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Abstract

Global and local convergence properties of a primal-dual interior-point
pure potential-reduction algorithm for linear programming problems is an-
alyzed. This algorithm is a primal-dual variant of the Iri-Imai method and
uses modified Newton search directions to minimize the Tanabe-Todd-Ye
(TTY) potential function. A polynomial time complexity for the method
is demonstrated. Furthermore, this method is shown to have a unique ac-
cumulation point even for degenerate problems and to have Q-quadratic
convergence to this point by an appropriate choice of the step-sizes. This
is, to the best of our knowledge, the first superlinear convergence result on
degenerate linear programs for primal-dual interior-point algorithms that do
not follow the central path.
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1 Introduction

In this article, we study the solution of linear programming problems using interior-
point potential-reduction algorithms. We consider linear programs in the standard
form:

(LP) min, 'z
Ar = b (1)
x > 0,

where A € IR™*", b € IR™, ¢ € IR" are given, and z € IR". The matrix A is
assumed to have full row rank without loss of generality.

One of the most desirable properties of an optimization algorithm is its abil-
ity to converge fast to a solution once the iterates are sufficiently close to such a
point. The quadratic convergence of Newton’s method is a well-known example
of this behavior. Path-following variants of interior-point methods for linear pro-
gramming enjoy this feature. These variants generate iterates that are restricted
to remain in some neighborhood of the so-called central path to reach the optimal
solution. While the proofs of superlinear convergence results for path-following
algorithms invariably and explicitly use these neighborhood restrictions, such re-
strictions are routinely ignored in practical implementations of these algorithms
without destroying the superlinear convergence property. This confusing fact raises
the following fundamental question addressed in this article: Can one have a su-
perlinearly convergent interior-point algorithm without restricting the iterates to
any wide or narrow neighborhood of the central path?

We emphasize that our focus is on degenerate problems. For these problems the
Jacobian of the nonlinear system we would like to solve is singular at the solution
set. Therefore, although the algorithm we will present can be viewed as a variant of
Newton’s method for the solution of this system, Kantarovich type of convergence
analysis is not applicable. Path-following methods circumvent this difficulty by
restricting their iterates to the central path; see Chapter 7 in [13] for a detailed
discussion of this phenomenon. In this paper, for the first time, we develop an
algorithm and a convergence theory for the solution of degenerate linear programs
that establishes quadratic convergence without any path-following restrictions. We
achieve this result using a potential-reduction algorithm, which we describe below.

One of the most useful theoretical and algorithmic tools in the development
and study of interior-point methods for optimization problems is the concept of
potential functions, i.e., functions that measure the quality of a trial solution of the
problem. Such functions often balance measures of proximity to the set of optimal



solutions, proximity to the feasible set in the case of infeasible-interior-points, and a
measure of centrality within the feasible region. Potential functions are chosen such
that one approaches an optimal solution of the problem by reducing the potential
function. Methods using this strategy are called potential-reduction algorithms.
The algorithm presented in this article is a potential-reduction algorithm that uses
the so-called Tanabe-Todd-Ye potential function [7, 9]. Elaborate discussions of
potential-reduction algorithms can be found in two recent surveys by Anstreicher
and Todd [1, §].

The present work simultaneously improves and generalizes the results of three
earlier papers. The first one of these papers is by the present author [12], where
a potential-reduction algorithm with polynomial and quadratic convergence for
nondegenerate problems is developed. We use a similar algorithm here but the
convergence analysis is significantly more involved in the degenerate case. The
algorithm in [12] can be viewed as a primal-dual variant of the method of Iri
and Imai [3], which is a damped Newton’s method to minimize the multiplicative
analogue of the potential function introduced by Karmarkar [5]. We also generalize
the results of a paper by Iri [4], where he proved an O(nL) iteration complexity
for the Iri-Imai algorithm. Iri-Imai algorithm assumes that an exact line search
is employed along the search directions. Further, it is assumed that the optimal
value of the linear programming problem in question is known and equals zero.
We remove this assumption in our primal-dual set-up and also do not assume that
exact line searches are used. Yet, we prove that our algorithm has the same worst-
case complexity as the Iri-Imai method. The last paper that the current article
generalizes is by Tsuchiya [11], where he proves that the Iri-Imai method enjoys
quadratic convergence even for degenerate problems, provided that one uses exact
line searches to minimize the potential function along the generated directions. We
prove a Q-quadratic convergence result for our algorithm without using Tsuchiya’s
assumptions.

The paper is organized as follows: After this introduction, in Section 2, we
review potential-reduction algorithms and summarize some of the results from
[12] that will be useful in the remainder of the paper. These results include the
convexity of the multiplicative primal-dual potential function with a large enough
parameter and an explicit formula for the search directions to be used in the
algorithm. Global convergence property of the algorithm is analyzed in Section 3
where a polynomial iteration complexity is demonstrated. Section 4 is devoted to
the analysis of the asymptotic behavior of our search directions and iterates as well
as the demonstration of the uniqueness of accumulation points of the algorithm.



After proving our quadratic convergence results in Section 5, we conclude in Section
6. Section 7 contains the lengthy proof of a key lemma.

The notation used here is mostly standard. || - || (without a subscript) denotes
the 2-norm of real vectors; we will use subscripts with 1-norms and oo-norms. We
use subscripts to denote components of vectors or matrices, and superscripts to
denote iteration indices. We also use standard order notation. For sequences {z*}
and {y*} of real numbers with y* > 0, 2* = O(y*) means that the sequence {Z—:}

is bounded above by a number independent of k. If z*¥ > 0 also, then 2% = O(y*)
means that 2¥ = O(y*) and y* = O(z%). If {2*} is a sequence of matrices,
2% = O(y*) and 2% = O(y*) mean that zf; = O(y*) and z}; = O(y), respectively,
for each 7 and j. We will denote primal-only and primal-dual potential functions
using lower-case and upper-case letters, respectively. For an n-dimensional vector
x, the corresponding capital letter X denotes the n x n diagonal matrix with
X;; = x;. Section 4.1 introduces the notation employed in Sections 4 and 5.

2 A Primal-Dual Variant of the Iri-Imai Method

Modern developments in the interior-point methods theory started with Kar-
markar’s 1984 paper [5], where he introduced a potential function to measure the
quality of different feasible points of a linear programming problem. He showed
that for linear programs given in a particular form, this function tends to —oo only
along the sequences that approach an optimal solution of the problem. Therefore,
a search for an optimal solution can be performed by minimizing this function.
The potential function introduced by Karmarkar is given below:

¢,(z) == pln(c’'z) — iln T (2)

with p = n + 1. Karmarkar assumes that the problem (1) is given in a non-
standard special form, and the optimal objective value is a priori known to be
equal to zero. With these assumptions, he shows that ¢,(z) can be reduced by at
least a constant amount from any feasible interior-point and thus proves that his
algorithm converges to an optimal solution in polynomial time.

Karmarkar’s function is not convex. Thus, an algorithm using Newton type
search directions may not converge to a global minimizer of the function. Instead,



Iri and Imai [3] consider the multiplicative analogue of the function ¢:

(cTx)P

— )
i=1Ti

fp(m) =

(3)

As it turns out, this function is strictly convex in the relative interior of the primal
feasible region if the parameter p > n+1. Iri and Imai apply Newton’s method for
the minimization of this strictly convex function and obtain quadratic convergence
for nondegenerate problems when an exact line search is employed [3]. We mimic
this approach in a primal-dual setting.

Primal-dual interior-point methods generate solutions for both the problem (1),
called the primal problem, and a related problem called its dual. These methods
emerged as the most successful variants of interior-point methods and also have
an elegant complexity theory [13]. The dual of the linear programming problem
given in (1) is:

(LD) max, s b’y
Ay + s
s

c (4)
0,

AVART

where y € IR™ and s € IR".

Let GT be a null-space basis matrix for A, that is, G is an (n — m) x n matrix

with rank n — m and it satisfies AGT = 0, GAT = 0. Using this matrix and a

vector d € IR" satisfying Ad = b, one can rewrite (4) in a form that is identical to
(1):

(LD") min, d’s

Gs

S

Ge (5)
0.

AVART

This form of the dual was discussed, among others, by Gonzaga [2]. We prefer this
form of the dual since it allows us to reproduce the results we develop for primal
variables in the context of dual variables with no additional effort.

Let F and F° denote the primal-dual feasible region and its relative interior:

F = {(z,s) : Az =b,Gs = Gc, (z,s) > 0}
F = {(z,s): Az = b,Gs = Ge, (z,5) > 0}
We will assume that F° is non-empty and a point (z°,5%) € F° is available.

