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1 IntroductionIn this article, we study the solution of linear programming problems using interior-point potential-reduction algorithms. We consider linear programs in the standardform: (LP ) minx cTxAx = bx � 0; (1)where A 2 IRm�n, b 2 IRm, c 2 IRn are given, and x 2 IRn. The matrix A isassumed to have full row rank without loss of generality.One of the most desirable properties of an optimization algorithm is its abil-ity to converge fast to a solution once the iterates are su�ciently close to such apoint. The quadratic convergence of Newton's method is a well-known exampleof this behavior. Path-following variants of interior-point methods for linear pro-gramming enjoy this feature. These variants generate iterates that are restrictedto remain in some neighborhood of the so-called central path to reach the optimalsolution. While the proofs of superlinear convergence results for path-followingalgorithms invariably and explicitly use these neighborhood restrictions, such re-strictions are routinely ignored in practical implementations of these algorithmswithout destroying the superlinear convergence property. This confusing fact raisesthe following fundamental question addressed in this article: Can one have a su-perlinearly convergent interior-point algorithm without restricting the iterates toany wide or narrow neighborhood of the central path?We emphasize that our focus is on degenerate problems. For these problems theJacobian of the nonlinear system we would like to solve is singular at the solutionset. Therefore, although the algorithm we will present can be viewed as a variant ofNewton's method for the solution of this system, Kantarovich type of convergenceanalysis is not applicable. Path-following methods circumvent this di�culty byrestricting their iterates to the central path; see Chapter 7 in [13] for a detaileddiscussion of this phenomenon. In this paper, for the �rst time, we develop analgorithm and a convergence theory for the solution of degenerate linear programsthat establishes quadratic convergence without any path-following restrictions. Weachieve this result using a potential-reduction algorithm, which we describe below.One of the most useful theoretical and algorithmic tools in the developmentand study of interior-point methods for optimization problems is the concept ofpotential functions, i.e., functions that measure the quality of a trial solution of theproblem. Such functions often balance measures of proximity to the set of optimal2



solutions, proximity to the feasible set in the case of infeasible-interior-points, and ameasure of centrality within the feasible region. Potential functions are chosen suchthat one approaches an optimal solution of the problem by reducing the potentialfunction. Methods using this strategy are called potential-reduction algorithms.The algorithm presented in this article is a potential-reduction algorithm that usesthe so-called Tanabe-Todd-Ye potential function [7, 9]. Elaborate discussions ofpotential-reduction algorithms can be found in two recent surveys by Anstreicherand Todd [1, 8].The present work simultaneously improves and generalizes the results of threeearlier papers. The �rst one of these papers is by the present author [12], wherea potential-reduction algorithm with polynomial and quadratic convergence fornondegenerate problems is developed. We use a similar algorithm here but theconvergence analysis is signi�cantly more involved in the degenerate case. Thealgorithm in [12] can be viewed as a primal-dual variant of the method of Iriand Imai [3], which is a damped Newton's method to minimize the multiplicativeanalogue of the potential function introduced by Karmarkar [5]. We also generalizethe results of a paper by Iri [4], where he proved an O(nL) iteration complexityfor the Iri-Imai algorithm. Iri-Imai algorithm assumes that an exact line searchis employed along the search directions. Further, it is assumed that the optimalvalue of the linear programming problem in question is known and equals zero.We remove this assumption in our primal-dual set-up and also do not assume thatexact line searches are used. Yet, we prove that our algorithm has the same worst-case complexity as the Iri-Imai method. The last paper that the current articlegeneralizes is by Tsuchiya [11], where he proves that the Iri-Imai method enjoysquadratic convergence even for degenerate problems, provided that one uses exactline searches to minimize the potential function along the generated directions. Weprove a Q-quadratic convergence result for our algorithm without using Tsuchiya'sassumptions.The paper is organized as follows: After this introduction, in Section 2, wereview potential-reduction algorithms and summarize some of the results from[12] that will be useful in the remainder of the paper. These results include theconvexity of the multiplicative primal-dual potential function with a large enoughparameter and an explicit formula for the search directions to be used in thealgorithm. Global convergence property of the algorithm is analyzed in Section 3where a polynomial iteration complexity is demonstrated. Section 4 is devoted tothe analysis of the asymptotic behavior of our search directions and iterates as wellas the demonstration of the uniqueness of accumulation points of the algorithm.3



