ON LOWER SEMICONTINUITY
AND RELAXATION

IRENE FONSECAT & GIOVANNI LEONT

ABSTRACT. Lower semicontinuity and relaxation results in BV are obtained for multiple integrals
Fu,2) = [ fo,u(a), Vu(@) do, ue W (Ra),
Q

where the energy density f satisfies lower semicontinuity conditions with respect to (z,u) and is not subjected to
coercivity hypotheses. These results call for methods recently developed in the Calculus of Variations.

§1. Introduction.

In this paper we address lower semicontinuity and relaxation properties for multiple functionals of the
form

F(u,Q) ::/Qf(:c,u(x),Vu(x))dx,

where 2 is an open subset of RY | and u(z) is a R¢-valued function defined on €.
In [30] Serrin considered the scalar—valued case where

FECOXxRxRY;[0,00)) and f(z,u,-) isconvexin RY. (1.1)
Among his results we select Theorems A and B below.

Theorem A. (cf. [30, Theorem 11]) Assume that f satisfies (1.1). Let u € BWVoc (4 R), and let {u,} be
a sequence of functions in W'lf)’cl (4 R) converging to u in Li, (Q;R). Let A, p be moduli of continuity such
that

(i) p(s) < Cs for C >0 and all s > 0 large, and

(@, u,8) = f(@o, w0, )| < Aljz = 2o)(1 + (2,4, 8)) + p(|u = uol)

for all (z,u), (zg,u0) € Q x R, and for all £ € RV ;
or
(i) 1£(2,u,€) = F(zo,u0,€)] < Al — 20| + u— uol) (1 + f(z,u,€) for all (v,u), (0,uo) € @ x R, and for
all £ € RN . Suppose, in addition, that u(zx) is continuous.
Then

/ Fa, u(z), Vu(z)) dz < liminf / £, un(3), Vi () da.
Q Q

n—oo
Here Vu is the Radon—Nikodym derivative of the distributional derivative Du of u, with respect to the

N-dimensional Lebesgue measure £V. Also, we intend by modulus of continuity a nonnegative, increasing,
continuous function p such that p(0) = 0.
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2 I. Fonseca and G. Leoni

Theorem B. (cf. [30, Theorem 12]) Assume that f satisfies (1.1) and any one of the following conditions:

i) f(z,u,&) = o0 as || = oo for each (z,u) € Q x R.
(i) f(z,u,-) is strictly convezx in RN for each (z,u) € Q x R.
(i) The derivatives fy, fe and fe, exist and are continuous.

Then F(u, Q) is lower semicontinuous in Wlicl (4 R) with respect to local convergence in L.

The prototype of integrands that we want to study is represented by f = h(z,u)|£|, where h > 0, for
which conditions (i)—(iii) of Theorem B may be violated; hence, in this paper we will focus our attention
mainly on Theorem A. Note also that while conditions (i) and (ii) of Theorem A are trivially satisfied when
f = (&), so that L{ . lower semicontinuity holds in this case only under assumption (1.1), Theorem B is
more stringent as it imposes extra conditions on the dependence of f on the gradient variable .

It is worth noticing that Theorem A requires no coercivity hypothesis, i.e., a condition of the type

F(o,0.6) > Clél - &

for some constant C' > 0. One of the main purposes of this paper is to try to understand the deep relation
between coercivity (or the lack of it) and lower semicontinuity. A drawback in Theorem A(ii) is that, in
practice, one seldom knows whether the target function u(z) is continuous or not. Important examples of
integrands which satisfy (i) and (ii) of Theorem A are given by

f=1@8 =h@)g(6), [f=[f(,u,§)=h=z,u)g(),

where h(x) and h(z,u) are uniformly continuous functions bounded away from zero and g is a nonnegative
convex function. Conditions (i) and (ii) of Theorem A appear often in the study of lower semicontinuity and
relaxation and were exploited by several authors. Dal Maso [9] obtained an integral representation formula
for the relaxation F(u,()) with respect to the Ll topology of the functional F, namely

loc

F(u,) := inf {limian(un,Q) Cup € WEHOQR), up = u in L%OC(Q;R)} )

{un} n— o0 loc
under a weak form of condition (ii) in Theorem A and assuming coercivity. Let

u*(z)

= z,u, Vu) dr ®(z,u u Xz, 8,1,)ds N-l(g .
A9 = [ fouVodo+ [ 1(eu,d0( ))+/S(um</u_(w) f <,,u>d)cm (@), (12)

where f> is the recession function of f, that is f*°(z,u,&) := limsup is the Cantor part

t—00
of Du, and (ut — u ™) is the jump of u across the interface S(u).

As a corollary of Dal Maso’s general results', we have the following theorem

Theorem C. (cf. [9, Theorem 3.2]) Assume that 2 is bounded and that f is a Borel function which satisfies
(1.1) for HN a.e (z,u) € Q x R. Suppose also that for every r > 0 there exist C > 0 and three functions c,
a and A € C(Q;[0,00)) N L (;]0,0)), with c(z) > 0 in Q, such that

c()[€] —a(z) < f(z,u,8) < ClE] + A(z) (1.3)

for all (z,u,&) € A x R xRN with |u| < r. Finally, assume that for HY a.e (zg,u0) € O x R and for every
€ > 0 there exists 6 > 0 such that

|f (2, u,8) — f(zo,u0,§)| < e(1+ [£]) (1.4)

!Dal Maso’s results are given in terms of I'-convergence of a family of functionals Fy,(u,Q) := [, fa(z,u(z), Vu(z)) dz.
We take here f;, = f and refer to [9] for the more general statement of Theorems 3.2 and 3.5.
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for all (z,u) € QxR with |x — 0|+ |u—wuo| < & and for all £ € RN . Then for all u € BV (Q; R) NL*>® (Q; R)
we have
F(u,Q) = H(u, Q). (1.5)

Furthermore, if there exist b € L'(Q2;[0,00)), C > 0, a > 1, such that f(z,u,0) < Clu|* + b(x) for all
(z,u) € Q x R, then (1.5) holds for all w € BV (Q; R) N L*(Q; R).

Note that (1.5) implies, in particular, that F' is L!-lower semicontinuous in Wh1. Indeed, as f> > 0
it follows that [, f(z,u(z), Vu(z))dz < F(u,Q) for u € BV (Q;R). Therefore, Dal Maso’s result extends
Theorem A(ii) of Serrin to target functions u of bounded variation which are not necessarily continuous.
However, the “price” to pay for this extension is the coercivity and growth assumption (1.3). Dal Maso
established also an integral representation result for functionals which are not necessarily coercive.

Theorem D. (cf. [9, Theorem 3.5]) Assume that Q is bounded, that f is a Borel function, and that f(x,u, ")
is positively homogeneous of degree one and convex. Suppose also that there exist X : Q@ x R — [0, 00), with
A(-yu) continuous and M\(0,u) = 0 for L' a.e. u € R, and a function P € C(Q;[0,00)) such that

|f(@,u,§) = f(zo,u,§)| < M|z — 20|, u)(1 + f(z,u,8), 0= f(z,u,8) < Pu)l], (1.6)

for all z, zo € Q, u € R and £ € RN . Then (1.5) holds for all u € BV (Q;R).

The main difference between hypotheses (1.4) and (1.6); is that (1.4) is a local hypothesis in (z,u), while
(1.6)1 may be interpreted as a global restriction in u. The conditions of Theorem D are satisfied by

f(2,u,8) = h(z)B(u)¢]

where h is a positive, bounded, uniformly continuous function and B is a nonnegative continuous function.
Note also that condition (1.6); is trivially satisfied when f does not depend on z, that is f = f(u, ). Lower
semicontinuity for these integrands of the form f = f(u,&) was later studied by De Giorgi, Buttazzo and
Dal Maso [13], who proved the following result:

Theorem E. (cf. [13, Theorem 1]) Assume that f = f(u,&) is nonnegative, measurable in the variable u,
and convez in £. Suppose also that f(u,0) is lower semicontinuous and that

_ +
£—0 |£|
Then for every u € W, (Q;R) the function f(u(zx), Vu(z)) is measurable and the functional F(u, ) is

loc
. . . 1.1 . .
lower semicontinuous in W, (;R) with respect to local convergence in L'.

loc

Theorem E was extended by De Cicco in [12] to functions of bounded variation. More precisely, De
Cicco showed that when f = f(u, &) satisfies the hypotheses of Theorem E then the functional H (u) defined
in (1.2) is lower semicontinuous in BVje.(Q; R) with respect to local convergence in L'. The hypotheses
of Theorem E were significantly weakened by Ambrosio in [3] (see also [11]), where the sequence {u,} is
assumed to be bounded in W11(Q;R). This condition is somewhat related to coercivity, and we will not
dwell more on it here.

Unlike the case where f = f(u,&), without some kind of coercivity one cannot expect in general lower
semicontinuity in the L! topology for functionals of the form

/ f(z,Vu(z)) dz.
Q
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Indeed, in [9] Dal Maso, following a counterexample of Aronszajn, constructed a continuous function w :
Q= R, where @ = (0,1) x (0,1) and z = (21, 22), and a sequence of functions {u,} converging to u(z) = 2
in L*(Q; R), such that

n—oo

/ |(sinw(z),cos w(x)) - Vu(z))| dz >11m1nf/ [(sinw(z),cosw(z)) - Vun(z))| dz.

Since the target function u(x1,z2) = z2 is continuous, f(z,£) = |(sinw(z), cosw(x))-£| cannot satisfy either
condition (i) or (ii) of Theorem A, for in this case we would obtain a contradiction. This example suggests
that, when there is no coercivity, lower semicontinuity in the L! topology may fail unless we strengthen
(1.1) with an uniform continuity condition.

We are now ready to present the main result of the paper.

Theorem 1.1. Assume that f : Q@ x R x RN — [0, 00) is a Borel integrand, f(x,u,-) is convez in RY | and
for all (zo,u0) € @ x R and € > 0 there exists § > 0 such that

f(xoauoaf) _f(wauaé‘) SE(I-{-f(:L‘,u,&)) (17)

for all (z,u) € Q@ x R with |z — :U0| + |u —uo| < & and for all ¢ € RN . Let u € BVioc(; R), and let {u,} be
a sequence of functions in W1 LQ;R) converging to u in LL _(Q;R). Then

loc

H(u,Q) < liminf f(m un (), Vuy(z)) dz.

n—o0

The main tool in the proof of Theorem 1.1 is the blow—up method introduced by Fonseca and Miiller [17],
[18], where we reduce the domain 2 to a ball and the target function u becomes a piecewise affine function.
Since affine functions are locally bounded, in the scalar case we may replace the truncation used in [17],
[18], in a vectorial setting, and which required a degenerate coercivity condition, by a considerably simpler
argument.

Theorem 1.1 improves Serrin’s Theorem A, not only because continuity of the target function u is assumed
in Theorem A(ii), and is not needed here, but also because condition (1.7) is significantly weaker than (ii),
as the following result illustrates:

Corollary 1.2. Let g : RN — [0,00) be a conver function, and let h : @ x R — [0,00) be a lower
semicontinuous function. If u € BViee(Q;R) and {un} C W2 (Q;R) converges to u in LL (5 R), then

loc

n—oe

/ h(z,u)g(Vu)dz < lim inf/ h(z,un)g(Vu,) dz.
Q Q

This result seems to be new in this generality. Note that conditions (1.3) and (1.4) in Theorem C of Dal
Maso imply the validity of (1.7), while f(z,u,&) = h(z,u)g(£) as in Corollary 1.2 satisfies (1.7), but not, in
general, (1.4), (1.6)1, and (i), (ii) of Theorem A.

Conditions of the type (1.7) appeared already in the papers of Fonseca and Miiller [17], [18], Dal Maso
and Sbordone [10], Fusco and Hutchinson [20]. All these results deal with the vectorial case and require
some type of coercivity conditions.

