
Math 21-880 Final: SOLUTIONS

December 8, 2014

This is a closed book, closed notes exam. No calculators or smart phones are
allowed. You have 3 hours to complete the exam. Please mark your answers
clearly and put your name on each piece of paper you submit. There are five
questions on the exam.

(1) 20 Points. Let W be a standard one-dimensional Brownian motion with
W0 = 0. Set σ = inf {t ≥ 0 | Wt = 1} and τ = inf {t ≥ σ | Wt = −1}. Note
that by definition τ > σ. Compute P [τ < t].

(2) 20 Points. Consider the SDE

dXt = b(Xt)dt+ dWt; X0 = x ∈ Rd.

Here, W is a standard d-dimensional Brownian motion and b is a bounded,
Lipschitz function. Show that for any Borel set A ⊆ Rd with positive
(Lebesgue) volume that P [Xx

t ∈ A] > 0 for all x ∈ Rd and t ≥ 0.

(3) 20 Points. Let X solve the SDE

dXt = σ(Xt)dWt; X0 = x ∈ Rd.

Here, W is again a d-dimensional Brownian motion and we assume σ is
Lipschitz, symmetric and point-wise (in x) positive definite. Now, think of
X as the share price of some traded asset: i.e. Xt(ω) is the price at (t, ω).
Let π = {πt}t≥0 denote a trading strategy: i.e. πt(ω) ∈ Rd is the number of
shares of X we hold at (t, ω). For a given initial wealth w0 ∈ R, the wealth
processes associated to π is denoted by Wπ and satisfies the formula

Wπ
t = w0 +

∫ t

0

πT
u dXu = w0 +

∫ t

0

πT
u σ(Xu)dWu,

provided the integrals are well-defined. Note that in particular we require
π to be adapted to the (augmented) filtration generated by W .

i) 6 Points. We say the (X,W ) market is complete on [0, T ] if for any
bounded FT measurable random variable H, there is some initial capi-
tal w0 and trading strategy π such that H = Wπ

T with probability one.
Wπ is called the ”replicating” process for H. Show that the (X,W )
market is complete.
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ii) 8 Points. Now assume that H = g(XT ) for a bounded continuous
function g. Identify a partial differential equation such that if u ∈
C1,2((0, T )×Rd) solves the PDE then u ”should” take the form u(t, y) =
E [g(XT ) |Xt = y]. Show that if u ∈ C1,2((0, T ) × Rd) is a bounded
solution of this PDE then u does admit the representation u(t, y) =
E [g(XT ) | Xt = y] = E

[

g(Xy
T−t

]

whereXy is the solution of the above
SDE starting at y.

iii) 6 Points. In the setting of b), assume u solves the PDE and admits
the stochastic representation. Identify the initial capital w0 and trading
strategy π explicitly for the replicating wealth process of g(XT ).

(4) 20 Points. Let W be a standard Brownian motion starting at 0. Recall
that the local time of W near a on [0, t] is given by

Lt(a) = lim
ε↓0

1

2ε
Leb [s ≤ t | |Ws − a| ≤ ε] ,

in that we showed the limit exists almost surely and satisfies Tanaka’s for-
mula.

i) 10 Points. Sketch the proof of Tanaka’s formula using the approximat-
ing functions gε from lecture (or some other approximating functions
if you wish). Provide as much detail as you can, but don’t spend the
whole exam time filling in every step if you are stuck!

ii) 10 Points. Recall that we also showed for all Borel measurable non-
negative functions h on R the almost sure identity

∫ t

0

h(Ws)ds =

∫

R

h(a)Lt(a)da (1)

Now, let f ∈ C2(R) be strictly increasing with f(±∞) = ±∞. Define
the process Yt = f(Wt). Motivated by (1) above, we define the local
time LY

t (a) as the two parameter random field such that (amongst other
properties) for all non-negative Borel measurable functions h on R we
have almost surely that

∫ t

0

h(Ys)d〈Y 〉s =
∫

R

h(a)LY
t (a)da; t ≥ 0.

Assuming it exists, identify LY
t (a) explicitly.

(5) 20 Points. For a fixed T > 0, identify the Laplace transform of
∫ T

0
W 2

t dt
where W is a standard one dimensional Brownian motion starting at 0, i.e.
compute

E
[

e−λ
∫

T

0
W 2

t dt
]

; λ > 0. (2)

Complete this answer through the following steps:
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i) 5 Points. If φ ∈ L2[0, T ] is deterministic show that
∫ T

0
φudBu ∼

N(0,
∫ T

0
φ2
udu) where B is a standard one-dimensional Brownian mo-

tion.

ii) 5 Points. Define Y as the solution of the SDE dYt = −γYtdt +
dBt, Y0 = 0 where B is a standard one-dimensional Brownian motion
and γ > 0. Compute the distribution of YT and use this to evaluate

E
[

eβY
2

T

]

for β ∈ R. Are there any restrictions upon β?

iii) 10 Points. Use your answer above to compute (2) for any λ > 0.