After proving our quadratic convergence results in Section 5, we conclude in Section6. Section 7 contains the lengthy proof of a key lemma.The notation used here is mostly standard. k � k (without a subscript) denotesthe 2-norm of real vectors; we will use subscripts with 1-norms and 1-norms. Weuse subscripts to denote components of vectors or matrices, and superscripts todenote iteration indices. We also use standard order notation. For sequences fxkgand fykg of real numbers with yk > 0, xk = O(yk) means that the sequence fxkyk gis bounded above by a number independent of k. If xk > 0 also, then xk = �(yk)means that xk = O(yk) and yk = O(xk). If fxkg is a sequence of matrices,xk = O(yk) and xk = �(yk) mean that xkij = O(yk) and xkij = �(yk), respectively,for each i and j. We will denote primal-only and primal-dual potential functionsusing lower-case and upper-case letters, respectively. For an n-dimensional vectorx, the corresponding capital letter X denotes the n � n diagonal matrix withXii � xi. Section 4.1 introduces the notation employed in Sections 4 and 5.2 A Primal-Dual Variant of the Iri-Imai MethodModern developments in the interior-point methods theory started with Kar-markar's 1984 paper [5], where he introduced a potential function to measure thequality of di�erent feasible points of a linear programming problem. He showedthat for linear programs given in a particular form, this function tends to �1 onlyalong the sequences that approach an optimal solution of the problem. Therefore,a search for an optimal solution can be performed by minimizing this function.The potential function introduced by Karmarkar is given below:��(x) := � ln(cTx)� nXi=1 lnxi (2)with � = n + 1. Karmarkar assumes that the problem (1) is given in a non-standard special form, and the optimal objective value is a priori known to beequal to zero. With these assumptions, he shows that ��(x) can be reduced by atleast a constant amount from any feasible interior-point and thus proves that hisalgorithm converges to an optimal solution in polynomial time.Karmarkar's function is not convex. Thus, an algorithm using Newton typesearch directions may not converge to a global minimizer of the function. Instead,4



Iri and Imai [3] consider the multiplicative analogue of the function �:f�(x) := (cTx)�Qni=1 xi : (3)As it turns out, this function is strictly convex in the relative interior of the primalfeasible region if the parameter � � n+1. Iri and Imai apply Newton's method forthe minimization of this strictly convex function and obtain quadratic convergencefor nondegenerate problems when an exact line search is employed [3]. We mimicthis approach in a primal-dual setting.Primal-dual interior-point methods generate solutions for both the problem (1),called the primal problem, and a related problem called its dual. These methodsemerged as the most successful variants of interior-point methods and also havean elegant complexity theory [13]. The dual of the linear programming problemgiven in (1) is: (LD) maxy;s bT yATy + s = cs � 0; (4)where y 2 IRm and s 2 IRn.Let GT be a null-space basis matrix for A, that is, G is an (n�m)� n matrixwith rank n � m and it satis�es AGT = 0, GAT = 0. Using this matrix and avector d 2 IRn satisfying Ad = b, one can rewrite (4) in a form that is identical to(1): (LD0) mins dTsGs = Gcs � 0: (5)This form of the dual was discussed, among others, by Gonzaga [2]. We prefer thisform of the dual since it allows us to reproduce the results we develop for primalvariables in the context of dual variables with no additional e�ort.Let F and F0 denote the primal-dual feasible region and its relative interior:F := f(x; s) : Ax = b; Gs = Gc; (x; s) � 0gF0 := f(x; s) : Ax = b; Gs = Gc; (x; s) > 0gWe will assume that F0 is non-empty and a point (x0; s0) 2 F0 is available.This assumption is not restrictive; any LP can be embedded in an arti�cial problemwith a known point in the relative interior of its feasible region; see, e.g., Ye, Todd,5