In the special case where

h = h(z) :== xa(z) for some measurable set A C (Q,

then h(z)g(€) satisfies (1.7) if and only if LV (0A) = 0 (i.e. if x 4 () has a lower semicontinuous representative),
and thus we recover the condition obtained by Gangbo [21]. Corollary 1.2 attests to the sharpness of
condition (1.7). Indeed, when N =1 and 2 is bounded, Fusco [19] proved that the functional

:/h(:c)|u'(:c)|da:, u€e W (;R),
Q

where h(z) is a bounded, nonnegative measurable function, is lower semicontinuous in L!(Q; R) if and only
if h(z) is lower semicontinuous.
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Theorem 1.3. Assume that ) is bounded, f : Q x Rx RN — [0, 00) is a Borel integrand, f(z,u,-) is convex
in RY, and there exists a constant C > 0 such that

0< fz,u, &) <C(A+[€]) for all (z,u,6) € A x R x RV . (1.8)

Then F(u,-) is the trace of a finite, Radon measure on the open subsets of 0, and

(i) if f is Carathéodory or f(-,-,&) is upper semicontinuous then F(u, Q\(S(u)UM (u))) < / f(z,u, Vu) dz;
Q

(ii) of f°(-,-, &) is upper semicontinuous then F(u, M (u)) < / 2z, u,dC(u));
Q

u™(2)
(iid) of f°(-,u,&) is upper semicontinuous then F(u,S(u)) < / (/ fo(z, 8,vy) ds) dHN ().
S(u)NQ2 u~(z)

Here, and in what follows, M (u) is the support of the Cantor part of Du. Theorem 1.3 is based on a
recent work by Bouchitté, Fonseca and Mascarenhas [7]. We have thus obtained the following relaxation
result:

Corollary 1.4. Under the hypotheses of Theorems 1.1 and 1.3(i), (ii), (iii), we have F(u,Q) = H(u,Q)
for all w € BV (Q; R).

If we require (1.8) to be satisfied locally u in compact sets of R, i.e., for every r > 0 there exist C' > 0
and A € L'(;]0,00)), such that

0 < flz,u,§) < ClE| + Az)

for all (z,u,&) € @ x R x RN with |u| < r, then it can be shown that Corollary 1.4 continues to hold for all
u € BV(Q; R)NL*® (Q; R). Thus, when (1.3) and (1.4) are satisfied for all (xg,ug) € 2 X R (see also Section
8), Corollary 1.4 improves Theorem C since conditions (1.3) and (1.4) imply condition (1.7), and Corollary
1.4 does not require any coercivity properties.

Next we extend Theorem E to integrands f = f(x,u,&) which depend on z. As we pointed out before,
there are already several results in this direction, e.g. due to Ambrosio [3] and later extended by De Cicco
[11] to BV functions, and where local convergence in L! is replaced by weak convergence in BV .

Theorem 1.5. Assume that f : Q2 x R x RN — [0,00) is a Borel integrand, f(z,u,-) is convez in RN | and
for all xg € Q and € > 0 there exists § > 0 such that

|f($07ua£) _f(maua£)| 56(1+f($au7£)) (19)

for all z € Q with |x—zo| < & and for all (u,&) € RxRY . Suppose also that f(zo, -,0) is lower semicontinuous
and

lim sup (f(w(]a u, 0) - f(mOJ u7£))+

€ Lip.(R; R).
€| =0 €]

Then H(u, ) < F(u,Q) for all u € BV(Q; R).

Note that in Theorem 1.5 we do not require f(z,u,-) to be positively homogeneous of degree one as in
Theorem D of Dal Maso. The proof of Theorem 1.5 relies on the blow-up method of Fonseca and Miiller
[17], and on the original proof of De Giorgi, Buttazzo and Dal Maso [13].
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Theorem 1.6. Assume that Q is bounded and that f : Q@ x R x RV — [0,00) is a Borel integrand which
satisfies (1.8), with f(x,u,-) convez in RN, and f(-,u,&) continuous in Q. Then F(u,Q) < H(u,Q).

We now turn our attention to the vectorial case, and consider nonnegative integrands
F:O xR x R¥Y - [0, 00), where d > 1.

The situation is considerably more complicated, even when f(x,u,-) is assumed to be convex, rather than
quasiconvex, which is the natural assumption when d > 1 (see [6], [8], [26]). In his book on Calculus of
Variations [26, Theorems 4.1.1, 4.1.2], Morrey extended Serrin’s Theorems A and B to the vectorial case.
Several years later, Eisen [14] studied the case where d > 1 and proved that Lemma 4.14 in [26], which is
the core of Theorem B, ceases to be true when d > 1, thus placing in doubt the validity of theorem itself.
In addition, he constructed counterexamples for Theorems A(ii) and B(iii). Theorem A(ii) seems to fail in
the vectorial case due mainly to the truncation techniques of the type used in Lemma 3 of [30] (see also [29,
pp. 30-31]) and in our Theorem 1.1, suitable only for the scalar case. On the other hand, Serrin’s Theorem
A(i) continues to hold in the vectorial case, while the validity of Theorem B(i)—(ii) when d > 1 remains
open. Note that Eisen’s counterexamples were both of the form

f=f(u, &) = h(u)g(€).

Thus we cannot hope to fully extend either Theorem E of De Giorgi, Buttazzo and Dal Maso or our
Theorems 1.1 and 1.5 to the vectorial case. However, we can prove the following:

Theorem 1.7. Let f be a nonnegative Borel integrand. Suppose that for all (zo,uo) € Q x R and e > 0
there exist 6 > 0 and a modulus of continuity p, with p(s) < C(1+ s) for s > 0 and for some C > 0, such
that

f($07u07€) - f($7u7§) < 5(1 + f($7u7§)) + p(|u - Uol) (110)
for all x € Q with |z — zo| < 6, and for all (u,&) € R? x R . Assume also that either

(a) f(2o,u0,") is convex in RN or

RdN

(b) f(zo,uo,-) is quasiconver in and

0 < f(wo,u0,8) < C(I¢|* + 1) for all € € R, (1.11)

where C > 0 and the exponent ¢ > 1 may depend on (xg,uo). In addition, if ¢ > 1 then assume that
1 AN
f(zo,u0,8) > c €9 —C for all £ € R*Y. (1.12)

1,1

oo (4 RY) which converges to u in

Let u € BVioc(S;RY), and let {u,} be a sequence of functions in W,
Ll (Q;R?). Then:

(i) /f(:v,u,Vu) dm+/f°°(a:,u,d0(u)) <liminf | f(z,un, Vuy)dz;
Q Q Q

n—oo

(ii) if f = f(z,€) then / oz, (uh(z) —u (2)) @ vy)dHN 1 < liminf/Q f(z,Vu,) dz.

S(u)NQ n—00

Theorem 1.7 improves Theorem A(i) of Serrin, since condition (1.10) is significantly weaker than the
corresponding (i). Moreover, Theorem 1.7 is also closely related to a recent result of Acerbi, Bouchitté and
Fonseca [1] for integrands of the form f = f(x,&), convex in &, where condition (1.10) is replaced by the
growth condition

a(lélf —1) < f(z,§) < Co([€]" + 1),
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with

In the quasiconvex case we use a result of Ambrosio and Dal Maso [4] for functions g = g(&) such that
0<g(&) <C1+ 4.

This growth condition is of vital importance for their argument to work.

When (1.11) and (1.12) hold then, by a recent result of Kristensen [22], we can approximate f(xq,ug, &)
by an increasing sequence of quasiconvex functions g;(§) which grow at most linearly, and thus we can still
use [4] for each g;. Note that without (1.12) L} . lower semicontinuity may fail even for the simplest case
when f = f(£). This has been shown by Maly [23] for

f=1() =I|detg|, d=N,

who constructed a sequence in W'V which converges to u(z) = x weakly in W'?, where p < N — 1, and
for which lower semicontinuity fail (see also Fonseca and Maly [16]). Thus, by Theorem 1.7 it follows that
f(&) = |det &| cannot be approximated from below by an increasing sequence of functions g;(&) which grow at
most linearly (see also example 7.9 in [22] for a different proof). This is in sharp contrast with the convex
case, where it is well known that this approximation can always be done (see e.g. Proposition 9.1).

In Theorem 1.7(ii) we have chosen to restrict ourselves to integrands f of the form f = f(x,§) because
in this case there is a simple integral representation formula for the relaxation of F' on the jump set S(u),
while, when f depends on the full set of variables and d > 1, then the formula is rather complicated (see
Theorem 1.10 below).

Theorem 1.8. Theorem 1.7(i) still holds if we replace condition (1.10) with the following:

for all (z,up) € Q x R? either f(xq,uq,&) =0 for all £ € RN, or for every e > 0 there exist Cy, Cz, § > 0
such that

f($0,U0,§) _f(xauaé.) Ss(l-i—f(a:,u,{)) (113)
f(xauag) > Cl|£| -0 (114)

for all (z,u) € Q x R? with |z — zo| + |u — ug| < & and for all £ € RN,

Theorem 1.8 was proven by Fonseca and Miiller [18], under somewhat stronger hypotheses, and in the
case where assumption (b) of Theorem 1.7 holds with ¢ = 1. The convex case can be thought of as a natural
extension of Theorem A(ii) of Serrin to the vectorial case.

Theorems 1.7 and 1.8 are complemented by the following result:

Theorem 1.9. Assume that the hypotheses of Theorem 1.8 are verified in the vectorial case, with f(x,u,-)
quasiconver in R . Then Theorem 1.3(i)—(ii) continues to hold. Furthermore, if in Theorem 1.3(iii) we
assume that f = f°(z,£), then

Flu, S@)) < / £, (ut (2) — u™ (2)) @ v) dHY L (z).

S(u)NQ

A similar extension holds for Theorem 1.6.
To obtain an integral representation formula for the relaxation F over the jump set S(u) in the vectorial
case we need a different set of hypotheses.
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Theorem 1.10. Assume that f is a nonnegative Borel integrand which satisfies (1.8). Suppose also that
for all g € Q2 and € > 0 there exist two constants 6, L > 0 such that

foo(mOauag)_foo(xauaf) SE(].-‘,—foo(!E,u,f)) (115)

for all x € Q with |z — zo| < 6, and for all (u,€) € R? x R ; and

[e@,u,8) - w <e (1 + M) (1.16)

for all x € Q, with |z — zo| < 3, and for all (u,&) € R? x RN and t > L. Then

Fu,S(w) > / Wz, ut (@), 0™ (z), v) dHY (@), (1.17)
S(u)NQ2
where
h(.%’o, )‘7071/) := inf { foo(xoaw(y)a Vw(y)) dy Twe Wl,l(Qu): wl(‘?Qy(zo,s) = UA,9,V} (118)
Qv
and
®) { A ify-v>0,
uxg.(y) ==
Moty 0 ify-v<0.
Furthermore if (1.16) is replaced by
t t
e - L8 (1 Lini0) (w16
and f*(-,u, &) is upper semicontinuous, then (1.17) is an equality.
Here, and in what follows, Q, := R,(—%, )", where R, denotes a rotation such that R,exy = v, and
Q = (—%,3)N. Also, C will denote a generic constant which may vary from line to line.

It is not difficult to see that conditions (H2) and (H4) in Thm. 4.1.4 of [7] imply (1.16).

In addition to the novelty of the results in this paper, which significantly improve upon classical theorems
in the literature, we would like to close this section pointing out some aspects of our approach. One of the
main tools exploited in the paper is the blow—up method introduced by Fonseca and Miiller [17], [18]. This
method was first used to deal with quasiconvex integrands, since many of the techniques in convex analysis
available for the scalar case could not be easily extended to the vectorial case. It turns out that blow—up
arguments in the scalar case, combined with some classical methods for convex integrands, may improve and
simplify some important results in the literature. Also, we use the very recent global method of relaxation
introduced by Bouchitté, Fonseca and Mascarenhas [7], to show that the relaxed energy density may be
written in terms of a Dirichlet problem. Most of the proofs are carried out firstly for f which grow at
most linearly in the gradient variable £&. While this approach is standard in the convex setting, and in the
literature there are several results which allow to approximate from below convex functions by an increasing
sequence of convex functions which grow at most linearly, it was only very recently that Kristensen brought
this idea to the vectorial setting, exploiting his approximation result for quasiconvex functions (see [22]; see
also [24]).

