac{1}{q}\right)^k < 1$ then the elements of A can be q-colored so that each A_i contains an element of each color.

Solution: Randomly color the elements of A with q colors. Let $\mathcal{E}_{i,j}$ be the event that A_i is missing color j and let $\mathcal{E}_i = \bigcup_{j=1}^q \mathcal{E}_{i,j}$ and let $\mathcal{E} = \bigcup_{i=1}^n \mathcal{E}_i$. We need to show that $\mathbf{P}(\mathcal{E}) < 1$. Now

$$P(\mathcal{E}) \leq \sum_{i=1}^{n} \mathbf{P}(\mathcal{E}_{i})$$
$$\leq \sum_{i=1}^{n} \sum_{j=1}^{q} \mathbf{P}(\mathcal{E}_{i,j})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{q} \left(1 - \frac{1}{q}\right)^{k}$$
$$= nq \left(1 - \frac{1}{q}\right)^{k}$$
$$< 1.$$

2. Let G = (V, E) be a graph on n vertices, with minimum degree $\delta > 1$. Show that G contains a dominating set of size at most $n \frac{1 + \log(\delta + 1)}{\delta + 1}$. (S is a dominating set if every $v \notin S$ has a neighbor in S.)

(Hint: Choose $S_1 \subseteq V$ by placing v into S_1 with probability p. Let S_2 denote the vertices in $V \setminus S_1$ that are not adjacent to a vertex in S_1 . Choose p carefully and use $1 - p \le e^{-p}$.)

Solution: Following the hint we have $\mathbf{E}(|S_1|) = np$ and

$$\mathbf{E}(|S_2|) = \sum_{v \in V} (1-p)^{d(v)+1} \le n(1-p)^{\delta+1} \le ne^{-(\delta+1)p}.$$

So

$$\mathbf{E}(|S|) \le f(p) = np + ne^{-(\delta+1)p}.$$

Now

$$f'(p) = n - n(\delta + 1)e^{-(\delta + 1)p} = 0$$
 when $p = \frac{\log(\delta + 1)}{\delta + 1}$

(This is a minimum since f''(p) > 0 here.)

Then we have

$$f\left(\frac{\log(\delta+1)}{\delta+1}\right) = n\frac{\log(\delta+1)}{\delta+1} + \frac{n}{\delta+1}$$

Now S is a dominating set and G must contain a dominating set of size at $\mathbf{E}(|S|)$.

3. Prove that there is an absolute constant c > 0 with the following property. Let A be an $n \times n$ matrix with pairwise distinct real entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c\sqrt{n}$.

The following inequalities might be useful:

$$\binom{n}{k} \leq \left(\frac{ne}{k}\right)^k$$
 and $1 + x \leq e^x$ and $n! \geq \left(\frac{n}{e}\right)^n$.

Solution: Let π be a random permutation of the rows of A. For $S \subseteq [n]$ we let $\mathcal{E}_{i,S}$ be the event that elements of column i restricted to the rows in S form an increasing sequence. Let $\mathcal{E}_i = \bigcup_{S \in \binom{[n]}{s}} \mathcal{E}_{i,S}$ be the event that column i contains an increasing subsequence of length at least $s = c\sqrt{n}$ and let $\mathcal{E} = \bigcup_{i=1}^n \mathcal{E}_i$. We need to show that $\mathbf{P}(\mathcal{E}) < 1$. But,

$$\mathbf{P}(\mathcal{E}) \leq \sum_{i=1}^{n} \sum_{S \in \binom{[n]}{s}} \mathbf{P}(\mathcal{E}_{i,S})$$
$$= \sum_{i=1}^{n} \sum_{S \in \binom{[n]}{s}} \frac{1}{s!}$$
$$= n \binom{n}{s} \frac{1}{s!}$$
$$\leq n \left(\frac{ne}{s}\right)^{s} \left(\frac{e}{s}\right)^{s}$$
$$= n \left(\frac{e^{2}}{c^{2}}\right)^{s}$$
$$= ne^{-2s}$$
$$< 1,$$

for $c = e^2$ provided n is big enough so that $e^{cn^{1/2}} > n$. This is a good enough. I should have said for n large.

If one wants make the claim for all n then observe that $e^{e^2n^{1/2}} > n$ for $n \ge 10$ say. Then all we need to do now is increase c so that $e^{cn^{1/2}} > n$ for $n \le 10$ as well.