This assumption is not restrictive; any LP can be embedded in an artificial problem
with a known point in the relative interior of its feasible region; see, e.g., Ye, Todd,



and Mizuno [14]. See also the related remarks in Section 6. Furthermore, certain
solutions to this artificial problem will either give the optimal solution to the
original LP, or reveal that it is either infeasible or unbounded. A key consequence
of our assumption on the existence of a strictly feasible primal-dual pair of solutions
is that the optimal solution set 2 defined below is nonempty and bounded; see,
e.g., [13].

Q = {(z,5) € F:a"s=0} (6)

A primal-dual variant of Karmarkar’s potential function was introduced by
Tanabe [7], and Todd and Ye [9] independently and has been a useful tool in the
construction and analysis of efficient interior-point algorithms for linear program-
ming and linear complementarity problems. For the primal-dual pair of problems
(1) and (5), this function is defined as

®,(z,s) = pln(z"s) —> In(x;s;), for every (z,s) > 0. (7)

=1

Using a primal-dual update, Kojima, Mizuno, and Yoshise showed that when
p > n + /n, Tanabe-Todd-Ye (TTY) potential function can be reduced by at
least 0.2 from any feasible point (z,y, s) with (x,s) > 0 [6]. This guaranteed con-
stant reduction in the potential function leads to an algorithm with O((p —n)In 1)
complexity. However, the Kojima-Mizuno-Yoshise algorithm cannot have better
than linear convergence rate, since the search directions they use have a positive
centering component that does not diminish as iterates approach a solution. We
evaluate the gradient and the Hessian of this function for future reference:

£-s—g7!
Vq)ﬂ(xas) = [ i;:sx_sfl ] ’ (8)

_ T
V20, (r,s) = lX2 S_Q]Jrﬁlf I]_(gjgﬁl;“i] )

In the vicinity of an optimal solution to the linear programming problem under
consideration, the potential function ®, tends to —oo, and for faster convergence
one needs to proceed along directions of negative curvature. In our previous work
[12], we established that such directions can be obtained for nondegenerate prob-
lems using a primal-dual variant of Iri and Imai’s strategy. Next, we outline this



strategy and also state some of the results from [12] which will be useful later in
our analysis.

Consider the multiplicative analogue of the Tanabe-Todd-Ye primal-dual po-
tential function:

F,(z,s) := ﬂ = exp{®,(z,s)}, for every (z,s) > 0. (10)

n .Q -
=1 Lio%

Since F,(z,s) is a monotone transformation of ®,(z, s), minimizing one of these
functions is equivalent to minimizing the other. Along a sequence of points (z*, s*)
where @ ,(z*, s*) tends to —oo, F,(z*, s*) tends to zero. Note the following iden-
tities:

VF,(z,s) = Fy(z,5)V®,(z,s) (11)
V2Ey(3,5) = Fylz,5) (V?@y(x,5) + VO(z,5)Vy(z,5)") . (12)

Our motivation for considering F,(z, s) is the following result:

Theorem 2.1 (Theorem 3.1, [12]) The function F,(z,s) is strictly conver on
the set F° if p > 2n + 1. 0

In view of Theorem 2.1, we will assume that p > 2n+1 in the rest of this paper.
Let dry be the reduced Newton direction for F,(z, s) at some strictly feasible point
(x,s). Note that for feasibility, a search direction must satisfy

A

Therefore, dgy can be written as the unique solution of the following system:
(Z2"VF,(2,5)2) dpy = —Z"VF,(x, 5) (14)

where Z be a null space basis for the constraint matrix of (13). In this paper, we
will use the following convenient form for Z:

z = [GT AT] (15)

In view of the identities (11) and (12), (14) is equivalent to

(77 [V2®, (2, 5) + VD, (2, )V, (x,5)| Z) dry = 2"V P, (z,5). (16)

7



Since V2F,(z, s) is positive definite on F°, the direction Zdpy is guaranteed to be a
descent direction for F}, and, consequently, for ®,. Also note that the direction dgry
that solves (16) is a scalar multiple of the reduced Newton direction to minimize
the TTY potential function ®,. More precisely, if c&v denotes the solution of the
system

(2"V0,(x,5)2) dpy = —Z"V,(x,5) (17)
then the following relationship holds:

— 1
d —
RN 1+ dLy ZTV28 (2, 5) Zdpy

drN- (18)

Since the Hessian matrix V?®,(z, s) may be indefinite, it may happen that the
scalar in front of dgy in (18) is negative so that dgy and df}\z;\] point in opposite
directions. Since dry leads to a guaranteed descent direction, we will focus on it
in the remainder of this paper.

The left hand side matrix of the equation (16) is the sum of a block diagonal
matrix and a rank-two matrix. Therefore, this system can be solved efficiently
using the Sherman-Morrison-Woodbury formula. Although the derivation is some-
what tedious, the resulting directions are relatively simple. Below, these directions
will be presented formally, but first we introduce some notation. We will make use
of two orthogonal projection matrices:

(1]

=Z(x) = X'GT(GX*GN)'GX T, (19)
and
S =%(s) = S 'AT(AS2AT)tAS L. (20)

We will suppress the dependence of = and ¥ to (z,s) in our notation. We note
that = and X are orthogonal projection matrices into the range spaces of X !G7
and ST'AT | respectively. These range spaces are the same as the null spaces of
AX and GS, respectively. Consequently,

(11

= - XAT(AX?AT)'AX, (21)
and

Y = I-SGT(GS:GT)'GS. (22)

8



We will denote the normalized complementarity vector with v:

X Se
= . 23
v I (23)

The analysis of the search direction defined in (16) relies heavily on an accurate
estimation of the matrices = and ¥, and of the orthogonal projections of the vectors
e and v using these matrices. To this end, we define

B = VI (E+D), (24)
By = v (24+)e, (25)
By = e (E+D)e, (26)
A = (pb = 1)(p—Bs—1) +p(1 = Ba)”. (27)

Above, A is the determinant of the 2 x 2 matrix encountered when using the
Sherman-Morrison-Woodbury formula to invert the left-hand-side matrix in (16).
Note that the scalars defined above depend on the current iterate (x,s), but we
will suppress this dependence in our notation.

Proposition 2.1 (Prop. 3.1, [12]) Let dgy be the unique solution to (16). Then,

—2T\—1 —1
dny = —5 | Gl g |0 =Bav+(om - e, (28)

Now let (Azx", As")T = Zdpy. Then, Ax and As satisfy the following equations:

XAy = _P(l _52)51/_ B — 1Ee

S—lAs:—p(I;ﬁQ)zy—pﬁlA_lze. (30)
0

In relation to the remarks following equation (16), we note that dpn = ﬁd}m,

so that if (EET, ET)T — Zdpy we then have:

X 'Az = —%EV — Ze, (31)
S IAs = —%EV — Ye. (32)
pP1 —

9



Note that the bulk of the work in computing Az and As from (29) and (30) is
in the factorization of the matrices AX?AT and AS—2AT. This is roughly twice the
work required for an iteration of most interior-point methods. However, most path-
following algorithms with quadratic convergence on degenerate problems require
that each predictor step is followed by a corrector step to maintain the proximity
to the central path. The combined progress of the predictor and corrector steps
of a path-following algorithm is comparable to a single step of ours, where we
measure the progress in terms of the total complementarity, z7s. Therefore, the
ratio of effort to progress for our algorithm is similar to the same ratio for predictor-
corrector path-following algorithms.

Proposition 2.2 (Prop. 3.2, [12]) Let Az and As be defined by (29) and (30),
and let (z*,sT) = (z,5) + a(Ax, As). Then,

(z")Tst = (1 — ok - 52)) s, (33)
0

Proposition 2.3 (Prop. 4.1, [12]) The search direction given by (29) and (30)
18 primal-dual symmetric and scale tnvariant. 0

Proposition 2.4 (Prop. 4.2, [12]) Let (z,s) be a point on the central path C.
Then, the search direction given by (29) and (30) is a scalar multiple of the primal-
dual affine scaling direction. 0

We will end this section by describing our algorithm formally. The reasons for
stepsize selection rules below will be apparent after the analysis of the next three
sections.

Algorithm 1 Let p be an O(n) parameter greater than 2n + 1 and let ¢ > 0. Fi-
nally, let (z°, s°) be a strictly feasible solution for this LP such that ®, ((xO)TSO) =
O(nlni). Let k=0.