Solutions

(1) There are two ways to answer this question. The slickest way is to define
Bt = Wt∧σ + (Wt∧σ − Wt) and note that by Levy it follows that B is a
Brownian motion. Then, we clearly have τ as the first hitting time of B to
3 and thus

P [τ < t] = 2P [Bt > 3] =
2√
2πt

∫ ∞

3

e−z2/(2t)dz

A more straightforward way to solve this problem is to note by the strong
Markov property that Bt = Wt+σ − Wσ is a Brownian motion in it’s own
filtration (this follows since σ < ∞ almost surely). Furthermore, B is
independent of Fσ. We thus see that P [τ < t] = P [σ + τ−2 < t] where
τ−2 is the first hitting time to −2 of B and σ, τ−2 are independent. This
latter fact and the symmetry of Brownian motion allow us to conclude that
P [τ < t] = P [σ + τ2 < t] and hence using convolution

P [τ < t] =

∫ t

0

P [τ2 < t− s]P [σ ∈ ds]

= 2

∫ t

0

P [Wt−s > 2]P [σ ∈ ds]

= 2P [Wt > 3] .

Here, we have set W as a ”generic” Brownian motion since we are only
interested in the laws. Thus, the two formulas coincide.

(2) This will follow via Girsanov’s theorem. Namely, fix x ∈ Rd and define

Zx
t = E

(
∫ ·

0

−b(Xx
u)dWu

)

t

; t ≥ 0.

Since b is bounded we know that Z is a martingale and we may define
a measure Qx equivalent to P via dQx/dP|Ft

= Zx
t for each t ≥ 0. By

Girsanov’s theorem we know that W̃ x = W +
∫

0
b(Xx

u)du is a Qx Brownian
motion. We thus have under Qx that

dXx
t = b(Xx

t )dt+ dWt = dW̃ x
t
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Thus,Xx is a Brownian motion starting at x underQx and henceQx [Xt ∈ A] >
0 for any A with positive volume. Thus, by the equivalence of Qx and P on
Ft the result follows.

(3) i) Consider the martingale M given by

Mt = E [H | Ft] ; t ≤ T.

Since H is bounded, M is indeed a martingale. By the martingale
representation theorem there exists an adapted process φ such that
∫ t

0
φT
t dWt is well defined and such that

Mt = M0 +

∫ t

0

φT
udWu.

In fact, M0 = E [H]. Evaluating this at t = T we obtain

MT = H = E [H] +

∫ T

0

φT
udWu.

Now, we know for any initial capital and trading strategy we have

Wπ
T = w0 +

∫ T

0

πT
u σ(Xu)dWu

Thus, we can replicate H with initial capital w0 = E [H] and trading
strategy πt provided that

σ(Xt)πt = φt =⇒ πt = σ(Xt)
−1φt.

Here, we have used that σ is symmetric and invertible. Since
∫ t

0
φT
udWu

is well defined, we know that Wπ is well defined.

ii) Define the differential operator L by

Lf(x) =
1

2

d
∑

i,j=1

Σij(x)
∂2f

∂xi∂xj
(x)

for C2 functions f . Consider the PDE

ut(t, y) + Lu(t, y) = 0; t ∈ (0, T ), y ∈ Rd

u(T, y) = g(y); y ∈ Rd.

Assume u ∈ C1,2((0, T ) × Rd) is a bounded solution to the PDE.
Write Xt,x for the solution of the SDE starting at x. Define τn =
inf {s ≥ t | ‖Xt,x

s ‖ ≥ n}. Assume ‖x‖ < n we have

u(T ∧ τn, X
t,x
T∧τn

) = u(t, x) +

∫ T∧τn

t

∇u(u,Xt,x
u )Tσ(Xt,x

u )dWu
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Taking conditional expectations with respect to Ft and noting that ∇u
and σ are bounded on {x |‖x‖ ≤ n} we have

E
[

u(T ∧ τn, X
t,x
T∧τn

) | Ft

]

= u(t, x)

Since τn → ∞ almost surely we have since u is bounded and continuous
that

E
[

u(T,Xx,t
T ) | Ft

]

= E
[

g(Xx,t
T ) | Ft

]

= u(t, x)

By uniqueness of solutions we have we have for P [X]
−1
t almost every y

that
E [g(XT ) | Xt = y] = u(t, y)

Lastly, by the Markovian property of X we may re-write this as

u(t, y) = E
[

g(Xy
T−t)

]

iii) With w0 = u(0, x) and πt = ∇u(t,Xt) we have

Wπ
T = w0 +

∫ T

0

πT
t σ(Xt)dWt = u(0, x) +

∫ T

0

∇u(t,Xt)
Tσ(Xt)dWt

= u(T,XT ) = g(XT ).

So that Wπ replicates. Note that u(0, x) = E [g(XT )] so this is the
initial capital w0.

(4) i) Recall the functions gε from lecture:

gε(x) =

{

|x− a| |x− a| > ε
1
2

(

ε+ (x−a)2

ε

)

|x− a| ≤ ε
.