In the presentation of the paper, and whenever it was possible, we have tried to treat separately the
energies corresponding to the Lebesgue, Cantor, and Jump part of Du, in order to better understand the
corresponding scaling and the necessity and sufficiency of our hypotheses. It is interesting to observe that
the Lebesgue and Cantor measures may be treated in a similar fashion and, more importantly, under the
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same hypotheses on the integrand f. On the other hand lower semicontinuity for the jump part requires
hypotheses and methods which depart from the above mentioned.

Although the hypotheses on the integrand f are rather mild, they are not by any means minimal. Indeed,
it was not our purpose to obtain necessary conditions for lower semicontinuity, but, rather, to find simple
sufficient assumptions, which would be easy to verify in the applications. It seems, however, that lower
semicontinuity of f in the z variable is almost necessary, but it is not clear if it should always be uniform
in £ (at least for functionals which are allowed to vanish). Dal Maso’s example (see [9])

f(2,8) = [(sinw(z), cosw(2)) - ]

certainly seems to imply that it should. The lower semicontinuity of f in the u variable is not necessary, as
proved by Theorem D, but in order to drop it, stronger assumptions on the dependence on z seem to be
needed.

§2. Proof of Theorem 1.1.
Throughout this work we will use often truncation arguments, and the result below will be instrumental.

Proposition 2.1. (Truncation) Let f : @ x Rx RY — [0, 0c) be a Borel integrand satisfying (1.8). Suppose
that there exists a sequence (gx, M, tg,uor) € R* such that

Ek—)0+, )\k—)/\E[0,00), tk—)TE(0,00], Uk —> ug € R,

and

. 1
lim — f(mO + €Y, uok + Akwk (y),thUIk;(y)) dy =:l< 0,
k—o0 tk Q.
where zo € Q, {wy} C WH(Q,;R) converges in L' (Q,;R) to a function we € L°(Q,; R).
Let [\ essinfg, wo, A esssupg, wo] C (a1, a2), for some ay, az € R. Then there exists a new sequence
{vg} € WHHQ,; R), converging to wo in L' (Q,;R), such that

. 1
lim — f(wo + ery, uor + Mk (y), tx Vur(y)) dy < £
k—oc0 tk Qu

and
uok + Apvr(y) € [uo + a1, uo + az] for £V ae. yeQ,.

Remark 2.2. (i) It is easy to check that the conclusion of Proposition 2.1 still holds if we replace @, by any
bounded, open, convex subset of RV containing the origin.

(ii) Condition (1.8) can be significantly weakened if we specialize the sequences ty, €; and zq (see Lemma
8.4).

Proof. Take 0 < 2e < min{\ essinfg, wo—a1,a2—\ esssupg, wo}, and let k be so large that |ug—wuox| < €/2.
Define

Ep:={y € Qu: uor + Mewi(y) € [uo + a1,u0 + a2}, wi (y) in By,
Ef = {y € Qu : uok + A wr(y) > uo + a2}, vk(y) := < (uo —uok + a2)/Ae  in Ef,
Ek_ = {yGQ,,: uOk—l—/\kwk(y) <U0+Otl}, (UO—UOk‘i‘Oél)/)\k in Ek_

Then vy € WH1(Q,;R), and for k large enough

as > €+ |UO - u0k| + Aj, esssup wo, a; +e< |UO — u0k| + i essinfwo, (21)

v
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with
Ug — Uk + &
[ vt = woldr = [ funto) = untoiay + [ (T2 ) ) ay
Qv Ey, E;: k
uUg — Uk + &
# [ () - O dy < e~ w0
N

k

as k = oo0. Moreover

1 1
t o f(@o + ery, uor + Mok (y), tx Vor(y)) dy = ™ [ (@0 + ery, vor + Mewr (y), tx Vi (v)) dy
v Ey

1 1
+—/ f(zo + ery,uo + a2,0)dy + — f(xo + epy, uo — 01,0) dy.
te S tk Jeg

By (1.8) and (2.1)

1 C
OS—/ f($0+€kyauo+a2,0)dy5—CN(E;:)
tr JEF tg

C o (2.2)
<L LY({y € Qv : lwi(y) —wo(y)| > e/M}) < Tzsk llwr — wollL1 (@) = 0.
Similarly, we can show that the integral over E,  approaches zero as k — oo. O

Proof of Theorem 1.1. Without loss of generality we may assume that f is continuous, f(z,u,-) is convex,
f satisfies (1.7), (1.8), and for all (zg,ug) € Q X R and € > 0 there exists 6 > 0 such that

f(.’L'(),U,f) —f(-'E,U,£) S5(1+f($au7§)) (23)

for all (z,u) € Q x R with |z — 2| + |u — ug| < § and for all £ € RY.

Indeed, suppose that the conclusion of the theorem is true under these additional hypotheses. By applying
Proposition 9.3 to the function f, and noting that (1.7) and (9.2) are equivalent if f > 1, we may find an
increasing sequence of nonnegative continuous functions f; convex in &, which satisfy (1.7), (1.8), and (2.3),
and such that f(z,u,§) + 1= sup; f;j(z,u,§). Let {u,} C I/Vlf)cl(Q,R) converge to u € BVjoe(?;R) in
Ll (Q;R), and let A € Q. For any fixed j

loc

lim inf / F(@, un(@), Vun(x)) do > liminf / F5(@, un(), Van(@)) dz — LY (A) > Hy(u, A) — £ (A),
Q A

n—oo n—oo

where Hj is the functional given in (1.2) and corresponding to f;. If now we let j — oo, and use Lebesgue
Monotone Convergence Theorem and Proposition 9.3, we conclude that

lim inf /Q Fa,un(3), Vun (&) do > /A Flz,u, V) dz + /A £z, u, dC(u))

n—oo
ut(z)
+/ / o (z,s,vy)ds | dHN 1
S(u)nA u—(z)

= H(u, A),

where we have used the fact that (f + 1)® = f°°. The result now follows by letting A  Q, and using
Lebesgue Monotone Convergence Theorem once again.
Thus, in what follows f is continuous, verifies (1.7), (1.8) and (2.3), {un,} € W (€ R) converges to

loc
u € BVioc(S4; R) in L{ (Q;R), and, without loss of generality, we may assume that

liminf | f(z,un(x), Vuy(z))dz = lim | f(z,u,(z), Vu,(z))de < oo. (2.4)

n—oe Q n—oe Q
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Passing to a subsequence, if necessary, we may find a nonnegative Radon measure p such that
N *
f(@,un(2), Vun (2)) L7[Q = p

as n — 0o, weakly % in the sense of measures.
(i) (Lebesgue part) We claim that

. %o, €
N = lim w > f(mo,un(z0), Vun(zo)) for LN a.e. zg € Q, (2.5)
where Q(zg,€) := zo + £ Q. If (2.5) holds, then the conclusion of the theorem follows immediately. Indeed,
let ¢ € Co(;R), 0 < ¢ < 1. We have

lim [ f(z,un, Vu,)dz > liminf (pf(;y,umvun)dw:/(pd'u
@ Q

n—oo Q n— oo

dp
> —_— > .
> ngdENdm_/Qcpf(m,u,Vu)dx

By letting ¢ — 1, and using Lebesgue Dominated Convergence Theorem, we obtain the desired result.
Thus, to conclude the proof of the theorem in what concerns the absolutely continuous part, it suffices to
show (2.5).

Fix 2o € Q such that

dp . w(Q(zo,¢€)) . 1 /
L (®o) = lim lim —— - v — 2o)|dz = 0. (2.6
2N (@) = lim EE=S <oo, Tim s S [u(z) — u(zo) — Vu(zo)(z — 2o)|dz (2.6)

Choosing €, — 07 such that u(8Q(zg,ex)) = 0, then

1
lim Mj\){’ek)) = lim lim —N/ f(z,upn, Vuy,) dz
k=00 €k k—=oon=00 0 JQ(wo.ek)

k— 00 n—00

— lim lim / F(@o + £y, u(@0) + exwn i (y), Vs (y)) dy,
Q

where
un(zo + exy) — u(o)

wnik (y) = Ek *

Clearly w,, r € WH1(Q;R), and by (2.6), klggo nh_}rr;o l|wn,k — wol|L1(@r) = 0, where wo(y) := Vu(zo)y. By

a standard diagonalization argument, we may extract a subsequence wy, := wy, ; which converges to wop in
L'(Q;R) and such that

dp
ey

(r0) = Jim [ f(zo -+ exy, ulwo) + cxwn(y), Vun(y) dy- (27)
*JQ
Fix € > 0 and let § be provided by (1.7). By Proposition 2.1, with
A 1= €, ty, =1, uor, := u(zo), -y = ap 1=,

we may find a new sequence {v,} C WH1(Q;R), still convergent to wg in L'(Q;R), such that

d .
OB (z0) > liminf [ f(zo + exy, ulo) + exvi (1), Vor () dy,
dﬁ k—oo Q
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and |exvg(y)| < 6 for LN a.e. y € Q. Since g, — 0, by (1.7) we obtain

(1)

Zo) +€> 11m1nf/ f(zo, u(zg), Vug(y)) dy
We can now apply Serrin’s Theorem A(i) to the integrand g(§) := f(zo,u(x0), &) to conclude that

(o) +e > [lao, u(wo), Vulao)).

The result follows by letting ¢ — 07. O

(1+¢)

(ii) (Cantor part) The proof for the Cantor part is somewhat similar to the previous one, and we will
only indicate the main differences. The inequality (2.5) is now replaced by

%(wo) > f® (mo,u(mo), %(JJO)) for C(u) ae. zo €,

where (see [2]) dC(u)
m(m) = au(Zo)vu (o), >

with a, (7o) € R and v, (z0) € SNV 1:= {z € RN : |z| = 1}. For simplicity of the notation, from now on we
will write a and v to designate a,(xo) and v, (o), respectively. It is known (see [4], [7], [18]) that for C(u)
a.e. 2o € (2 the following hold

dp _ o (Qu(mo,6)) _— -
m“’“’) = @) < B L, MO =0
|Dul(Qu (20, €)) | Du|(@v (20, €))

= 0 —_— X
gN-1 ’ s—>o+ eN

(2.9)
5—>0+

Fix zo € Q so that (2.9) holds. By Lemma 3.9 in [7] (see also Theorem 2.3 in [4]) there exist ¢ — 0% such
that u(0Q, (20,ex)) = 0, and a non decreasing function ¥ : (—3,1) — R such that the followings hold:

o=

T -0)—U(-L10)=1, / U(s)ds = 0,

1

[N

u(Zo + €ry) — o & fQu u(To + erz)dz (2.10)

anly) i = " > woly) = (y-v)a in I'(QuiR)

klggo |Dzk|(Qu) = |Dw0|(Q,,),

where, by (2.9), A := |Du|(Q,(z0,ek))/ep * — 0 and tj, := A\ /e, — 00 as k — oo. Then

di,u _ % Qv (zo,ek)) . . 1
d|C(u)| (-'170) - klggo |Du|(QV($OJEk)) o kllgolo nh—?go |DU|(Q,,(.Z’0,5k)) /QV(ZC(),Ek) f(-’E,Un,Vun) dzx

. .1
= lim lim — f(xo + €xys Uon,k + Mewn,k (Y), te Vwn i (y)) dy,

k—oo n—00 Q.

where ( ) .
Un(To + EkY) — Uon,k
W,k (y) 1= = b\ = ) Uon,k ‘= — un(xo + €12)dz.
k & JQ.