1. If (2F)T'sk < &, stop.

2. Compute the search direction (Ax,As) from (29) and (30). Choose a step

size % <af =r71kak,. . with
of = max{a: 2F + aAzF > 0,s" + aAst > 0},
m=1-— @((xk)Tsk),

10



such that
,(zF,sT) — @,(x,s) < —0.04.

3. let (F+1 s#l) = (aF, sF) + oF(Az, As), k =k + 1. Go to step 1.

3 Polynomiality of the Algorithm

In this section, we will demonstrate that it is always possible to reduce the potential
function ®, by at least a constant amount as prescribed in the algorithm of the
previous section. This will lead to the conclusion that the algorithm finds an e-
complementary solution in polynomial time. We achieve this result by first deriving
a quadratic underestimate of the reduction in the potential function and then
showing that the linear part of this estimate is sufficiently negative.

Let (Az, As) be a feasible direction for the primal-dual pair of problems and
let (z, s) be the current iterate. For the feasibility of the next iterate (z +aAx, s+
aAs), a sufficient condition on the stepsize « is:

amax (| X Ao, IS As|ls) < 1.

By requiring the stepsize to satisfy a more stringent condition we can estimate
the change in the value of the potential function as a quadratic function of the
stepsize:

Lemma 3.1 Let (Ax, As) be a feasible direction for the primal-dual pair of prob-
lems and let (x,s) be the current feasible iterate. If the stepsize a satisfies

amax (| X' Az, [|ST'As|lw) < 1/2, (34)
then we have
P, (7 + aAr, s+ als) —®, < au; + a’uy, (35)
where
_ AstsTAT (X7 Az 4 S7As) = Ve, | 2|, (30)
U = p Ty e T s) = o As |
up = [[XTTAz|3 +[|ST As|3. (37)

11



Proof:

The inequality (35) is well known, see, e.g., [13, page 71] and substitute 7 = 0.5. [
To show that a reduction is always possible, we will demonstrate that w; is

sufficiently negative using techniques similar to those of [4]:

Lemma 3.2 If (Ax, As) is given by (29) and (30) then, the scalar u, defined in
(36) is less than —3.

Proof:

Let us denote the reduced gradient vector ZTV®, and the reduced Hessian matrix
ZT(V*®, + VO,V 7 with g and H to simplify the notation. By definition,
Hdgry = —g. We start by noting that the reduced Newton direction dgy given by
(16) maximizes the following function:

A p— (38)
' VATHd
Hence,
2 (gTdRN)2
(mgx ( )) T Hdnx g drn (39)

Next, we will show that there is a vector d satisfying h(d) > % which will lead to

the conclusion that u; = g7 dgry < —% using (39).

Let (z*,s*) be an optimal pair of primal-dual solutions to problems (1) and
(4), and let (x,s) be the current iterate. Then, the vector n := l i* :i ] is in

the range space of the matrix 7. Let d be a vector such that Zd = n. Note that
T
[ i ] n=ua"s"+s"r* - 22"s = —a''s, since (z* — )T (s* — 5) = 0.
Using (8) we observe that

g'd = V& 'Zd=Voly
T
= —xf’s ([ ; ] 77) — (eTX’l(x* —z)+el' ST (st — 8))

= —(p—2n)— (eTX_la:* + eTS_ls*) : (40)

12



Next, using (8) and (9) we obtain
d"Hd = n"(V?®,+ Ve, Vel )n=n"V>d,n+ (¢"d)*
= (" —2)'X (2" —2) + (5" — 5)TS2(s* —s5) +2(a* — 2)T(s* — 5)
p . . 2 ;

—W ((III — IL')TS + (8 - S)Tl') + (gTd)2

= ((:z:*)TX_Qx* + (3*)TS_23*) -2 (eTX_lx* + eTS_ls*) +2n
—p+(¢"d)”

< 2(g7d)2. (41)

T
Above, we used the identity [ ; ] n = —xTs. The final inequality can be veri-

fied by squaring both sides of (40) and using the inequality ¥ w? < (X w;)® for
nonnegative w;. X
Since (41) implies that h(d) > %, using (39) we conclude

— 4T _ =
As | = g dpy < 9" (42)

i = (V[T l Ax] 1

a

Next, we will demonstrate that the term wuy is bounded above. This analysis

is also similar to that of [4]. For this proof we will need a larger value for the

potential function parameter p. Fortunately, this requirement does not affect the
overall complexity.

Lemma 3.3 Let (Ax,As) be given by (29) and (30). Further, assume that p >
An + 2. Then, the scalar uy defined in (87) is at most 2.

Proof: X
Let H = dhyHdgy. Since Hdgpy = —g, we have that H = dLyHdry =
—q¢Tdpy > % and that

H=dbyHdry = =g dry = —p1 + 72 (43)
where

A A

T = LJTFHCS and 7, = e’ (X7'Az + S7'As).
xTs

13



On the other hand, using the definition of H, (9), and (12) we obtain
H =y — py? + H. (44)
Since uy = (|| X~'Az||2 + [|S~'As]|3) = 0% + %, where

2
T(x-1 -1
XAz e (X~ 1Az+S—1As) e

2n
_ T(X-1Az+S— 1A
S—1As — ¢ 2“:“ Ve

” = ‘
2
we can rewrite (44) as
2
2 T2 72 2
- —==H"-H . 45
P 5, +o (45)

Now we can solve for 7; and 7, in terms of H and o using (43) and (45). Since
(45) is quadratic we get two roots for each ;:

1 2 - p—2m—1.
Ho= - A+, |—— (H-2"2 2 o2 (46)
p—2n p(p —2n) p—2n
om 2 - op—2m—1.
o = —— D g | P TN T 2, (47)
p—2n p—2n p—2n

Since 7;’s are real numbers, the term inside the square-root must be nonnegative.
Since 62 > 0 and p > 2n + 1, we conclude that

- p—2n

H < ————. 48
- p—2n-—-1 (48)
Also note that
~ —2n—1 . - —2n—1 . -2
ey ; C & (W ey & § P G e L (49)
p—2n p—2n 4(p—2n—1)
Now,
2
_ 2., 7
w2 = v +2n
2
1 - p ~oop—2n—1 - )
< g2 7 _ 2 T2 42
< 0o +2n<p—2nH+\/2n(p—2n) (H o H? —o ) (50)
2
1 - p - p—2n—1A>
< 2 H - |H—————H? 1
- n(p—?n +\/2n(p—2n)< p—2n ) (51)

AN
7N
B
|
o
)
¥
ot
+
N | —
B
|
RS
|
ok
N——
no
‘o
>



Above, (50) uses (47) and the fact that H is positive. (51) holds since the right-
hand-side of (50) is a decreasing function of o%. Finally, (52) follows from (48) and
(49).

Now, using the assumption p > 4n + 2 we get

2
2 1
w < (S )
p—2n—1 2\ p—2n—-1
2
V2n 1 [4n+2 2 1 25
+ = §(£+—\/§)2:—.
2n+1 2V 2n+1 3 2 18
0

Now we are ready to demonstrate that ®, can be reduced by at least a constant
using a step in the direction given by (29) and (30):

Lemma 3.4 Let (Ax,As) be given by (29) and (30). Further, assume that p >
dn+2. Then there exists a stepsize o no less than % that yields at least a reduction
of 0.04 in ®,.

Proof:
We will show that a = % satisfies the statement of the lemma. First, note that

o = 1 satisfies (34). Indeed,
= Vin <\ B (5
2

X 1Az

S—1As

ma (|| XAz oo, 1571 Ao = H Py

H X 1Az

Accordingly, it follows from Lemma 3.1 that

1 1 1 1 1 1
(I)p(l' + SA.TL‘, S+ gAS) — q)p < gul + ?UQ < —E + E < —0.04. (54)

0
The lemma above leads to the following polynomial complexity result:

Theorem 3.1 Given (2°,5%) € F° and p > 4n + 2, Algorithm 1 given in Section
3 generates iterates satisfying ®,(x*,sT) — ®,(x,s) < —0.04 using steps of size at
least % and there is an index K given by

K = 5o (@00, 50) + (p = n) log(1/2))

suchthatwgsforkzl(. 0
n

We omit the simple proof of the theorem above, see, e.g., [13] for a similar result.

15



4 Asymptotic Analysis of the Search Directions

4.1 Basics and Notation

The local convergence analysis of the interior-point algorithm described in Section
2 requires an accurate estimation of the different vectors and scalars appearing
in equations (29) and (30). This, in turn, requires a careful analysis of the the
projection matrices =(z*) and X(s*) in the neighborhood of the optimal solution
set. In [12], such an analysis was performed with the assumption that the LP and
its dual have nondegenerate solutions.