We showed that gε ∈ C1(R) and that g̈ε is piecewise continuous taking
the value 0 for |x − a| > ε and 1/ε for |x − a| < ε. We are allowed to
use Ito’s formula for such functions and hence

gε(Wt) = gε(z) +

∫ t

0

ġε(Ws)dWs +
1

2

∫ t

0

g̈ε(Ws)ds

= gε(z) +

∫ t

0

ġε(Ws)dWs +
1

2ε
Leb [s ≤ t | |Ws − a| ≤ ε]

In the last equality we substituted in the ≤ since the level set of |Ws −
a| = ε has 0 Lebesgue measure. Now clearly we have that gε(Wt) →
|Wt − a| almost surely. Furthermore, since

|ġε(x)| ≤ 1; ġε(x) →
{

1 x > 0

−1 x < 0
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we have that for any T ≥ 0 that

lim
ε↓0

E

[

∫ T

0

(ġε(Ws)− sign(Ws))
2
ds

]

= lim
ε↓0

E

[

∫ T

0

1|Ws−a|≤ε (ġε(Ws)− sign(Ws))
2
ds

]

≤ lim
ε↓0

4E

[

∫ T

0

1|Ws−a|≤εds

]

= 0

Thus, for any εk → 0 we can find a further sub-sequence εkj
→ 0 such

that almost surely

lim
εkj

→0

1

2εkj

leb
[

s ≤ t | |Ws − a| ≤ εkj

]

= |Wt−a|−|z−a|−
∫ t

0

sign(Ws)dWs

which is the desired result.

ii) We have
∫ t

0

h(Ys)d〈Y 〉s =
∫ t

0

h(Ys)ḟ(Ws)
2ds

=

∫ t

0

h(f(Ws))ḟ(Ws)
2ds

=

∫

R

h(f(a))ḟ(a)2Lt(a)da; z = f(a), dz = ḟ(a)da

=

∫

R

h(z)ḟ(f−1(z))Lt(f
−1(z))dz

where we have used (1) and the fact that f is strictly increasing and
hence invertible. Thus, we see that

LY
t (z) = ḟ(f−1(z))Lt(f

−1(z))

(5) i) Let α > 0. From Novikov we know thatMt = eα
∫

t

0
φudBu−(1/2)α2

∫
t

0
φ2

udu

is a martingale. We thus have

E
[

eα
∫

T

0
φudBu

]

= e
1
2α

2
∫

T

0
φ2

udu

which yields the desired result.

ii) Using Ito’s formula on eγtYt it follows that

eγtYT =

∫ T

0

eγsdBs =⇒ YT ∼ N

(

0, e−2γT

∫ T

0

e2γsds

)

∼
√

1− e−2γT

2γ
N(0, 1)

Set CT =
√

(1− e−2γT )(2γ). We thus have for any β > 0 that

E
[

eβY
2

T

]

= E
[

eβC
2

TN(0,1)2
]

=
1√
2π

∫ ∞

−∞
eβC

2

T z2−z2/2dz

=
1

√

1− 2βC2
T

; −∞ < β <
1

2C2
T

.
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iii) Now, let λ > 0. We have

E
[

e−λ
∫

T

0
W 2

t dt
]

= E
[

e±
√
2λ

∫
T

0
WtdWt−λ

∫
T

0
W 2

t dt
]

= E

[

e
√
2λ

∫
T

0
WtdWtE

(

−
√
2λ

∫ ·

0

WtdWt

)

T

]

= E

[

e
√

λ
2 (W

2

T−T)E
(

−
√
2λ

∫ ·

0

WtdWt

)

T

]

Now, W clearly does not explode to ∞ under P. If we could change
the measure through the stochastic exponential above then Wλ = W +√
2λ
∫

Wtdt is a Brownian motion under the new measure Pλ. This
gives that

dWt = dWt = −
√
2λWtdt+ dWλ

t

Since W has the dynamics of the process in part b) we know that W
does not explode under Pλ and hence the stochastic exponential above
is a martingale. Thus, we have

E
[

e−λ
∫

T

0
W 2

t dt
]

= e−
√

λ
2
TEP

λ
[

e
√

λ
2
W 2

T

]

We now use the result from part b) with γ = −
√
2λ. First, note that

√

λ

2
≤ 1

2

(

2
√
2λ

1− e−2
√
2λT

)

⇔ 1− e−2
√
2λT ≤ 2

so that the restriction in part b) always holds. Thus,

E
[

e−λ
∫

T

0
W 2

t dt
]

= e−
√

λ
2
T 1
√

1− 2
√

λ
2 (1−e−2

√

2λT )
2
√
2λ

=

√

√

√

√

e−
√
2λT

1− 1
2

(

1− e−2
√
2λT
)

=

√

√

√

√

1

1
2

(

e
√
2λT + e−

√
2λT
)

=
(

cosh
(√

2λT
))−1/2

It is interesting to note that the above formula implies

lim
T→∞

1

T
log
(

E
[

e−λ
∫

T

0
W 2

t dt
])

= −
√

λ

2
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