Clearly wy, r € WH(Q,;R), and by (2.10), (2.9)s, and the fact that {u,} converges to u in L',

lim i - 0, lim i =
Jm lim ffwn, —wollL1(Qur) = i Hm uonk = u(zo).
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By a standard diagonalization argument, we may extract two subsequences {wy := Wy, &}, {Uok := Yon, k }
which converge to wo in L*(Q,; R) and u(xo), respectively, such that

. 1
a0 @) = o | F@o + e ok + M ()t Vw(v)) dy. (2.11)

We can now continue as in part (i), using Proposition 2.1 and then (1.7) to conclude that

(zo) + & > lim inf 1 f(zo,u(zo), ts Vur(y)) dy. (2.12)

dp
]_ -
SR reren] e 1 Jo,

Due to the presence of the sequence tj, we cannot apply directly Serrin’s Theorem A(i) to the integrand
9(&) = f(zo,u(x0),£) as we did in part(i). Although the adaptations to the present setting are quite
straightforward, here we present an alternative proof which can be extended to the vectorial case and to
quasiconvex functions. Assume, for simplicity, that ¥ = ey and construct a sequence of smooth functions
vr(y) = Up(yn) such that

1
l[on = wollesi@umy < 5 and  [Von|(Q) = |Dwo|(Q) = 0.
as h — o0o. Since vy, depends only on yy, its trace on @) agrees with the trace of a function

Any+p),  An = (0n(1/2) —on(=1/2)) ® en = Vr(Q),

where p is Q—periodic. Choose open sets Q;, i = 1,2,3, such that Q; € Qs € Q3 € Q. Since g satisfies
(1.8), by Lemma 2.5 of Ambrosio and Dal Maso [4] we may find a new sequence

vnk(Y) = p(W)we(y) + (1 — ¢(y))va(y)

such that

1 4C 1 1
= [ sV [ gwTudy+ g [ o —uildy+ 5> 5 [ gtTun dy
tk Jog bt Jo\e, 0 Jo k=t Jg
where ¢ is a cut—off function such that ¢ = 1 in a neighborhood of Q2, ¢ = 0 in a neighborhood of RV \ 3,
and § < dist (22,093). By virtue of the quasiconvexity of g, together with the growth (1.8) (recall that in
the scalar case quasiconvexity is equivalent to convexity), we obtain
1 LY (Q\Q
— [ 9(txVwr)dy +C (#
k

4C 1 1
t #170l@00)) + 55 [ o= uildy+ 7 2 alteTun(@))
kJo Q k

Letting k — oo gives

k—oco tg,

.1 4C ©
lim —/ 9t Vwi) dy + C[Vur|[(Q\) + T/ lwo — vn|dy > g™ (Vur(Q));
Q Q
hence, taking the limit as h — oo, we conclude that

lim - /Qg(thwk)dy + C|Dwo|(Q\Q1) > g% (Vwo(Q)),

k—oo g
where we used the continuity of ¢g* (see Proposition 9.1), and the fact that |Vu,|(Q) = |Dwo|(Q). If we
now let 7 Q we get
1
lim —/ 9(teVwy) dy > g™ (av);
Q

k—o0 T
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thus,

1 +5)%($0) +e> ™ (ﬂfoau(ﬂ?o)a %(%)) .

It suffices now to let ¢ — 0. O

(iii) (Jump part) To complete the proof of Theorem 1.1 it remains to show that

+
du u™ () N1
_— > *© .€.
T 1 5() (zo) > /u_(zo) (o, s,v)ds for H a.e. kg € S(u),

where v = v,() is the normal to S(u). It is known that (see [7]) for HNV ! a.e. o € S(u)

du Qv (20,¢))

v — |jp Hev\r0:.=))
TN 1[5 %) = M =5 <o
1 1 (2.13)
lim — —ut dx =0, lim — / —u dex =0,
5_1>r(r)1+ el /QLF(ZO,E) jul) = (o)l 5_1>H01+ el Qu (z0.€) ule) — ol

where Q} (z0,¢) := {y € Q,(z0,¢) : y-v >0} and Q; (z0,€) := {y € Q,(x0,¢) : y-v < 0}. Fix 9 € S(u)
such that (2.13) holds, and choose a sequence ¢ — 01 with u(0Q, (zo,&x)) = 0. Then

dp . w(Qu(mo,€r)) . : 1 /
W S P — lim lim Ty Upy Viy) do
dHN-1 LS(“) k—00 gkN_l k—o00 n—00 EkN_l Qv (zo,ek) f( )

k—oco n—o

. . 1
T (a:o+eky,wn,k(y),awn,k<y)) dy,
Qv

where wp, (y) := un(zo + ery). Clearly w,, € WH(Q,;R), and by (2.13) together with the fact that w,
converges to u in L1,
ut(zg) ify-v>0,

lim lim [lws —wol|lLi@um) =0,  where  wo(y) := { w(zg)  ify-v<0.

k—o00 n—00

As before, by a standard diagonalization argument we may extract a subsequence {wy, := wp, x} converging
to wp in L'(Q,;R), with

du L 1
m(wo) = lim . enf (wo + ery, wi(y), ank(y)) dy. (2.14)

Fix ¢ > 0. By (2.3) for each u; € [u™(zo),u" (z0)] there is §,, > 0 such that
f(.’L'o,'U,,{) - f(m,u,f) S 6(1 + f(l-au:f))
for all |z — xg| < 6y,, |u — u1| < Jy,, and for all £ € RY. Since

U B(u1,0u,) D [u™ (z0),u™ (z0)],

u1 €[u~ (z0),ut (z0)]

we may find a finite subcovering
M
U B(wi,6:) D [u™ (o), u (x0)]-
i=1

Set § := min{6y,...,dar, 61,57}, where 6T are provided by (2.3) corresponding to the points (zq,u™(2o)),
respectively. Then

f(.fll’o,u,f) _f($7u7£) Se(l—!—f(a:,u,@) (215)
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for all |z — xo| < 6, u € [u (z0) — §,ut(x0) + 4], and for all £ € RV.
By Proposition 2.1, with

A =1, ty == 1/eg, ugy := 0, a1 =u" (xo) — 6, as == ut(z9) + 0,

there exists a new sequence vy € W1(Q,;R), convergent to wo in L'(Q,;R), such that v (y) € [u~(wo) —
a1, ut (x9) + as], and by (2.14) and (2.15) we have

du .
(1 +6)m(mo) > hkrg})réf/Qy enf (mo,vk( ), Vvk( )) dy.
Since h(u,§) := f(xo,u, &) is continuous, by an approximation result due to Ambrosio [3] we can write

h(u,&) = supla;(u) + bi(u) - {]*

ieN
where the functions a; : R — R and b; : R — RY are bounded and continuous. It is not difficult to see that
h (u, &) = sup[bi(u) - ] *.
K3

Therefore (see [12, Lemma 6])

* (o) i put(ao) j
/ h*(s,v)ds = sup sup{Z/ i (8)[bi(8)-v] T ds : b; € C§° ((u™ (wo)u™ (20));[0,1]), Z¢ < 1}.

u~ (z0) JEN u~ (zg)
(2.16)
Fix j € N, 44,... ,%;, as in (2.16), and let ¢ € C§°(Qy;[0,1]). We have

k—oco —

+
(1+) et 5y @0 >hmmf2 - [, ewesitnw) as(on0) + 2 ion () - T)| o

k—o0

> 11m1nf2/ )i (v (v)) [bi(vi(y)) -Vvk(y)]+ dy,

where we have used the inequality (o + 8)" > (8)" — |af for a, 3 € R, Lebesgue Dominated Convergence
Theorem, and the fact that

eklai(ve(y))| < ||az'||L°°(R)5k — 0.

By a result of De Cicco [12, Theorem 1], we have

d J ut(z0) N
(1 +€)W Zl/s(wo) /_(%) Pi(s) [bi(s) - v]t ds dHN " (y),

and taking ¢ 1, we obtain

(I-I—E)

| \Y

dHN- 1LS

+(€vo)

[bi(s) - v]T ds.

i/(wo)/ ::O) Pi(s) [bi(s) - v]T ds dHN ' (y)
> [

(zo)

In view of (2.16), the proof is concluded by taking the supremum over all j € N, #q,... ,¢;, and letting
e— 0. O
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§3. Proof of Theorem 1.3.

(i) (Lebesgue part) Assume first that f is Carathéodorm. Consider F : BV (; R) x A(Q) — [0, 00|, where
A(Q) stands for the familp of open subsets of Q. It can be proved that F(u;-) is the restriction to A(f2) of
a Radon measure, F(-; A) is L'(A) lower semicontinuous, and

0< F(u,A) < C (LN(A) + |Du|(A4)).

For a proof we refer to Lemma 4.1.2 of [7] (see also [5], [18]). Let Fi(u,A) := F(u,A) + |Du|(A). Bp
Theorem 3.7 of [7] we have

dFi(u,-) _ dF(u,-)

W(Sﬁo) T deN (o) + |Vu(zo)| = f1(zo,u(zo), Vu(zg)) for £V ae. z9 € Q,

where

f1(zo,u0,§) :=limsup aiN inf { F1(v, Q(z0,¢)) : v € BV(Q(20,£)), v]6Q(z0,e) = to + & - (z — x0) } .

e—0t

Thus, the proof of part (i) is completed provided we show that

f1(@o, u0,8) < f(20,u0,€) + [¢]
for LN a.e. 2o € Q and for all (ug,£) € R x RV, Clearlp
. 1 ) 1
f1(@o, w0, §) < limsup — F(uo+§-(2—20), Q(o,€))+[¢| < limsup — f(@,uo+&-(2—20), &) dz+[¢].
e—0+ 13 e—0*t € Q(.’Eo,s)

Since f is Carathéodor, by the Scorza-Dragoni Theorem for each ¢ € N there exists a compact set K; C €,
with LV (Q\K;) < 1/i, such that f : K; x R x RY — [0, 00] is continuous. Let K} be the set of Lebesgue
points of xk;, and set w := UL (K; N K}). Then

LY @Q\w) < LN (O\K,) < % 50 asi— oo,

If 9 € w then 2y € K; N K for some index 4. Since g(z) := f(x,uo + &(z — x0),§) is continuous over Kj,
given ¢ > 0 there exists n > 0 such that g(z) < g(zo) + 0 for all z € K; with |z — z¢| < n. Therefore, b
(1.8) we have

N . N .
11(00,10,€) = |61 < (120,10, €) + ) imsup T~ FELIOID | 6514 e i sup LI NED

e—0*t e—0*t
= f(ill'(),’u/(),£) + 55

where we have used the fact that zo is a Lebesgue point of xk,. B letting 6 — 07 we obtain the desired
inequalitp. The argument for the case where f(-,-, ) is upper semicontinuous is verp similar to the one used
in Theorem 1.3(ii) below, and therefore we omit the details. O

(ii) (Cantor part) Bs Lemma 3.9 of [7], for C(u) a.e. zo € ) there exist a double indexed sequence
{tgk),ugk)} such that for everw k

t* 500,  et™ 50T, ulF) 5 u(m) ase— 0T, (3.1)
and
dFy (U, ) _ df(u’ )
d0G) ™ = giet @ Tl

inf {fl(v,Q,(,k) (zo,€)): v € BV(Q,(,k) (20,€)), UlBQ(k)(zo o = u® + tWap . (x — :Uo)}
= lim limsup L

k—oo ¢ o+ EN-1gN (%)

7
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dC(u)

where ————(2¢) = av, a = a(u, ) € R, v = v(u,x9) € SV 1, ,(,k)(:cg,s) =20 + EQ,(,k) with

d|C(u)|
k) .= ERT (1 1)
QF .—Ru<( 2,2) x( 5'5) |

where R, denotes a rotation such that R,eny = v. Take z¢ € 1, so that all the limits above exist and are
finite. Then

df(ua )
d|C(u))

(o) + |a] < klim lim sup Fir@w® +tPav - (x — 20), QP (20,¢))

=0 g0+ kN_IEthk)
Flz,u® +t®ap . (2 — z0), t® av) de + |al.
(3.2)

< lim limsupi(k)/
k=oo oot EN—1eN$" JQU) (20,e)

By Proposition 9.1, (9.1), and (1.8),

f(z, ugk) + tgk)au - (z — 1), 0)
)

Iz, ugk) + tgk) av(xz — x9), tgk) av)
)

< 2z, u® + t®av - (x — x0),av) +

< 1@, u® + tPav - (@ — z0),av) + NOR
te

Therefore, by (3.1) and (3.2),

dF(u,-) - 1 /
—— 7 < lim 1 —_—
d|C(u)] (wo) < Pl lgn_lilip kN-1gN O™ (z0.¢)

[ (zo + ey, ugk) +e tgk)al/ -y, av) dy.