In the nondegenerate case, the optimal solution set {2 is a single vertex and
therefore, convergence to €2 implies the convergence of the iterates to this unique
point. In the degenerate case, however, even when €2 is bounded, a proof of the
convergence of the iterates is more involved since there may be several accumulation
points in €). Our strategy to prove convergence is as follows: First, through a
careful asymptotic analysis of the Newton search directions we will demonstrate
that all accumulation points lie in the relative interior of a particular face F of
(Theorem 4.2)!. Then, we will show that either F is a vertex, or there is a unique
accumulation point which is the relative analytic center of F (Theorem 4.3).

We start by identifying the face F of {2 mentioned in the previous paragraph. To
prove convergence of the iterates of a potential-reduction algorithm, one normally
has to assume that the optimal solution set is bounded. Otherwise, one may be
able to keep reducing the potential function and keep approaching the optimal
face with divergent iterates. With our assumption of the existence of a strictly
feasible primal-dual pair, we have that €2 is bounded. Since the sequence of iterates
generated by our algorithm will converge to the set €2, as illustrated in Theorem
3.1, this sequence will have all its accumulation points on €.

Let (z*,s*) € Q be an accumulation point of the sequence of iterates generated
by Algorithm 1 that has the maximum number of zeros, in x and s variables
combined. We define F to be the face of Q that contains (z*,s*) in its relative
interior. If (z*, s*) is a vertex, then F is chosen to be this vertex. This definition
of F is analogous to Tsuchiya’s choice in the proof of Theorem 4.2 in [11]. Note
that, given (z*, s*) € Q, the face F is uniquely determined. Potentially, there may
be several accumulation points with the same maximum number of zeros. We will
show in Theorem 4.2 that they must all lie in the relative interior of F. We also

IThe relative interior of a vertex is taken to be the vertex itself.
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note for future reference that no proper face of F can contain an accumulation
point since such points would have more zeros than the points in the relative
interior of F, contradicting our choice of F.

Next, we introduce the notation we will employ in the remainder of our analysis.
Let F be the face of the primal-dual optimal solution set €2 defined in the previous
paragraph. Let F, and F; denote the restrictions of the set F to the x and s
components, respectively. In other words,

Fp = {x:3seR"st. (v,5) € F},
Fs = {s:dx e R"s.t. (x,s) € F}.

Define F? as the set of indices i for which z; = 0 whenever z € F,, and let
Ff={1,---,n}\ F?. Therefore,

Ff = {i:3z € F,st. z; >0}

Likewise, define F? as the set of indices ¢ for which s; = 0 whenever s € F, and let
Ff ={1,---,n} \ F;f. From complementary slackness conditions it follows that
FPUF? ={1,---,n}, and that F;" C FY as well as F,” C F?. The inclusions may
be strict if the LP is degenerate.

In what follows, given a matrix H and an index set I, let H; denote the
submatrix of H consisting of columns indexed by I, unless specified otherwise.
Choose a subset B, of F such that columns of Ap, form a basis for the range
space of Ap+. Let N, = F;f \ B,. Note that there exists a matrix I'y, 5, that
satisfies

A,

T

- ABersz- (55)

Since the matrix A is assumed to have full row rank, we can find an index set B, C
F} such that the matrix A, 7 is square and nonsingular. Define N, := F)\ B,.
Therefore, the index sets B,, N,, B,, and N, form a partition of {1,---,n}. We
will use the following notation for the inverse of the matrix A, 7 :

a0 -1 | Ap,
Al m =4 4] = [ T ] . (56)
Above, Ap and ZE denote the submatrices of A;uﬁ consisting of rows indexed
by B, and B, respectively. From (56) it follows that
ABmZBz + AEEZEE = Im, (57)
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ZBEABE = I‘Bx‘, and ZEEAEE = I|Em\’ (58)
ZBxAEm = 0, and ZEEABx = 0. (59)
Using the partition described above, we can write the matrix AX as follows:
AX = [ApXpe ApXp | = A Xp, Ay Xy, Ap Xp, Ay Xy, |
I XplAp AN, Xy, 0 Xp'Ap Ag X3
= [ A5 X5 A5, X3, | l 0 Xz A Av, Xy, T X7 Az Ay Xy, |

Let Rp,n, = X5 ' Ap, Ay, Xy,, and define Ry ., etc., similarly. From (55) and
(59), we have that Ry 5 = 0. Next, we define

Rpps = | Ros, Rpon |=|1In Rew | (60)
Rp,ry = [ Ry, g7, ] = [ 0 Rpw, ] ) (61)
Ry = | Bpm Brw, |=|ls, Baw, |, (62)

where the zero matrix in (61) is | B,| x |B,|. Above, Rp p+ € IR‘B””‘XlF;l, Rp, ko €

1R|BE|X‘F3‘, and Rz po € RIB=IxIF21, Using this notation, we can simplify the ex-
pression for AX:

0 0 I Rpy,

R, .+ RBIFQ
= ABEUEmXBzUEm[ BSFE ]

ax = [anxn g ][ P ) e ]

63
Ry, po (63)
Using the definitions above we introduce two orthogonal projection matrices that
will be useful in the decomposition of the matrix =:

—1
+ = Rng; (RBzFiRng;) Ry, rfs (64)

—1
0 = R%EFQ (REFQR%EFJQ) RE, po- (65)

An analogous development with the dual variables leads to the two orthogonal
projection matrices given below:

(1]

[1]]

1

Sp = Rp oo (Ry Ry 1) Ry s, (66)
— -1
So = RE o (Rp,poR% ) Rp,eo (67)

where B,, B, Ry, p+, etc., are defined analogously to the corresponding definitions
involving z variables. Finally, let 2. =1 — =, ¥ = I — X, etc.
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4.2 Estimation of the Projection Matrices

In this section we will provide asymptotic estimates of the projection matrices =
and ¥ defined in (19)-(20) using the partitions described in the previous subsection.
These estimates will involve the matrices =, , =y, >, and Y, and an error term.

The accuracy of our estimates will depend on the magnitude of the error term,
which is bounded by a constant multiple of || X 1| - | Xpoll + S]] - [|Skoll. We
will later show that all accumulation points of our algorithm are in the relative
interior of the face F. Therefore, the sequence {(z+, sp+)} remains bounded away
from zero and {(xpo, spo)} approaches zero, which indicates that the error term
approaches zero in magnitude.

Lemma 4.1 Let F, =, =, Xy, X, and By, By, etc., be as defined above. Let
Ey =1—-=,, etc. Further assume that ||X;;|| || Xpol|l = 0 and ||Sl;lr|| ||Spoll — 0.
Then, the matrices = and ¥ defined in (19) and (20) can be partitioned as follows
(after possible row/column permutations):

= = |7 o, | rolmainxa), (68)

by .
s = |7 g | rolsnise) (69

Proof:
We give a proof of this lemma in Section 7. 0

4.3 Estimation of the Projected Vectors

In order to estimate the asymptotic values of the search directions Az and As
as iterates approach the optimal face, we need to evaluate the asymptotic values
of the matrix-vector products (= + X)v and (= 4 X)e and the parameters f;, for
1 =1,2,3, and A. We will rely on Lemma 4.1 and the following two lemmas:

Lemma 4.2 Let e be a column vector of ones of appropriate dimension in the
following statements. Then, e € N(Rg o) and e € N(Rg o). Therefore,

Zoe = e, (70)
Yoe = e. (71)
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Proof:
Since z is a feasible vector for (1), Ar = AXe = b. Therefore, from (63) we have

RBzFi6+RBwF£e] - (72)

A 5. X5 5
B.UB,** B,UB, Ry, poe

Since #; = 0 for i € F? whenever & € F,, and since F is assumed to be
nonempty, the right-hand-side vector b is in the range space of AF;F, which is the

same as the range space of Ap_. Therefore, there exists a vector z € R/P¢l such that

Ap,z = b. So, [ABE AE] [ g ] =0, or l %fzg ] = [ g ] Now, premultiplying
Bz

both sides of (72) by Ag_, using (58), (59), and the identity Az b =0, we obtain
XERE,CFQG = 0.

