21-301 Combinatorics Homework 3 Due: Monday, September 27

- 1. Suppose that $A_1, A_2, \ldots, A_n \subseteq A$ and $|A_i| = k$ for $i = 1, 2, \ldots, n$ and that q is a positive integer. Show that if $nq \left(1 \frac{1}{q}\right)^k < 1$ then the elements of A can be q-colored so that each A_i contains an element of each color.
- Let G = (V, E) be a graph on n vertices, with minimum degree δ > 1. Show that G contains a dominating set of size at most n^{1+log(δ+1)}/_{δ+1}.
 (S is a dominating set if every v ∉ S has a neighbor in S.)
 (Hint: Choose S₁ ⊆ V by placing v into S₁ with probability p. Let S₂ denote the vertices in V \ S₁ that are not adjacent to a vertex in S₁. Choose p carefully and use 1 − p ≤ e^{-p}.)
- 3. Prove that there is an absolute constant c > 0 with the following property. Let A be an $n \times n$ matrix with pairwise distinct real entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c\sqrt{n}$.

The following inequalities might be useful:

$$\binom{n}{k} \le \left(\frac{ne}{k}\right)^k$$
 and $1 + x \le e^x$ and $n! \ge \left(\frac{n}{e}\right)^n$.