(@, ulP +t®av - (z — 20), av)d

= lim limsup ———
k—o0o -_,0+ kal Qf,k)

Since the function f°°(-, -, av) is upper semicontinuous, given § > 0 there exists > 0 such that f°°(z,u, av)

< f(zo,u(zo),av) + 9§ for all |z — zo| < n and |u — u(zo)| < 1. By (3.1), for each fixed k if € is small

enough then xg + ey € B(xo,n) and uP +etPWay . y € [u(zo) —n,u(zg) +n) for all y € Q,(,k). Hence

oo £ (@0 + ey, ul +etav -y, av) dy < (1 (2o, u(o), av) + 6) KV
Qv

and, in turn,
d]:(ua )
d|C(u)|

We now let § — 0. O
(iii) (Jump part) By Theorem 3.7 of [7], for HN ! a.e. 2o € S(u)

(Z‘()) S f°°(m07u($0)7ay) + d.

dFi(u,-) _ dF(u,-)
dHN-T[S(u) (z0) = 3= 1S (u)

inf {‘Fl(anV(wan)) SIS BV(QV($07E))7 U'BQy(wo,s) = wO}
EN—I ?

(zo) + |ut (20) — u™ (o)

= lim sup
e—0t

where v = v, (z) is the normal to S(u) and

ut(z ify-v
wo(y) — { ( 0) fy > 07

u” () ify-v<O0.
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Take xo € S(u) so that all the limit above exists and is finite. Then

A7) () + u* (o) — ™ (o) < limsap 20 Q0D it () o (),

dHN =[S (u) ——

In what follows we assume for simplicity that o = 0 and v = e, and we set

ut(zo) ifzy >e/2n
. N _ n ut(zg) + v (z0) .
Une(TN) == q (ut(mo) —u (mo))EmN + 5 if —e/2n<zny <e/2n
u” (zg) if xny < —g/2n.

Clearly |[tn,c — wol||L1(Q, (20,c)) = 0 @8 n — 00; thus, by a standard diagonalization argument

dF(u,-) o 1
a5 Y < A e o

/ f(@,une(zn),0,...,0,u;, (zn))dz
Qv (zo,e)

k—o0

1
< liminf/ exf (mo +ery, v(yn),0,...,0, E—v;c(yN)> dy,
Qv k

where
ut (zg) if yv > 1/2ny
_ + ~ ut(zo0) +u” (zo) .
vr(yn) = (ut (z0) — v (@0))nr yn + 5 if —1/2n4 <yn < 1/2ny
U_(.’L‘o) if yn < —1/27’Lk

and ny — oo as k — co. By Proposition 9.1, (9.1), and (1.8), we have

1
erf (370 + ery, vk (Yn),0,...,0, avk(yN)) < f®(@o + ey, vr(yn),0,...,0,v; (yn))
+ Ekf(-"ﬂo +Eky7vk(yN)a0) S foo(l,o +Ekyavk(yN)a07 e ,O,U;g(yN)) + C‘Ek'

Therefore, Fubini’s Theorem yields

dF(u,-) L. o
m(%) < llkn_lgf/Qf (zo + exy, vk(yYn),0,...,0,v;(yn)) dy

1/2ny, (33)
= liminf n /, (/ % (zo + ery, v (yn), (ut (20) — u™(20)) en) dyN> dy',

k—o0 —1/2n4

where Q' is the unit cube in RV ="' and where we have used the fact that f is positively homogeneous in
&. Following [5], we introduce now the Yosida transforms

f,\(.Z'7U,£) = Sup{foo(mlau7£) - /\lwl - m| : 'Z'I € Q}7 (34)
for A > 0. For A <7 and by (1.8) it follows that
OSfoo(mauag) Sfﬂ(mauﬂf) Sf)\(x;uaé.) SC|‘£| (35)

We claim that
lim f(@,u,6) = [(2,u,€). (3:6)
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Indeed, let A > 1 and choose z) such that

F@,u,6) < o (enu,€) — Ao — 2| + %

By (3.5)
1

foo($7u7§) S f)\(l',’u/,f) S f/\($7u7§) + )‘|$A - IL'| S fm($A7u7§) + X (37)
Since the right hand side is bounded by C|¢| + 1 and fx > 0, it follows that ) — = as A — oco. If we now
let A = oo in (3.7), and use the fact that f°(-,u, &) is upper semicontinuous, we obtain (3.6).

Next we show that f, is Lipschitzian. Fix € > 0, z, 1 € 2, and find z. such that
f)\(.Z’,U,f) S foo($57u7£) - A|'Z.E - $| +e
< (e, ) = Moo — 21| + Mz — 21| +& < fa@1,u,€) + Nz — z1| +=.
If we now let ¢ — 0 we obtain
f/\(wauag) - f)\(mlauaé.) < )\|.€L‘ - $1|a

and, in a similar way,
(@1,u,8) — fa(z,u,8) < Az — 21

We conclude that
|f)\(;c,u,£)—f>\(x1,u,§)| S)\|$_$1| (38)

for all z,71 € Q,u € R, & € RV,
Fix A > 0. By (3.3), (3.5), and the fact that fy is Lipschitzian, we have

. 1/2n
TS =) < limiat |, ( [, o+ nlon), @ o)~ o) e dyN) dy'

1/2n
<lminfr, [ ( [ o+ zuonlon), (0t (@) = (@) ex) dm) day

k—o00 _1/2nk

1/2n
<liminfn, [ ( [ htan,velun), (ut(@o) = u (@) en) + Al dyN> dy

k—o00 —1/2n

1/2n
— liminf / Fr(@o, v (y), (u* (20) — u™(20)) ex) dyn-

k— o0 —1/2n4

A simple change of variables now yields

(o, s, (ut (z0) — u™ (w0)) en) ds.

df(u7 .) 1 u+(EO)
T30 ) S T Lo

Letting A — oo, by (3.5), (3.6), and Lebesgue Dominated Convergence Theorem, we obtain

Ia(mo, s, (ut (z0) —u™ (z0))en) ds

d]:(u; ) . 1 /u+(E0)
i S <1
dHN-1]S(u) (o) < /\i)n(:o ut(zo) — u(20) u~ (zo)

u't (o)

:/ foo(m05saeN)dSa
u~(zo)

where we have used again the fact that f° is positively homogeneous in £. d

§4. Proof of Theorem 1.5.
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(i) (Lebesgue part) We claim that g(z) := f(z,u(z), Vu(z)) € LL.(QR). To show this it is clearly

enough to prove that
/ g(z)dz < o0
Q(z0,9)

for any zo € Q and § > 0 sufficiently small. Let § > 0 correspond to € = 1/2 in (1.9). Then

2 1
oo > lim / f(z un(z), Vuy(z))de > - liminf/ f (20, un(x), Vuy(z)) dz — = 6&.
Q 3 Q(20.9) 3

n—oo n—oo

The functional

v¥(2)
FO(U7A) 5:Af(mo,v,vv)dm+/Afoo($0,’l),d0('l)))+/5(v)nA </v_(w) foo('rOJsJVu)dS) dHN_l

satisfies all the conditions of Theorem 2 in [12], and Fy(un,A) = [, f 4 f(@o, un(z), Vuy(x)) do since u, €
W2 (Q; R); thus, taking A := Q(x, ),

loc

00> lim | f(&un(z), Vun(@)) dz > > Fo(u, Q(z0,6)) — 26" > = / g(@)de — 267, (41)

where we have used (1.9) a second time and H is defined in (1.2). Therefore the claim is proved.

Let Q(u) be the set of Lebesgue points of g. Since g € Li (€;R), we have that £V (Q\Q(u)) = 0. We
now proceed essentially as in the proof of Theorem 1.1, starting from (2.4) up to (2.6), where without loss
of generality, we may also assume that zo € Q(u). Fix € > 0 and let § > 0 be such that (1.9) holds. Choose
ex — 07 such that pu(0Q(zg,ex)) =0, e, < J, and

> e likn_l)gflinrgigf % S f(xo,Un, Vuy,) de — 1 j_ .

For fixed k, again by Theorem 2 in [12] applied this time to Fy(-, Q(zo,€r)), we obtain

lim inf LN/ f(xo,un(x), Vuy(x)) de > LN/ f(zo,u(x), Vu(x)) dr

o & JQ(woser) €k JQ(zoser)
(recall that f°° > 0) and, consequently,

dci—'uN(xo) > Tz likrgir;f % oo f(zo,u, Vu) dx — 1 j—e

> iretmint o [ e Ve e = 7 = 1 S ute), Vule) ~

where we have used (1.9) and the fact that zo € Q(u). We now let ¢ — 0F. O
(ii) (Cantor part) By (4.1) the function h(z) := f* (x,u(m),d‘fg—gzg‘(x)) Ll .(9;]C(u)); thus, by

Lebesgue—Besicovitch Differentiation Theorem,

1

2 W@, @, ))/Q ey AW = Alz0)
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for |C(u)| a.e. zg € Q. Moreover, it is known that for C(u) a.e. g € Q

|C(u)|(Qu(x0,¢))

A Dul(Qy o e))
hence,
lim — 1 / h(z) d|C(w)|(z) = h(zo) (4.3)
=0+ |Du|(QV($OJE)) Q. (z0,e)

for |C(u)| a.e. o € Q. Let M;(u) be the set of all points of 2 which satisfy (4.3). Then |C(w)|(Q\M1(u)) = 0.
We now proceed as in the proof of part (ii) in Theorem 1.1 up to (2.10), with the only difference that we
impose the further restriction that zo € M (u), to obtain

du 1 /
———(xg) = lim lim T, Up, VU )de.
d|C’(u)|( 0) = k— 00 n—>00 |Du|( (.’L'(),Ek)) Qu(zo,ex) A n n)
The remaining of the proof follows an argument similar to that of part (ii) above after (4.2), except that
the integral is now averaged over @, (xo,£), and we use (4.3) at the end. We omit the details. O
(iii) (Jump part) It suffices to use arguments similar to those of parts (i) and (ii) above. O

§5. Proof of Theorem 1.6.

(i) (Lebesgue part) Fix n € N. Applying the Scorza—Dragoni Theorem to the function f: Q x [-n,n] x
RN — [0,00) for each i € N there exists a compact set K;, C R, with £!([-n,n]\K; ) < 1/(i2"), such
that f: Q x K;, x RV — [0,00) is continuous. Let K7, be the set of Lebesgue points of xk, ,, and set
w = Uy U (K n N K},). Then

= 1
L' (R\w) <D LY ([-n,n]\Kin) < = =0 asi— oo,
n=1
and so |Du|(A) = 0, where A := {z € Q\S(u) : u(z) € R\w)}. Fix 2o € Q\S(u). If 2o € A then, up to a
set of N—dimensional Lebesgue measure zero, we may assume that Vu(zo) = 0, so that, as in the proof of
Theorem 1.3(i), we have

fl(x07u($0)70) = lim i f(u(l'o),Q(.Z’o,E)) < limsup i f(l',u(.’L'()),O) dr = f(x07u($0)70)7

N
e=0t € e—0t € Q(-WO’E)

where we have used the fact that f(-,u(z0),0) is continuous. If 2o € (2\S(u))\A and Vu(ze) = 0, then we
proceed as above. If 2o € (2\S(uw))\A4 and Vu(zg) # 0, then set

Vu(mgg & := Vu(xg), wo(x) = u(zo) + £(z — o).