Since X3 is a positive diagonal matrix, this last result indicates that
Ry, poe =0, ie., e € N(Rp, o). Furthermore, since Z is the orthogonal projec-
tion matrix onto the null—spacgé of Rg_ o, it maps e onto itself. The corresponding
result for the dual variables is proved iczlentically. 0

We have a similar result involving the matrices R, .+, Ry »+, and the vector
B.F VB R

XSe.
zT's "

Lemma 4.3 Let v be as defined in (23). Then, v+ € R(R] .v) and vp+ €
R(Rp, p+). Therefore,

V=

Eivpr = 0, (73)
Proof:

We will prove the statement of the lemma only for the = variables; the analogous
result for the dual variables can be proved identically. First, recall from (63) that

RT |
XAT = l o —— ]X = AL
Since Xp 5, and AT _p. are both nonsingular square matrices, the range space
Xp, AL
T _ T _ By 4B, B : T
of (XA")p+ = Xy Aps = [ Xy, AL ] coincides with the range space of R ..
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From complementary slackness conditions, §p+ = 0 whenever § € F,. Since F;
is nonempty and since (¢ — §) € R(AT) (recall that G5 = Gec and R(AT) = N(G))
we must have ¢+ € ’R(Agj). Further, since (¢ — s)p+ € ’R(AITF;) whenever
G's = Gc, we conclude that s, € R(AL,) whenever s is feasible for the dual
problem. ’

Now combining the fact that R(RL ) = R(XF;Aﬁgj), and that sp+ €

B Ff
X _+5
R(AT.), we conclude that v, = FfTsF; € R(RY, ,.+). This also indicates that
vp+ is perpendicular to the null space of Ry p+. Therefore, = v+, the projection
of v+ into this null space, is zero. 0

Using Lemmas 4.2 and 4.3 we can now evaluate the asymptotic values of the
scalars 3; and A:

Lemma 4.4 Let F, F, F., F;, and F? be as defined in Section 4.1. If
||X;}r||||XF£|| — 0 and ||S;i||||SFso|| — 0, the scalars (;, i = 1,2,3, and A de-
fined in (24)-(27) satisfy the following relations:

=+ O(IX X rell + 1S NISkoll) < Br <2, (75)
B =1+ O(IIX X rll + 1S5 Sroll). (76)

0 < B < 2n, (77)

A =0(1). (78)

Proof:

We start by noting that the union of the index sets F and F? is {1,...,n} from
complementary slackness conditions, and that these sets may have a non-empty
intersection if F does not contain a strictly complementary solution.

Since v = 22¢ = ©(1), using Lemmas 4.1 and 4.3 we have:
— Eyvp+ _ 0 _
Ev = [ = |+ O(IXGHIIXFell) = [ = | T OUXEHIIX ), (79)
Yiv + _ 0 —
S = [ s | +OUISE IS 1) = [ soupe | T OUISEHNISEN).  (80)

Therefore, using Lemma 4.2, 3, = e’ (2 + X) v can be written as

fr = €TEOVF3 + €T20VF£ + O(HX;}“”XFQH + ||S;S-1+||||SF°

)
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= evio + ¢ vrg + O(IXHIIXroll + IS HIIS ko)
= 1+ O(IIX Al Xrgll + IS ENSmoll)
which proves (76). The last equality above follows from the fact that
e V(ponroy = O(HXFQHHSFSO“) = O(IIX;}IIIIXFgII + IIS;}IIIISFsoll),

since both zp+ and sp+ are bounded.

Next, note that 3; = v Zv+vTSr = VT =220 +0732%p, since = and ¥ are orthog-
onal projection matrices. Therefore, 8; = ||Zv||3 + [|Zv|3 < 2||v||3 < 2|V = 2,
establishing the second inequality in (75). A similar argument shows that 33 =
e’ (2 + X)e < 2[le]|2 = 2n. Since = and X are also positive semidefinite, 53 > 0.
Therefore, (77) holds.

From (79) and (80) it also follows that 3, = V%EUVFSnLV%ZUVFg +O(||X;} | X ko ||+
||S;}||||SF0||) On the other hand, from the Cauchy-Schwartz inequality we have
that

(€"Zovro)* = (€' vro)? | F2 | (vEoEovre) < n(vgeEovip)

<
(e"Sovmo)® = (e"vm)® <

|F£|(V££EOVF£) < n(l/gs()Egl/Fso)

Since GTVFmo +eTquo > 1, the sum of the left hand side terms of the two inequalities
above is at least % Therefore,

1 _ _
B> o+ (XX ml + IS NS ).

Finally, recall that

A = (ph—1D(p—Bs—1)+p(1 = ()"
Since p > 2n + 1, (77) indicates that (p — 33 — 1) is always positive and (75) indi-
cates that p3; — 1 is positive when ||X;;||||XF£|| and ||S;;||||Spo|| are sufficiently
small. In any case, A = ©(1) and positive for sufficiently small ||X;}||||Xpm0|| and
||S;i|| |Sro||l. This concludes the proof. 0

We now are ready to give an estimation of the search directions obtained when
iterates approach the face F of the optimal set. This is a less precise analogue
of Lemma 4.3 in our previous paper [12] that does not require a nondegeneracy
assumption.
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Theorem 4.1 Let F, F, F°, F;", and F? be as defined in Section j.1. If
| X 2l Xpoll = 0 and ||S,1|[[|Skoll — 0, the search direction defined by (29)
and (30) satisfies the following relations:

_ 1 Zie _ _
XAr = Bg_ll O+ O(X AN Rl + 1S HNISrell),  (8D)
S7as = —— | B Lo(Ixx S LIS 82
s o= | e [ O IX R+ IS ISkel)- (82)

Proof:
First, note that = and ¥ are both orthogonal projection matrices, and v = 9(1).
Hence, the vectors Zv and Yv are both O(1) vectors. Recall from Lemma 4.4 that

(1= 8) = O(IX A I Xrgl| + IS4 111Sroll), and that A = ©(1). Therefore, both
of the terms —2122=y and — 22252y, are o(||X;;||||XF3|| + (1St 111w )-

Using Lemmas 4.1 and 4.2 we also have:
- =€ _ =ie —
= = [T ] ol = | 5 |+ o(iixel).

o€

by -
se = | [+ olistse

Soe ) = l de ] +O(ISREISkll).  (84)

Recalling that A = (pB; — 1)(p — B3 — 1) + p(1 — 35)? and using Lemma 4.4,
we observe that

pb—1 1
Now the assertion of the theorem follows by noting that [|(Z e, X €)|| = O(1). O

+ O(IX X kol + (15,111 S

A p—fs-1

Theorem 4.1 forms, in a sense, the backbone of our analysis. We will later see
that =,e and ¥, e approach zero as iterates approach JF. This, in combination
with Theorem 4.1, indicates that search directions of our algorithm approach the
affine-scaling direction. This is a promising feature of our search directions since
it is necessary to phase out centering from search directions to ensure eventual
superlinear convergence.

Also, observe that, if F is a vertex, elementary theory of linear programming
indicates that the columns of the matrix Ag+ are linearly independent, i.e., N, = 0.
Therefore, Ry .+ and =, are identity matrices, and = e = 0. An identical result
holds for ¥ e.
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4.4 Accumulation Points

In this subsection, we will prove that the iterates of Algorithm 1 has a unique
accumulation point. To this end, we first prove that all the accumulation points
of our algorithm lie in the interior of the face F defined above. This result is
an extension of a theorem by Tsuchiya [11], who proves a similar result for the
Iri-Imai algorithm. Next, we will demonstrate that even when F is not a vertex,
the accumulation point is unique: the relative analytical center of F.

Theorem 4.2 (Theorem 4.2, [11]) Let F be as defined above. Then, all the ac-
cumulation points of the algorithm described in Section 2 lie in the relative interior
of F.

Proof:

A detailed proof of the statement of the theorem in the primal-only setting is given
in [11]. His proof can be generalized into our primal-dual setting in a straightfor-
ward manner. Therefore, we only give a sketch of the proof and skip some details.
Recall that, by definition, F contains in its relative interior an accumulation point
of our iteration sequence with the maximum number of zeros. Since (z*,s*) is in
the relative interior of F we must have that $F+ > 0 and that sF+ > 0. Also, by
definition, 270 = 0 and s = 0.

Note that no other acceleration point (z,s) can have xpo = 0 and spo = 0,
as well as x; = 0 for some i € F;f or s; = 0 for some i € Fj Therefore, for
large enough &, having small || Xfoll and [|So|| will imply that [|(X7.) '] and
||(Sf,s+)_1|| are both bounded. Consequently, we can choose a large enough index
k, for which ||(XI’§;)*1||||XI’§£|| + ||(SI'§S+)’1||||S§SO|| is sufficiently small.

Since Algorithm 1 uses step sizes that are at least 1/5, using Theorem 4.1

it is observed that the components of the vectors :z:’;gl and s]~ch1 will be smaller

than those of z%, and sF . Furthermore, k£ can be chosen large enough so that

x’?gl < fyx’fm, for some constant *y € (0, 1) Then, repeating this argument with the

new iterate one observes that z* Fo and s¥ Fo both converge to zero and that they do
so at least linearly. So, zpo and spo are both zero for any accumulation point (z, )
of our algorithm. Now, using the maximality of the number of zeros of (z*, s*), we
conclude that xp+ and sp+ must be strictly positive for any accumulation point
(x,s) of the algorithm. This completes the proof of the theorem. 0
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Since the accumulation points of our algorithm are in the relative interior of
the face F, the vectors x5+ and sp+ remain bounded away from zero. Therefore,

the error terms (’)(||XF+||||XF0||) and O(||S, 1[|Skol) in Lemmas 4.1, 4.4, and

Theorem 4.1 can be replaced by O(||XF£||) and O(“SFSOH)

At the end of Section 4.3 we observed that =,e and X e are both zero vectors
if F is a vertex. Next, we prove that these vectors converge to vectors of zeros
when F is not a vertex. This result is also based on a similar result by Tsuchiya
given for the primal-only version of our algorithm.

Lemma 4.5 Let F, =, and X, be as defined in Section 4.1. If F is not a vertex,
Z.e and X e converge to vectors of zeros.

Proof:
Note that |Eiel|3 = "= e and |Z el|3 = ¢S e. We will show that 3, (e’ =" e +
eT'S* e) is a convergent series, which immediately implies the lemma. The super-
scripts in 2% and ¥ signify the dependence on the iterate (z¥, s*).

Consider the function defined below:

Ap(z,s) = > Inz;+ > Ins;. (85)
ieFy ieFt

Since A is a concave function, the change in its value from one iteration of our algo-
rithm to the next can be bounded above by the change in its linear approximation
at the current iterate. Thus,

Ar(z + oAz, s + aAs) — Ax(z,s) < ae’ VAg(z, s) [ ii ]
= —a—t(e"Zie+e"Sye) + O|[Xpgll + |Smoll)
< —ap_;n_l(eTEJre +ef'Y e) + O(||XF£|| + ||SF0||)

The equality above follows from the fact that VAx(z,s) = diag(X;}re, S;}re) and
Theorem 4.1. The second inequality uses 77. ’ |

Since, by Theorem 4.2, all accumulation points of our algorithm are in the
relative interior of F, z} and s% remain bounded away from zero for i € F," and
j € F;. Therefore, if we add the above inequality for successive iterates, the
telescopic series on the left will remain bounded below. Furthermore, from the
proof of Theorem 4.2 we have that x’fpg? and 3’1230 both converge to zero, at least
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linearly. So, the sum of the O(||Xp£|| + ||SFSO||) terms on the right-hand-side of
the inequality is bounded above by a constant independent from the number of
terms being added. Recalling that the stepsize « is at least % in every iteration
of Algorithm 1, this last conclusion indicates that the sum Y, (e"Z" e + " e) is
also bounded above. Since, this is a monotone increasing series, it is convergent.
This completes our proof. 0

Recall from Lemma 4.3 that =, vp+ = 0 and ¥, vp+ = 0, while from Lemma
4.5 21e — 0 and X e — 0 when F is not a vertex. This happens because vp+ p+
and e are asymptotically collinear. Indeed, the iterates converge to the relative
analytical center of the face F when it is not a vertex.

Theorem 4.3 The iterates converge to the relative analytical center of the face
F.

Proof:
The relative analytical center of the face F is the unique point that minimizes
—Ag(z,s) = — Yicr+ InT; — 3, pt Ins; among all the points on F. KKT condi-

tions for this optimization problem indicate that there exist vectors y and w such
that:

-1, _ T
XF;e = —AF;ry,
-1, _ AT
SFS+6 = GFSer,
Ap+xpy = b,
GFS+SFS+ — GC,

as well as (zpo,sp0) = 0, and (2p+,5p+) > 0. All but the first two conditions
are satisfied by all points in the relative interior of F. Therefore, it suffices to
prove that any accumulation point also satisfies the first two conditions. Since all
the accumulation points are in the relative interior of the face F, xp,  is bounded
away from zero for all iterates, and the matrix Rp p+ = [ Iip, X5 'Ap AN, Xy, ]
is well-defined and varies continuously with x. Therefore, =Z,, the orthogonal
projection matrix into the null space of Ry -+, is also well-defined and a continuous
function of x. Since =, e — 0, as iterates approach F, =, e = 0 for an accumulation
point (z,s) on F of our iteration sequence. Therefore, e is in the range space of

Rg #+> Which, as we have seen in the proof of Lemma 4.3, is the same as the range
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T

space of XF;A%F. This indicates that X;}e is in the range space of AF;,

there exists a vector y such that

ie.,

X ;}e = —A?gjy.
Similarly, for an accumulation point (z, s) on F of our iteration sequence we have
that ¥, e = 0, which leads to an analogous conclusion: There exists a vector w
such that
Therefore, our accumulation points in the relative interior of the face F all satisfy
the first two equations defining the relative analytical center of this face. Since

this center is unique, there is a single accumulation point of our iteration sequence
and it is the relative analytical center of the face F. 0

5 Quadratic Convergence

We will prove a Q-quadratic convergence result for our algorithm in this section.
This objective requires a delicate balance in the selection of the step sizes in fi-
nal iterations of Algorithm 1. Larger steps necessary for quadratic convergence
may not guarantee reduction in the potential function while such reductions are
necessary for polynomial convergence.

Recall that of is defined to be the largest feasible step size in iteration
k. We will choose stepsizes of the form of = 7%af_ > 1/5 where 7% = 1 —
S} (||XF3|| + ||5F£||) < 1 as given in Algorithm 1. This strategy ensures that more
aggressive steps can be taken as we approach the optimal set while it also keeps
us a healthy distance away from the boundary so that the barrier terms in the
potential function do not explode and the function can still be reduced. Our first
result in this section indicates that this stepsize selection strategy is consistent
with potential reduction:
Lemma 5.1 Let Ax and As be given by (29) and (30). Let o = 8ok with

C‘{l'l’la,X

™=1-0 (||Xp£|| + ||SFSo||) <1, and (2%t 51 = (2 %) + aF(Ax, As). Then,

(1, ) — @, (%, 5*) < (p—n)In (O (IIXpoll + [1Swell)) -
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Proof:
To simplify the notation we let (zF,s%) = (2F*! 51) (z,5) = (2%, %), and
a = oF. From Proposition 2.2,

Dyt 5%) — By (a, )

() o) ()

(T e )
Next, note that from Theorem 4.1 and Lemma 4.5 we have

Omax = (p— 3 —1)+ O (||XF£|| + ||SFSO||) Recalling the definition of A and
using Lemma 4.4, we conclude that

%(051—52) = 1_@(

From Theorem 4.1 and Lemma 4.5 we also have that

AIIIZ'

Az, . .
1+a=" =0 (|Xpll +ISmell) i € FS,  1+a="=0(1)ieF;,

ZT; T

As; . As; .
L+a=2 =0 (|Xpll + [ISml) i€ F?,  1+a=t=0(1)icF;.

Si Si

From the definition of the order notation, there exist positive real numbers
r and R independent from the current iterate (z,s) such that, any number z =

S} (||XF3|| + ||Spo||) satisfies
r (IXgell + 1Skell) < 2 < R (| Xpoll + [ISroll)

and any number z = O (||XF£|| + ||SF0||) satisfies 2 < R (||XF£|| + ||SFo||) Using
the asymptotic relations above, we obtain:

By(a",5%) = Dy(a,5)

pIn(R (| Xpoll + [1Sroll)) = nIn(r (1 Xpell + |Sroll)) — O(1)
= (p—n)In(( oll)) + 0(1)

= (p—m) (0] oll)) -

28

VAN




Therefore, as || Xpo|| 4 ||Sro|| tends to zero, the reduction in the potential function
tends to —oo. a

Next, we observe that with the given stepsize selection strategy the variables
that converge to zero do so quadratically:

Lemma 5.2 Let Az and As be given by (29) and (30). Let of = tFak  with

X

ko_ k41 ok+1y _ (b ok k
— L+ F, ) ) - ) ) . )
™m=1-0 (||X o + ||SF0||) <1, and ("', s**) = (2%, ") +a”(Ax, As). Then
Iaws' s sm Il < Cill(hy, sko)ll,
where Cy is a constant independent from k.