 [Vu(wo)’

Find n € N such that |Jwol[z(q,(20,1)) < m and let i € N be such that u(zo) € Kin N Kj,. Since
g(x) == f(x,wo(x),£) is continuous over wy ' (K; ), given § > 0 there exists 7 > 0 such that g(z) < g(z0)+6
for all z € wy ' (K;,,) with |z — 2| < 1. Therefore, as in proof of Theorem 1.3(i), and by (1.8),

o, uw0),€) = €] = Tim, < Fu(zo), Q(z0,2))
‘CN(QV(mm 5) n w(]_l (Kz,n))

< (f(zo,u(xo), &) + 0) Hiiilip ) -,
-1
L O+ [€]) limsup S{Qv (o \wg (Kin)

N
e—0*t €

< f(x07u($0)7§) + 67
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since, by the coarea formula (see [31, Theorem 2.7.1]), and setting n.(z) := u(xo) + &£ - z for x € Q,, we
have

N(Qu(wo,€) Nwy ' (Kin))

N(Qu(wo,8)\wy " (Kin))

eN

=1 — liminf

lim sup
e—0t

e—0t

=1-liminf —— /
e—0+ |€|5 Qu(20,e)Nwy  (Kion)

=1-liminf —= / HY " (wy(5) N Qu(20,¢)) ds.

e—0t |€| 6N

|Dwo (x)| dz

For simplicity, we assume that zo = 0, u(x¢) = 0, v = en, so that

. _[RET <5l
it n Qe = { it 5] > 51¢f

thus,

EN(Q,,(JIO,E)\’U)JI(KZ"”)) — 1 — liminf El([_% |§|a % |§|] N Kz,n)

-0
eN e—0+ |€le

lim sup
e—0*t

where we have used the fact that u(z¢) is a Lebesgue point of x g, ,. By letting § — 0% in (5.1) we obtain
the desired inequality. O

(ii) (Cantor part)
The proof for the Cantor part is very similar to the previous one (see also the proof of Theorem 1.3(ii)),
and therefore we omit the details. O

(iii) (Jump part) The proof follows the same arguments of the proof of Theorem 1.3(iii). O

§6. Proof of Theorem 1.7.

(i) (Lebesgue part) We proceed as in the proof of Theorem 1.1(i) up to (2.7), where instead of using the
truncated sequence, we apply condition (1.10) to get

(+0) gy o)+ > tymint | 1o, u(oo), Ty = [ plew ()

By Fatou’s Lemma, and since p is continuous with p(0) = 0, we have

¢ ~timsup | (e uwew))dy = minf [ O+ )  pler fwe(w)))dy

k—o0

/Q lim inf[C(1 + e [ (1)) = pler lwr(y))) dy = C

k—o0
and so
/ ple [wn(y)) dy =0 as k- oo,
Q
Thus i
(1+6) b (o) + ¢ >11m1nf/ (a0, u(w0), Vo (y)) dy. (6.1)

If g(&) := f(xo,u(xo), &) is convex then we may apply Serrin’s Theorem A(i), which continues to hold in the
vectorial case. If g is quasiconvex and ¢ = 1 in (1.11), then we apply a result of Ambrosio and Dal Maso [4]
(see also [18]) to conclude that

1+e)—~ du

dCN (o) +€ > f(mo,u(x0), Vu(zo)).
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It is now sufficient to let € — 07 to obtain the desired result. When ¢ > 1 and g is quasiconvex in (1.11),
then we can apply an approximation result of Kristensen [22, Proposition 1.9] to write

f(wo,u(x0),&) = Sl;pgj(g):

where g;(€) is quasiconvex, g;(§) < gj+1(), and g;(€) = a;|€| +b; for |€]| large, say |£| > r;. From (6.1) and
for any fixed j, applying [4] we have

d ..
(1+2) L (@0) + > liminf | g;(Vuwr(y))dy > g;(Vu(zo)),
— 00 Q

and then let j — oo. O
(i) (Cantor part) We proceed as in Theorem 1.1(ii) until (2.11), where (2.8) should now be written as

;fg—gjj;m) — au(z0) ® va(20), (6.2)

with a,(z¢) € R? and v,(z¢) € SN~1, and where we have used Alberti’s result [2]. By (2.11) and (1.10)

- tl p(lu(@o) — uok + Aewr(y)]) dy} :
kJQ.

As p(s) < C(1 +s) for all s > 0 and for some C > 0, wy, converges to wp in L'(Q,;R?), ugr converges to
u(zg), A, = 0, and t — oo as k — oo, we have

1

- p(lu(zo) — uor + Ax wi(y)]) dy — 0
k JQu

and thus

1+ E)W(xo) +e2 lim % Quf(évo,u(ivo),thwk(y)) dy. (6.5)

dp

u
If g is quasiconvex and ¢ = 1 in (1.11) then we can proceed as in Theorem 1.1(ii) starting from (2.12).
When ¢(§) := f(xo,u(x0),&) is convex, or g is quasiconvex ¢ > 1 in (1.11), then we use Proposition 9.1

below or Proposition 1.9 of Kristensen [22], to deduce from (6.3) and (6.4):

(4o +e> Jim = [ gy Vunt) do

d|C(u)] koo by

v

Proceeding as in the case ¢ = 1, we obtain

dp
d|C(u)|

(z0) > g5°(a® V).

Since the function h;(t) := g;(ta ® v) is convex, by Proposition 9.1, (9.1), we have for ¢t > 1

du gilta®v) g;(0)
oy R A

As f(zo,u(z0),0) = sup; g;(0) < C, letting j — oo yields

= (%) 2 -

dp f(xo,u(zo), tav) g
d|C(u)] t t’
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We now let t — oo. O

Remark. Note that when (1.12) holds then

if 0
o (zo0,u0,§) = { 0+OO ;fgio.

(iii) (Jump part) We proceed as in Theorem 1.1(iii) up to (2.14). By (2.14) and (1.10)

K . 1
1 _— > 1 —
(1+¢) THN 1 S(u) (20) +e > lim o, erf (:vo, - Vwk(y)) dy
Now we continue exactly as in the proof of the Cantor part in Theorem 1.7, starting from (6.5), with the

vector a in place of u™(xg) — u~(z9). O

§7. Proof of Theorems 1.8-1.10.

Proof of Theorem 1.8 (Lebesgue part). We proceed as in Theorem 1.1(i) until (2.7). If f(zg,u(z0),£) =0
for all £ then there is nothing to prove. Thus, we assume that (1.13) and (1.14) hold, we fix £ > 0, and let
4 > 0 be given by (1.13) and (1.14).

Step 1. We prove first the theorem under the additional hypothesis that there exists M > 0 such that

0< fz,u,8) < M(1+6) (7.1)

for all z € Q with [z — x| < 6, u € R?, and € € R™W. As in [17, Proposition 2.6 ], we may find
wy, € CL(RY;R?), with wy, — wp in L, wo(x) := Vu(xe) , such that by (2.7), (1.14), and for k sufficiently
large,

dp

dL—N(on) > / f(xo + ery, u(xo) + erwi(y), Vi (y)) dy > Cl/ |Vwg (y)| dy — C2;
QN{|wr|<d/ex} QN{|we|<d/ex}

thus there exists a constant K > 0 such that

/ Ve ()] dy < K. (7.2)
QN{|wr|<d/er}

In order to truncate wg, fix sg > ||wo||pee(gira) + 1, Lr > sk, and construct a smooth cut-off function

gr : R = R? such that
(u) = { u if |u| < sy,
W=V 0  if lul > Ly,

with |gi(u)| < |u| and |Dgg(u)| < C Li/(Li — s) for all u € R?. Define vy (y) := gr,(w(y)), and

Byo={yeQ: @)l <si}) Ef ={yeQ: lw)|>Ls}, By ={yeQ: s <|w(y)| < Li}.

Then

[ oro) oty = [ ) = woldy + [ oty + [ lontwn(s) —wo)ay

k Ek

< k= wnllzs(my + ool =@z £ (Bf VED + [ lun(w)ldy

k

< 2||wk - U)o”Ll(Q;Rd) + 2||U}0||Loc(Q;Rd)£N(Ek_ U E,j) -0 as k — o0,
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because
0<LN(E; UE) =LN({y € Q : lwr(y)| > si})
<LY{y € Q: |wi(y) — wo(y)| > 1}) < ||lwi — wol|p1(@re)-
Moreover
/Qf(wo + exy, u(zo) + exvr(y), Vor(y)) dy = ; f(zo + ery, u(zo) + exwy (y), Vwr(y)) dy

+ / ) f(@o + ery, u(z0),0) dy + f(@o + ery, u(wo) + exvi(y), Vor(y)) dy.
By By
We claim that the last two integrals are infinitesimal as k¥ — oco. Indeed, by (7.1) and (7.3),

0< /+f(x0+5kyau($0)50)dy <MLN(EF) =0,
Ek

while, from (7.1) and the coarea formula,

I

L
SM(L’N(E;)+ — |Vwk|dy>
Ey

ao -+ 2y u(a0) + 2e0n0), Vou () dy < M [ (14 Vouwe) V) dy

Lk — Sk
C Lk
=M (£N<E,;) g [Ty e @ o) =1 dt) -

By Theorem 7.10 of [28] and (7.2), for £! a.e. L < §/ej, we have

lim
s—»L L —s

Moreover, by Lemma, 2.6 in [17] and (7.2), for any 0 < a < 8 < §/ej we obtain

K
essinf LHN"'({y € Q : =L}) < —.
LE((III,I,B) ({y Q |'U)k(y)| }) = log(ﬂ/a)
Set a := (5/5?4 and 3 := 5/52/2, and find Ly, € (5/62/475/52/2) such that (7.6) holds and
2K
LiHN ' ({y € Q : Jwr ()| = Li}) < — 75—
log(1/e")
Choose sy > Ly, /2 so that
Ly, e ol 2K 1
T — HY  ({ye@: |wk(y)|=t})dt§71/4+g-
k= Sk Jsy log (1/5,C )

Then the integral in the right hand side of (7.5) approaches zero as k — oo, and so, from (7.4),

d o
(o) > liminf [ (w0 +exy, ulo) + exvi(y), Vo (v)) dy.
dl k—o0 Q

/ HY '({y € Q: lurly)| =thdt =H" '({y € Q = lwi(y)| = L}).

25

(7.4)
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Since e — 0, by (1.13) we obtain
du

> limi .

(1+ E)dL‘N( 0) +¢& > liminf A f(®o,u(@o), Vi (y)) dy

We can now continue as in the proof of Theorem 1.7(i), and the result is established if f satisfies (7.1).
Step 2. In the general case, let ¥ € C§°(R%;R) be a cut—off function, with 0 < 9 < 1, and such that
¥ =1 on B(u(zg),d/2), ¥ = 0 outside B(u(zo),d). From (2.7)

dp

77N (®o) 2 lim inf 1/)( (o) + exwi (y)) f (2o + ery, u(zo) + exwi (y), Vwr(y)) dy,

and by (1.13),

(1+8) gy ) + 2 > min | (utzo) + e (1)) (20, o). V(1)

If f (o, u(xo),-) is convex (resp. quasiconvex with ¢ > 1in (1.11)), we use Proposition 9.1 (resp. Proposition
1.9 of Kristensen [22]) to approximate f(zo,u(z0),£) by an increasing sequence g;(&) of convex (resp.
quasiconvex) functions such that

0 < g;(8) < C5(¢[ +1). (7.7)

If f(zo,u(z0),-) is quasiconvex with ¢ = 1 in (1.11), we simply take g;(§) = f(zo,u(z0),€) for all j. For
any fixed j

dp
and fj(z,u,§) =P (u)g;(§) satisfies (7.1). Moreover, by (7.7), (7.2) continues to hold, provided we replace
§ with §/2. Finally, (1.13) is still satisfied at the point (2o, u(z0)). Therefore we can apply the first part of
the proof to get

+s>11m1nf/ D(u(@o) + exwi )g; (Ve () dy,

b (20) > (o)) g (Vu(z0)) = 9;(Vu(an)).