Proof:
As in the proof of Lemma 5.1,

k+1 k Amf k ; A

(3
for i € F?, and similarly for s#*! with i € F?. 0

Corollary 5.1 Let Az and As be given by (29) and (50). Let (z*t1 skT1) =
(2%, %) + o¥(Ax, As) with o* = 7%ak  and 7 =1- 6 (||XF3|| + ||Spo||) <1. If

max

F is a vertex, then the sequence (x*,s*) converges to F Q-quadratically.
Proof:
Let F = (z*,s*). It suffices to prove that x’fw = x’{% converges to rz quadrati-

cally and likewise for s variables. Note that 23, = Ap,b and since our iterates are
feasible, :U’{% = Ap,b— Ap,Apozro. Now, the result follows from Lemma 5.2. The
proof with the dual variables is identical. 0

The task that remains is to prove Q-quadratic convergence for the case when
F is not a vertex. As in the corollary above, we will reach this conclusion by
showing that [lz%, — 2%.|| is bounded by a scalar multiple of || Xf,|| + ||Skol|,
and similarly for the dual variables. To prove this result we first observe that the
F} components of the search directions generated by Algorithm 1 converge to a
negative scalar multiple of the Newton direction for a system of nonlinear equations
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with a nonsingular Jacobian matrix at the solution of the system. More precisely,
we will demonstrate that the directions

Az, = XpiZie,  Asy=Sp3.e (86)

are Newton directions for a nonlinear system whose solution is the convergence
point of our algorithm.

Let (z*, s*) be the relative analytical center of the face F. Recall the definitions
of the index sets B,, N,, etc. from Section 4.1. Also recall that I'x, 5, was defined
as the matrix satisfying Ay, = Ap,I'n,B,. Below, we will refer to this matrix as I'
(without the subscripts) for simplicity. Consider the following system:

B, + Pl‘Nz = Zme, (87)
I"Xgle — Xyle = 0. (88)
We first show that z7., solves the system above. Recall the KKT conditions

given in the proof of Theorem 4.3 that define z*. Premultiplying the equality

Aptat, =bby Ap, we observe that x* , satisfies (87). Next, by partitioning the
equality X, ye = —Af,y we get (X5 )7'e = —AL y, and (X*N,) 'e = —AL y =
—I'"" AT y, from which it follows that 2%, also satisfies (88).

Next, we observe that the Jacobian of the system (87)—(88) is nonsingular at

*

z7+. Indeed, the Jacobian can be partitioned into components corresponding to
B, and N,:

= [ g Xy ]
Since x}; > 0, both diagonal matrices XB?f and Xg,f are strictly positive at z =
s I J(2")[u”, v]" =0, the first block indicates that u = —T'v. Substituting
it in the second block we get (17 X5°T" + X5%)v = 0, which implies that v = 0
since the left-hand-side matrix of this equation is positive definite. Now, u = 0
also follows and therefore J(z*) is nonsingular.

Next, we will observe that the Newton direction for finding a zero of the system
(87)—(88) coincides with Az given in (86). Let Azy be the Newton direction for

the system (87)—(88) and let Azy = X;iA:EN. Then, Azy = l 31 ] satisfies
z 2

Xg, DXy |[di] _ 0
—I"X5" X5 ||| T IM"Xgle — Xyle |
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On the other hand, = e is the orthogonal projection of the vector e into the null
space of Ry p+ = [ 1 Xg;ZBmANmXNm ] = [ I ngFXNz ] which is the same as

the null space of R := [ Xp, ['Xy, ] Now note that Az is in the null space of

R because of the first block equation in the system above. Let y = ngle — ngldl
and observe that Xy I'y = e — dy. In other words, RTy = e — Azy, i.e., the
vectors Azy and e — Azy are in orthogonal spaces (null space of R and range
space of RT) and their sum is e. Therefore, Azy is the projection of the vector
e into N'(R), which is exactly Zye. So, Ary = XprAzy = XpiZe = Any.
Identical arguments can be carried out with s variables also. Thus, we proved:

Lemma 5.3 Let F be a face of dimension at least one of the optimal solution set
containing the convergence point (x*, ") of Algorithm 1 in its relative interior. Let
Az and As be given by (86). These directions are Newton search directions for
particular nonlinear systems which have their solutions at x* and s*, respectively,
and have nonsingular Jacobians at these points. 0

Lemma 5.4 Let (z*,s*) be the convergence point of Algorithm 1. If stepsizes in
Algorithm 1 are chosen as in Lemma 5.1, then there exists a positive constant Cs
such that the inequalities

ok — il < Ca(llakoll + l15oll), (89)
Ishs — sl < Cs(] boll) (90)

are satisfied in all but a finite number of iterations.

Proof:

We will show that if the inequalities above are not satisfied for a certain C'5 then the
term on the left-hand-side of each inequality grows significantly from one iteration
to the other. From Lemma 5.3, using the standard theory of Newton updates, we
have that there exist a neighborhood of z* and a scalar 0 < v < 1/2 such that

lohs + XpsZye —ahe |l < Allahe — 25|l (91)
Also observe that,
A = oy ot |- X e+ O (Xl + ISkl
x xr p /83 1 s
= ah = XErEie+0 (| Xfoll + [1S5oll) -
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Above, the first equality follows from Theorem 4.1 and the second equality follows
from the fact that of = (p— 83 — 1) + © (||X1]?o|| + ||Sf,0||) Therefore,

k+1
r ]

k k = k k
[E: ek — X5 Bre— ot +© (1 XEoll + [1Skoll)

k * k k = * k k
= 20k —25s) = (ks + X5 B — 2t )| + 0 (I1XEo | + 11Skoll)

k * k k
> 2=M2gs — a5l - Co (||ng|| + ||SFg||)

where C is a positive constant and the last inequality uses (91). Let C3 = %
Then, if (89) is violated, we have that ||xl;}1 —apll > (2 27)||x’;; — @} ||, where
2 — 2v is a constant greater than 1. Furthermore, as long as the current iterate
remains in the neighborhood of z* where (91) holds, all the arguments remain

true (note that || X%,|| + ||S%,|| decreases to zero quadratically) and the norm of
+ Ty
(x*,s*) is the only accumulation point of Algorithm 1, the iterates cannot leave
a neighborhood of (z*, s*) infinitely many times. Therefore, (89) can be violated
only finitely many times. An identical proof works for the second inequality of the

Lemma. 0

the residual x’;+ — 2% is multiplied by at least 2 — 2 in each iteration. Since

Now, we are ready to prove:
Theorem 5.1 Iterates of Algorithm 1 converge Q-quadratically to (z*, s*).

Proof:
In view of Lemmas 5.4 and 5.2, there exist positive constants Cy and C5 such that

1@, ") = (2%, 7)1 < Cull(@hg’, sib I < Csll (@, skp)II”

< Gll(a*, 5 = (a7, 57)1% (92)

0

6 Conclusion
We developed a potential-reduction algorithm that converges to optimal solutions

of linear programming problems quadratically. This fast convergence is obtained
even with degenerate problems and without making any path-following restrictions
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on the iterates. To the best of our knowledge, this is the first such result for a
primal-dual interior-point algorithm. Finally, what we have is a Q-order quadratic
convergence result rather than the inferior R-order convergence as Todd anticipated
for potential-reduction algorithms [8].

The only significant assumption we made to achieve the quadratic convergence
result is the existence (and the availability) of a strictly feasible solution to the
primal-dual pair of problems. Under this assumption, the optimal solution set is
bounded, which is often a necessary assumption for the convergence of potential-
reduction methods. For any linear programming problem, there is a correspond-
ing artificial problem, a so-called homogeneous self-dual LP, which has a known
strictly feasible solution [14]. Furthermore, certain solutions to this artificial prob-
lem provide either the solution to the original primal-dual pair of problems or
demonstrate that one (or both) of these problems must be infeasible. For our
potential-reduction algorithm, however, it is not clear that the solutions generated
will produce such solutions, i.e., to use the notation of [14], it is not clear that
we will have * + 7" > 0. Indeed, the behavior of potential-reduction methods on
the self-dual homogeneous formulations is not well understood and remains to be
investigated.

One of the main difficulties in developing a complete quadratic convergence
theory for potential-reduction methods is the possibility of having a convergence
point that is not a vertex. While this possibility exists and cannot be excluded, our
preliminary computational experiments demonstrated that such situations are rare.
In fact, in all but a few specially constructed examples, we observed convergence to
vertices of the optimal solution set. This phenomenon is contrary to the behavior
of most interior-point algorithms that converge to the relative analytical center of
the full optimal face. It may be possible to get more insight into this behavior
by analyzing the existence and convergence of certain trajectories that have the
property that the tangent to the trajectory at a given point is equal to the search
direction used by our algorithm. This, also, is a topic for future research.