It suffices to take the supremum in j. d

Proof of Theorem 1.8 (Cantor part). We proceed as in Theorem 1.1(ii) until (2.11). We can now truncate
the sequence wy using an argument similar to that of the Lebesgue part of Theorem 1.8 (note that the only
property of wg(y) which has been used is the fact that it is bounded), and then continue as in the Cantor
part of Theorem 1.7, using (1.13) in place of (1.11). We omit the details. O

Proof of Theorem 1.9. The proofs of Theorem 1.3(i)—(ii) and of the first part of Theorem 1.6 continue to
hold. We observe that in Theorem 1.3(ii), since a ® v has rank one, the function g(t) = f*°(z,u,ta @ v) is
convex and thus we can still use Proposition 9.1, (9.1).

If f° = f>°(z,&) then the proof of Theorem 1.3(iii) is still valid with some obvious modifications. O

Proof of Theorem 1.10. We proceed as in Theorem 1.1(iii) until (2.14). Fix £ > 0 and let k be so large that
er < min{d,1/L}, where § and L are provided by (1.15)—(1.16). Then by (1.16) and (1.15), in this order,

WNiiif[S(u)(xO) = lim / erf ($0+6ky,wk( ), Vwk( )) dy

€
1+¢

€

T (14e)? 1+e¢

4+ £ k—oo

liminf/ (w0 + ery, wi (y), Vwr (y)) dy —
(7.8)
hmlnf/ F(zo, wr(y), Vwr (y)) dy

- (].+E2 k—00

3 g
S i = dy— —— =
> (1 n ) llf:ri)sip o f ('TOavk(y):vvk(y)) Y (1 + 6)2 1+¢’
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where we have used Lemma 2.6 and Remark 2.7(1) of [7] to obtain a new sequence vy € W11 (Q,; R?) which
converges to wp in L*(Q,;R?) and such that v|sg, = wo. It now follows from (7.8) and the definition of
the function A in (1.18) that

du 1 € €

dJHN T[S (a) (z0) > e h(zo,u™ (o), u™ (w0), V) — AT Iie

and we obtain the first part of the theorem upon letting € — 0.

We first prove the reverse inequality to (1.17) under the additional coercivity assumption that there exists
C > 0 such that
f(z,u, &) > C|¢ for all (z,u,&) € 2 x R? x RN, (7.9)

Fix g9 > 0, and define

wo(a) = { wt(m) - ify-v >0,

u™ (zg) ify-v<O0.
By Lemma 4.1.3 and (3.17) of [7] for HN ! a.e. 2o € S(u)

dF(u,-)
dHN-T[S(u) (20)

. 1 .
= lim sup —— inf {/ f(z,v(z), Vou(y))dy : v € Wl’l(Q,,(a:O,e);Rd),v|3Qv(wo,E) =wug(- — :cg)}
e—0t+t € Qu(zo,¢)

1
= lim sup inf {/ ef (:1:0 +ey,w(y), EVw(y)) dy: weWhHQ,;RY), wlag, = U()}

e—0t
< lim sup inf{ (o +ey,w(y), Vo) dy : w e WH(Qu;RY), wlag, = “O} e
]. —€&o e—0+ Q. 1 — &0
. &
< limsup [ f®(zo +ey,wi(y), Vi (y)) dy + ——,
1- €0 e—0+ Qv 1- o

for any w; € WbH1(Q,;R?), with wi|sg, = uo, and where we have used (1.16)'. We now take w; in the
previous inequality such that

I (20, w1 (y), Vwi(y)) dy < h(wo, ut (20),u™ (20), vu(@0)) + €0- (7.10)
By (3.5), (3.6), and Lebesgue Dominated Convergence Theorem,

lim/Q Ix(@o, wi(y), Vwi(y))dy = | f(zo,w1(y), Vwi(y)) dy, (7.11)

A—00 Q.

where the Yosida transforms fy were introduced in (3.4); thus, for fixed A sufficiently large, by (7.10), and
by (7.11)

. Fn(mo, w1 (y), Vi (y)) dy < h(zo,u™ (z0),u (20), vu(®0)) + 2¢0. (7.12)
Consequently, also from (3.5) and (3.8),
o 0 < g meu [y 2,0, Vo () dy + 722
< 1o, lmsup ( o, Ix(zo, wi(y), Vi (y)) dy + M) +1 5060
< = (h(ao, u* (zo), u™ (o), va(z0)) + 2e0) + -2

1—60 1—50
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by (7.12). Letting €9 — 0T in the previous inequality yields the desired result when (7.9) holds.
In the general case, it suffices to consider the family of perturbed energy densities

fo(@,u, &) == f(z,u, &) +pl€], p>0.
Then, since F < F,, it follows that
dF(u,-) dFp(u,-)
dHN-T[S(u) (zo) < 4d’HN 1S( )( 0)

< inf{ A fm(wo,w(y),Vw(y))dyﬂLp/Q [Vw(y))|dy : w € WHH(Qu;RY), wag, (z0,0) =U0}

< /Q (a0, w ), V) dy + p /Q Iw @)l

for any fixed wy € WH1(Q,; R?), such that wi|sg, (z0,c) = to- Letting p — 0 yields
dF(u,-)

dHN=1|S(u)

and since w; is arbitrary, by taking the infimum over all functions w; we obtain
dF (u,-)

dHN=1S(u)

(wo) S o foo(l-O;wl(y):vwl(y)) dy7
(z0) < h(zo,u™ (z0),u™ (20), vu(z0))-

§8. Further results.

As in Theorems C and D of Dal Maso [9], some of our results continue to hold if the regularity conditions
on the integrand f are required everywhere except at most on “small” sets. In order to establish the main
result of this section, Theorem 8.5, we prove first three lemmas.

Lemma 8.1. Let Ny be a Borel subset of Q x R, with HN (Ny) =0, let u € BV(S;R), and define
A={ze NSw)UM)): (z,u(z)) € No}, B:={zxe€ Mu): (z,u(z)) € No},
where M(u) is the support of C(u). Then
(i) LN(4) =
(i) |C(u )I(B)
Proof. (i) If EN( ) > 0, then by Corollary 1 in Sec. 2.4.1 of [15] we obtain
0 =HN(No) > HYN{(z,u(z)) : z € A}) > HN(A) = LN (4) >0,
which is clearly a contradiction.
(ii) Let
Gy ={(z,8) € A xR: s <ut(z)},
Gt :={(z,8) € AxR: u (z) <s<uT(z)}.
Then xg, € BVioe(€2 x R) (see [25]), and for any Borel set K C 2 x R and D C (2 we have

IDxa, |(K) = HY (K N G), /D IDxal - /D ¢, (8.1)

where ((u) := (Du, —L") (see [9], Lemma 2.2). Take K := B x R. If z € M (u) then v (z) = u~(z), and
thus
DX, (K) = HY ({(2, u(@)) : @ € BY) < HY (No) = 0.

In turn, by (8.1), [ |¢(u)| = 0. Since |¢(u)| coincides with [Du| on M(u) (recall that £V (M (u)) = 0) it
follows that |Du|( ) =0. O

The following Lemma is a generalization of Theorem 3 in Sec. 2.4.3 of [15]
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Lemma 8.2. Let h € L. _(Q;R), let u be a positive Radon measure, and define

loc

1
By = xoeﬂzlimsupi/
{ emsot W(Qu(o,€)) Qu(wo,e)

|h(z)| dz > 0} ; (8.2)

where in the limsup we consider only those € > 0 such that p(0Q,(z,e)) = 0. Then ps(Bo) = 0, where

dp
w= dﬁ—NﬁN + Us.

Proof. Without loss of generality, we can assume that (2 is bounded, h > 0 and h € L'(Q;R). Given n > 0
there exists § > 0 such that

/ h(z)dz <n whenever £V (U) < 4.
U

Let E be the support of the measure ps. Since ps(X) = ps(X N E), we consider By = By N E. Clearly
LN(B) =0, and

1
B) = B,, where B,:=<x0€E: limsupi/ h(z)dx >r .
0 TGL(JM " " { csor MQu(20,€)) Jo, (z0,e)

We claim that p(B,) = 0, from what will follow that pu(Bj) = 0. Let U be an open set such that B, C U
and LN (U) < 6. Fix p > 0 and consider

Ff.= {Q,,(x,s) :x € B,0<e < p, p(0Q.,(z,2)) =0, Q,(x,e) CU, /Q h(y)dy > ru(Q,,(:c,s))}

v(@s€)

and consider the Borel sets

U = J{Qu(z,¢) : Qul(z,e) € F{}, Up:=[|U".

p>0

Since B, C Uy, it suffices to prove that u(Up) = 0. Fix a compact set K C Up, po > 0, and let

Fpo: = {Q,,(m,e) 2 € By, 0<¢e < p, p(0Qu(z,e)) =0, Qy(z,6) C U”O\K} _

Then UP° admits a fine covering

UPO = ( U Qu($75)> U ( U Q,,(.’L',E)) )
Q. (z,6)EFPO Qu(z,e)eF3°

and by Morse’s version of Besicovitch’s Covering Theorem (see [27], Theorem 5.11) we may find a subcovering
of UP°® such that
Ure = (U@) ullJei|uN, Kc (U@) UN,
il jEI i€l
I and J are countable, Q; € F{°, Q; € F5°, the sets Q; and @, are mutually disjoint, and u(N) = 0. Then
1> [ he)de> Y [ hie)de >0 Yo u(Q) = r 30 u@) > rulK).
v iel 7 Qi iel iel

By letting 7 — 0 we obtain u(K) = 0, and by the inner regularity of u we conclude that u(Us) = 0. O
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Remark 8.3. Since for us a.e. xg € )

lim N(Qu(ﬁoﬁ)) ~ oo,
e—0+ €

it is clear that if g € By then us a.e. zg is not a Lebesgue point for |h|, otherwise

1 eV
limsupi/ h(z)|dz = limsup ———— |h(zo)| = 0.
5 @G0 ) Jon " T IR b @y

Using Lemma 8.2, it is possible in some cases to weaken (1.8) in Proposition 2.1. Indeed, assume that
for L' a.e. u € R

f(,u,0) € Llloc(Q; R). (8-3)
Then there exists a countable set Ro := {r;};, dense in R, such that f(-,r;,0) € L .(Q;R) for all j. Let
) be the set of Lebesgue points of f(:,7;,0) and set A; := Q\2;. Then
EN(U]QilAj) =0.

Let B; be the set of points corresponding to the set By in Lemma 8.2 when h := f(-,7;,0) and p := |Du].
Then

| Dsul(U52, B;) = 0.

Lemma 8.4. Proposition 2.1 is still valid provided we replace (1.8) by (8.3), and we take

00
.Z'()EQ\ U AjUBi s tp 1=

21 |Du|(Qu(wo,ex)) /el otherwise,

{ 1 ’Lf g € n;)il Q]
where |Du|(0Qy(zo,er)) =0, tr, = T € (0,00], and ug + a1, up + a2 € Ry.

Proof. The only change is in (2.2). Considering first the case where zo € Q\(U32;4;) = N%2,€;, then
tr = 1 and (2.2) becomes

1
OS/ f(m0+6kyau0+a270)dy:_]v f(iE,’LLO+Oz2,0)d£L'
B €k JQu(zoer)N(zot+erEY)
1
< N / |f(.’E,U0 + a270) - f('Z.O;uO + 0‘270)| dr + f(.CL'07U0 + a270)'CN(E]j)
€k JQu(zo.er)

Since ¢ is a Lebesgue point for f(z,uo + a2,0) (recall that ug + a2 € R and that zo € ﬂ;”;lﬂj) the first
integral on the right hand side approaches zero as k — co. Moreover LN (E;") — 0 as before.
If 2o € Q\(U2, B;) and zo ¢ N32;; then (2.2) may be estimated as follows:

1
0< lim —/+f(:cg+5ky,u0+a2,0)dy§ lim f(z,ug + a2,0)dz =0,
Ek

1
 k—oo ty, koo | Dul(Q(zo, r)) /Q(zo,sk)

where we have used the fact that ¢, = |Du|(Qu(%0,ex))/el and the definition of B; as in (8.3), with
h:= f(-,’f'j,()). ]

We are now ready to state the main result of this section.
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Theorem 8.5. Assume that f : Q x R x RN — [0,00) is a Borel integrand, f(z,u,-) is convezr in RN, and

[ satisfies (8.3). Suppose also that (1.7) holds for all (zo,uo) € (2 x R)\Ng, where Ny is a Borel subset

of @ x R. Let u € BVioe(4; R), and let {un} be a sequence of functions in VVI LQ;R) converging to u in
loc(Q R)

(i) If either HN (No) =0 or No = Moy x R with LN (My) = 0 then

n—oe

/ (@, u(), Vu(w)) dz < liminf / F(@, un(@), Vun(a)) do
Q Q
(ii) If either HN(Ng) = 0 or Ng = My x R with HN~1(My) < oo then

/ £z, u(z), dC(u(z))) <liminf | F(z,un (@), Vin(z)) dz.
(iii) If No = My x R and either HN(No) = 0 or HN~1(My) = 0 and we assume that for all (o, uo) €
(Q x R)\Ng and & > 0 there exists § > 0 such that

f(w()auag) _f(x;u,é.) SE(1+f(SL',U,§)) (84)

for all (z,u) € Q x R with |z — x| + |u — ug| < § and for all £ € RN, then

u*(2)
/ / o (z,s,vy)ds | dHN () < hmlnf/ f(z,un(z), Vuy(x)) de.
S(u)nQ \Ju—(z) n—oo

Proof. (i) We proceed as in Theorem 1.1(i) starting from (2.4). If HN(Ny) = 0 then in (2.6) we take
zg € Q\A, where A is the set given in Lemma 8.1(i), otherwise take o € Q\My. Using the notation
introduced in Lemma 8.1 and thereafter, we may assume, in addition, that z¢ is also a Lebesgue point for

all the functions f(-,r;,0)’s, precisely
o € Q\ (U;.ilAj) .

We can now continue with the same argument as in the proof of the Lebesgue part in Theorem 1.1, except
that we invoke Lemma 8.4 instead of Proposition 2.1 to justify the truncation step.

(ii) If HN(No) = 0 then take zo € Q\B, where B is the set given in Lemma 8.1(ii), otherwise take z¢ €
Q\My. As before, let B; be the set introduced in Lemma 8.2 and corresponding to f(-,7;,0) € LL .(2;R)
(see (8.2)). Since

Cl)l(U1By) =0,

we may assume that zg € Q\(U32; B;). Now we continue as in Theorem 1.1(ii), using Lemma 8.4 in place
of Proposition 2.1, but now in order to apply Lemma 2.5 of Ambrosio and Dal Maso [4] we first need to
approximate g(§) := f(zo,u(x0), &) from below by a nondecreasing sequence of convex functions which grow
at most linearly. This can be done by virtue of Proposition 9.1.
(iii) Since Ny = My x R and HY = HN~! x £ on S(u) x R, it follows that HVN~1 (Mo N S(u)) = 0.
Moreover, by Lemma, 8.2,
HNT (S(u) N (U, B;)) = 0.

Take
%)
Xo € S(U)\ My U U Bj
j=1

We pursue the proof of the jump part as in Theorem 1.1(iii), using Lemma 8.4 instead of Proposition 2.1,
but now in order to apply the density result of Ambrosio we first need to approximate h(u, §) := f(zo,u,§)
from below by a nondecreasing sequence of continuous functions which grow at most linearly. For this
purpose we invoke Proposition 9.3 below. O



32 I. Fonseca and G. Leoni

Remark 8.6. (i) The hypothesis placed on part (iii) above, i.e. in the jump part, ensuring that the set No
is of the form No = My x R, is used heavily to apply the compactness argument leading to (2.15).

(ii) Theorems 1.3, 1.7, 1.8 may be improved similarly to Theorem 8.5 versus Theorem 1.1. We leave this
to the interested reader.

(iii) As in Theorem D of Dal Maso [9], in the special case where f(z,u,0) = 0 condition (1.9) can be
weakened as follows:

Assume that there ezists a set Py C R with L*(Py) = 0 such that for all zo € Q and € > 0 there exists
6 > 0 such that

|f (@0, u,€) — f(x,u,8)| < e(1+ f(x,u,§)) (1.9)'
for all z € Q with |z — x| < and for all (u,§) € (R\Py) x RV.
The proof of Theorem 1.5 should now be modified accordingly, using the fact that, if A := {z € Q\S(u) :
u(z) € Py} then Vu =0 for £V a.e. € A and |C(u)| =0 a.e. z € A. We omit the details.
89. Approximation of convex functions.
Let g : RN — [0, 00) be a convex function. Then

, 98 —g(0)
t

t

is increasing, and we define the recession function

g% (¢) := lim 98 _ , 948 —9(0)
tooo 8 >0 t

Proposition 9.1. Let g: RV — [0,00) be a convex function. Then

908 < oy + 20 91)

for t >0, and there exists an increasing sequence {g;}; of nonnegative convex functions such that:

1) 9(§) = sup; g;(€) for all § € RV
i) 9 (€) = sup, 95°(€) for all ¢ € RY;

iii) g; is Lipschitz continuous with Lipschitz constant j;
iv) if g(§) > C(|€] — 1) for some C > 0, then g; satisfies the same growth condition for j > [C] + 1.

~ A~~~

Proof. Inequality (9.1) follows immediately from the definition of the g>°. Define

gi(§) == sup (£*-&—g7(&)),

1€ 1<j

where g* is the Young-Fenchel conjugate of g. Since g is convex, g = g**; hence g(§) = sup; g;(§). Also, g;
are convex and

9;(€) > —g*(0) > inf g > 0.

This proves (i).
Since g(§) > g;(§) for each j, it follows that g>°(£) > sup; g5°(£). Conversely, and by (9.1),

g(t&)  g;(t&) 9;(t&) —g;(0)  g;(0)
T TS T msup | e+ T

< sup g5°(§) + sup g]T(O) =sup g;°(§) + @

Letting ¢ — oo we conclude that g*(t) < sup; g5°(£)-
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Property (iii) is straightforward. We prove (iv). If g(&) > C(|¢| — 1) then ¢g*(&*) < [C(] - | = D)]*(&*);
hence

9i(&) = sup (&"-£—g"(£")) > sup (£ -&—-[C(]-|-D]*(£))-

|€*<j 1€*<j

Since o it |6 < ©
1 )
e 1- 17 ={ <
00 otherwise,
we conclude that if j > [C] + 1 then

g;(€) > sup (& -£—C)=C([¢-1).

lgx|<c

O

The last proposition of this section uses a corollary of Lindel6f Theorem which allows us to select a
countable collection of functions yielding the supremum function of a noncountable family. For convenience,
we include the proof below.

Lemma 9.2. Let X be a o-compact metric space, let G C C(X;R), and let f(z) := sup,cg g(z), for all
x € X. Then there exists a countable collection {gn}nen C G, such that

f(x) =supgn(x) forallx € X.

Proof. It is clear that f is lower semicontinuous. Therefore, for every x € X there exist 0 < r(z) < 1 and

gk € G such that
1

F) > f(@) ~ 3 for all y € Bla, (@), ghla) > f(&) 3.

Let p'(z) < r(z) be such that

lgs(y) — g2 (y")| < = for ally,y’ € B(z, p'(z)).

DN | =

Since {B(z,p'(z))}sex is an open covering of X, by Lindel6f Theorem we may extract a countable
1

subcovering {B(z;,, py,)}. Recursively, we may find an open covering of X, {B(z, p*(z))}sex, p*(z) < 3,
and functions g* € G, such that for all z € X

1 1 1
£(9) > £(0)= o for all y € Bla, 75 (@), 95(0) > £() e, lo(0) —0E0)] < o for all ' € B, (2)).
Again by Lindelf Theorem, X is covered by a countable family {B(zk, pk)}. We claim that

f(2) = sup gk, (2).

m,k

Let z € X, k € N, and choose n € N such that z € B(zk, pk). Then

1 2 2
k k k k :
F(@) > gy (@) > go (a) = 5 > flan) = 5 > B(l;li f =5

ok

As f is lower semicontinuous, liminf. ¢ infp(, ) f = f(z), and we conclude that

2
f(z) <liminf inf f— o < likrgior;fgiﬁ (z) < Sngifn (z) < f(=).

k—o0 B(z;zik) m,k
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Proposition 9.3. ([10]) Let A be an open set of RN and let h : Ax RxRY — [0,00) be a function convex
in the & variable, and such that for every (zo,uo) € A X R and € > 0 there exists § > 0 such that

h(.Z', u, 5) > (1 - E)h('Z'O; U, é.) (92)

for all (z,u) € A x R with |z — zo| <6, |u—uo| < & and for all £ € RN . Then there exists an increasing
sequence {h;}; of nonnegative continuous functions, convex in the £ variable, satisfying (9.2) and such that:
(i) h(z,u,§) = sup; hj(z,u,§) for all (z,u,§) € Ax R x RN,
(i) h®(z,u, &) = sup; h$°(x, u,§) for all (z,u,&) € AXRxRY;
(iii) hj(z,u,&) < C;(|€] + 1) for all (z,u,&) € A x R x RN and for some C; > 0;
(iv) for every (xo,uo) € A X R and e > 0 there exists §; > 0 such that

hj(ﬂf,u,é.) Z (1 —5)hj($oauaf): hj(x,u,f) Z (1 —€)hj(.'23',’u,0,§)
for all (z,u) € A x R with |z — 30| < &, |u—uo| <8, and for all £ € RV .

Proof. Let G be the class of all continuous functions g : A x Rx RY — [0, 00), convex in the ¢ variable, and
such that:

(2) for every (zg,up) € A x R and £ > 0 there exists 6 > 0 such that

g($7u7£) > (1 - E)g($07u07§)

and
g(fl‘,u,é-) > (1 _6)9('7:0,”35), g(wauaé.) > (1 - 5)9($,U0,§)

for all (z,u) € A x R with |z — x| <6, |u —ug| < §, and for all £ € RV;
(3) there exists C' > 0 such that

g(z,u, &) < C(l¢]+1)  forall (z,u,8) € AxRxRY.

Clearly G # 0, as 0 € G. Following [10], we claim that

h(zo,u0,&) = sup g(zo, ug, £) for all (zq,u0,£) € A xR x RV, (9.3)
9€§

By definition of G, it follows immediately that h > sup,cg g. Conversely, fix (zo,uo) € AX R, ¢ > 0, and let
0 be such that (9.2) is satisfied. Consider two cut—off functions ¢ € C§°(A4), ¢ € C§°(R), with 0 < ¢ <1,
0<9 <1, 9=1o0n B(xg,4d/2), p =0 outside B(zy,0d), and, similarly, 1) =1 on B(ug,d/2), ) = 0 outside
B(ug,d). We can write
h((EO, Uo, 6) = Sllp h] (f):
j

where h; are convex functions satisfying the properties stated in Proposition 9.1. Consider
h5(x,u, €) := (1 — e)p(x)ip(u)h;(E).

Clearly b € G (in particular property (1) follows from (9.2)). Letting j — oo we get

(1 - 6)h($0,’d0,£) = Sup h;’(mOau07§) S Sugg(mOau07§);
J g€

hence the claim follows by letting ¢ — 0t.
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By Lemma 9.2 and (9.3) there exist a sequence h; in G such that h(z,u,§) = sup; h;(z,u,§) for all
(z,u,€) in A x R x RY. Due to the stability properties of the class G, we can assume the sequence {h;};
increasing. Indeed it is easy to see that if g1, g» € G then g1 V g» € G (while in general g1 A g2 ¢ G, since
we may loose convexity). This proves (i). Clearly, properties (iii) and (iv) follow immediately from the
definition of G.

(ii) follows easily from Proposition 9.1, (9.1), and the fact that clearly h*°(z,u,£) > sup; h$°(z,u, §).
Indeed,

h(:c,u,tf) = sup hj(mauaté-) _ h_j(.’L',’u,O) + hj(x,u,O) < suph‘f(w,u,{) + h(mau50)7
t y t ¢ y t
so letting ¢ — oo we obtain (ii). O
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