7 Proof of Lemma 4.1

Below, positive definite and positive semidefinite will be abbreviated as pd and
psd. Using the partition of the matrix AX given in (63), we evaluate the matrix
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AXZAT.

T T
AX2AT = BXp l Ry, pi By gy T BB, rgRp, po RBwFORB FO ] XpB"
Ry FORB F9 Iy FORB F9
T
oy [ Bem Rt B w By BewBha o ] g
B Rs = RT I+Rs~ RL_ | 7P
BxNz""B,Ng BeNz" "By Ny

where B = ABEUE and Xp = Xp 5 . Let Z denote the 2 x 2 block matrix in the
middle of the right-hand-side expression above. Z can be written as

T
7 = lR F+RBF+ 0]+lRBxﬁx]lRBxﬁz] _

0 I Rz %, BN,

To determine the projection matrix into the null space of AX, we will need to
evaluate the inverse of AX2?A”, and consequently, of Z. Recall the Sherman-
Morrison-Woodbury formula:

(E+0VT) = B —ETU(1+VTETU) T VIET (93)

Let W = (Rp, F+RB F+) = (I + Rp,n,RE, y,)”". The inverse exists since the

term inside the parentheses is the sum of the identity matrix and a psd matrix,
and therefore is pd. Note also that W itself is pd. Using (93) and letting U =

-1
(I + REENEWR BN, T R%zﬁx REW@) , we obtain the following expression for the
inverse of the matrix Z:

W 0 WR, <
-1 - By N, T T
B [ W —WRy 5 UR, W -WR, 5 URL ] B [7;1 Z12 ]
- T T - 2 4 .
~Rp y UR, W  I-Rg mURB -~ Z1y Zan

Let us analyze U first. Since W is pd, R;NIWRBENE is psd. Further, R%zm R3 w,
is also psd and therefore U ! and U are pd. Since all eigenvalues of U ! are at
least one, ||U]|, the operator norm of U, is at most 1.

Now, we are ready to evaluate the orthogonal projection matrix = = [ —
XAT(AXZAT)"TAX:

E=1-XAT(AX2AT)1AX
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_ I—[R%Fj ; ]leRBwFi RBM?]
RBmeO R 0 REFQ

By F?

_ | =FfFF =FEFR?
SFOFF  SFQFQ

with
= — T 7
‘—‘F;F;" = I - RBEFJZHRBEF;’_
= _ T 7 T 7 p_ _ =T
=FFF) T _(RBZF;'ZHRBEFQ + RBEF;ZUI%BEFQ?) = =Ropt
— _ T Tz T Tz
_'Fg?Fg? — [— RB FUZIIRB FO _RB F0Z12R§ FO
T
RB F0Z12RB FO _RB FOZ22RB FO

We analyze the blocks of the matrix = individually to establish the statement

of the lemma. Let us start with the upper left corner. Recalling that Z;; =
W —WRp 5 UR) & W and W = (Ry .+ R} o) I we have:

—_ T -1
SprEr = [I RB fons (RBEFJ RBEFJ) RBEFJ }
+R£J;WRB$NE UR, 5 WRp o+ (94)

The term in the square brackets is the orthogonal projection matrix =, defined at
the end of Section 4.1. Also note that

__ —1
= _ pT T
= =Rj .+ (RBEF;RBEF;) Ry ot

Define
R _
Rpsw, = l BOEN””], (95)

where the zero matrix is [Nz |x|N,|. Then, from (60) we have R, v = Rp o+ Rty -
Now, the second term in (94), which we will call A=+ .+, can be written as:

AEpipt = Ry piWRp 5 URL 5 WRy p+ = ZyRpix URpix By
Since ||U[| < 1, [|Z4|| = 1, and
IRppw, |l = |1 Bpm, I = OUXp,[lIXF, 1), (96)
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we have
IAZppr | = OUIXE, 711 X7, %) (97)
Next, we analyze the off-diagonal blocks:

Sptro = _(Rng;FZHRB,;FQ+R£wF;r712R§wF£)
= — (R} o+ WRp,m) + (R}, o+ WRy 5 UR}, 5 WRp, )
+(Ry, s WRy 5 URL & Ry o) - (98)

Since Rp, po = [ 0 Rp %, ] and Rp 7 = Rp p+ Rp+7,, we have
Rp,mo =Ryt [ 0 Rpsy, | (99)
where the zero matrix is |Ff| x |B,|. Therefore,
Rp osWRpm = RE W WRp o [0 Ry, | =Z4[0 Rpy, |
and therefore, ||R£EF;WRBEF£|| = O(||X5 || X%, ). Similarly,
Ry, o WRy 5 URL < WRp,m = ZyRpsy URpis 24 [ 0 Rpig, |,

which indicates that ||R£xp;WRBmﬁmUR£mmWRBzFS|| = O(|I X5 Pl X7, I*)-
The last term on the right hand side of (98) is

= T T
RT W R, URT v 05,0 = E+Rprw, [ ULy %, Ul w057, ](100)

Next, we will bound the two terms in square brackets through a more careful look
at the U matrix. Recall that

~1
U — ([ +RY & WRp %, + RS & Rgm) .
Note that

—2
Rhiw i Rpsw, RF+N = Ry, -

F*Nm
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The last equality follows from the fact that =, is a projection matrix. Using the
Sherman-Morrison-Woodbury formula in (93) (with £ = I + R%ENEREWI) and
defining V' = (I + RL — Ry ,)~", we can write U as follows:

— — -1 —
U = V-VRLy E (1 +ZRpsy, VRE:x Z1) EiRpay, V. (101)
= V-VO(IX5, I’ X%, I")V. (102)

The second equation above holds because |[(I + =4 Rpi, VRF+N =07 <1
12401 = 1, and 1Ry || = O(IX5 X )

Since VR% ~ R x, = I —V, and the pd matrix V' is less than or equal
to the identity matrix in the Lowner sense, |[VRL ~ Ry w || < 1. If the sin-
gular values of Rz 7 are denoted by J;, singular values of the matrix VR% ¥
ﬁ’ all of which are between —3 and §. Therefore, [[VRL - || < i, and
I UR%zE UR%ENZRENE | = O(1). Combining this observation with (96) and
(100), we obtain

are

IR, ot W Ry, 5, URp 5, RE, moll = OUIXE I X7, 1I)- (103)

Therefore,
IEpspoll = 1Epers | = OUXp, 1 X7, ID- (104)
Next, we analyze the lower right corner:
Spore = I— (R wZuRp,ro + R 0 Z1oR o + B o Z1oRp po + RS 1o Zo0Ris o)
Using (99), we have
T - T T —
Ry poZuBpre = |0 Rpy, | (Rh i ZnRy ) [0 R, |,

where the middle term in parentheses is exactly the matrix [ — Zp+p+ = O(1).
Now, recalling (95) and (96), we have

IR, rZ11 R, moll = O X5, "1 X7, 7). (105)

Similarly,
T Tpr 7
RBEFQZHREEFJQ = [ 0 RFJNE ] RBEF;PZUREFJQ'
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From the analysis of the off-diagonal blocks we have that
IRY, ot Z12Rg, poll = O(I X5 X, 1),
and therefore,
IR, ko Z12 R, pll = |RE o Z1s B, ol = O(IX 521 X5, |I2). (106)
Finally, using (102) we have

RE poZ»n Ry o = R po(I — Ry 5 URE 5 )Ry, o

B, F9 B, F?
= Rp (Il — Rp,5,VRp 5, )RE,po
= +R% Ry w, VO X5, 1 X7, )V RE 5. 5, ro- (107)
Note that,
I—Rp w5 VRLw, = I-Rgx (I+R;5 Rew) 'Ryw,
= (I+ PR35 Ry 5,)" = (B, poltp, )

The last two equalities above follow from (93) and (62). Therefore, the matrix

RE oI = Rp 5. VRE 5 )R5, po = R po(Bp, poRE o) 'Rp,po = Zo

B F9 B F9 B, F9

is the orthogonal projection matrix defined in (65).
Recall from the analysis for the off-diagonal blocks that ||V RL — Ry ol < 1.

Accordingly, the second term on the right-hand-side of (107) has norm O(|| X! ||?| X, [|?).
Aggregating all the results for different components of the lower right corner, we
arrive at the following conclusion:

Erore = S0+ O(IXG, [PIX, %) (108)
To summarize, we have

_ [: ) ]+lo<||XB:|l|2||an2> OXNIXmID | (100)
o | 7L oUXE X ) oUXE TP X 1) |

(1]

—
—

concluding the proof of the first portion of the statement of the lemma. (69) is
proved identically. 0
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