and Mizuno [14]. See also the related remarks in Section 6. Furthermore, certainsolutions to this arti�cial problem will either give the optimal solution to theoriginal LP, or reveal that it is either infeasible or unbounded. A key consequenceof our assumption on the existence of a strictly feasible primal-dual pair of solutionsis that the optimal solution set 
 de�ned below is nonempty and bounded; see,e.g., [13]. 
 := f(x; s) 2 F : xT s = 0g (6)A primal-dual variant of Karmarkar's potential function was introduced byTanabe [7], and Todd and Ye [9] independently and has been a useful tool in theconstruction and analysis of e�cient interior-point algorithms for linear program-ming and linear complementarity problems. For the primal-dual pair of problems(1) and (5), this function is de�ned as��(x; s) := � ln(xT s)� nXi=1 ln(xisi); for every (x; s) > 0: (7)Using a primal-dual update, Kojima, Mizuno, and Yoshise showed that when� � n + pn, Tanabe-Todd-Ye (TTY) potential function can be reduced by atleast 0.2 from any feasible point (x; y; s) with (x; s) > 0 [6]. This guaranteed con-stant reduction in the potential function leads to an algorithm with O((�� n) ln 1")complexity. However, the Kojima-Mizuno-Yoshise algorithm cannot have betterthan linear convergence rate, since the search directions they use have a positivecentering component that does not diminish as iterates approach a solution. Weevaluate the gradient and the Hessian of this function for future reference:r��(x; s) = " �xT ss� x�1�xT sx� s�1 # ; (8)r2��(x; s) = " X�2 S�2 #+ �xT s " II #� �(xT s)2 " sx # " sx #T : (9)In the vicinity of an optimal solution to the linear programming problem underconsideration, the potential function �� tends to �1, and for faster convergenceone needs to proceed along directions of negative curvature. In our previous work[12], we established that such directions can be obtained for nondegenerate prob-lems using a primal-dual variant of Iri and Imai's strategy. Next, we outline this6



strategy and also state some of the results from [12] which will be useful later inour analysis.Consider the multiplicative analogue of the Tanabe-Todd-Ye primal-dual po-tential function:F�(x; s) := (xT s)�Qni=1 xisi = expf��(x; s)g; for every (x; s) > 0: (10)Since F�(x; s) is a monotone transformation of ��(x; s), minimizing one of thesefunctions is equivalent to minimizing the other. Along a sequence of points (xk; sk)where ��(xk; sk) tends to �1, F�(xk; sk) tends to zero. Note the following iden-tities: rF�(x; s) = F�(x; s)r��(x; s) (11)r2F�(x; s) = F�(x; s)�r2��(x; s) +r��(x; s)r��(x; s)T� : (12)Our motivation for considering F�(x; s) is the following result:Theorem 2.1 (Theorem 3.1, [12]) The function F�(x; s) is strictly convex onthe set F0 if � � 2n + 1.In view of Theorem 2.1, we will assume that � � 2n+1 in the rest of this paper.Let dRN be the reduced Newton direction for F�(x; s) at some strictly feasible point(x; s). Note that for feasibility, a search direction must satisfy" A G # " �x�s # = 0: (13)Therefore, dRN can be written as the unique solution of the following system:�ZTr2F�(x; s)Z� dRN = �ZTrF�(x; s) (14)where Z be a null space basis for the constraint matrix of (13). In this paper, wewill use the following convenient form for Z:Z = " GT AT # (15)In view of the identities (11) and (12), (14) is equivalent to�ZT hr2��(x; s) +r��(x; s)rT��(x; s)iZ� dRN = �ZTr��(x; s): (16)7



Sincer2F�(x; s) is positive de�nite on F0, the direction ZdRN is guaranteed to be adescent direction for F� and, consequently, for ��. Also note that the direction dRNthat solves (16) is a scalar multiple of the reduced Newton direction to minimizethe TTY potential function ��. More precisely, if gdRN denotes the solution of thesystem �ZTr2��(x; s)Z� gdRN = �ZTr��(x; s) (17)then the following relationship holds:gdRN = 11 + dTRNZTr2��(x; s)ZdRN dRN : (18)Since the Hessian matrix r2��(x; s) may be inde�nite, it may happen that thescalar in front of dRN in (18) is negative so that dRN and gdRN point in oppositedirections. Since dRN leads to a guaranteed descent direction, we will focus on itin the remainder of this paper.The left hand side matrix of the equation (16) is the sum of a block diagonalmatrix and a rank-two matrix. Therefore, this system can be solved e�cientlyusing the Sherman-Morrison-Woodbury formula. Although the derivation is some-what tedious, the resulting directions are relatively simple. Below, these directionswill be presented formally, but �rst we introduce some notation. We will make useof two orthogonal projection matrices:� = �(x) := X�1GT (GX�2GT )�1GX�1; (19)and � = �(s) := S�1AT (AS�2AT )�1AS�1: (20)We will suppress the dependence of � and � to (x; s) in our notation. We notethat � and � are orthogonal projection matrices into the range spaces of X�1GTand S�1AT , respectively. These range spaces are the same as the null spaces ofAX and GS, respectively. Consequently,� = I �XAT (AX2AT )�1AX; (21)and � = I � SGT (GS2GT )�1GS: (22)8



We will denote the normalized complementarity vector with �:� := XSexT s : (23)The analysis of the search direction de�ned in (16) relies heavily on an accurateestimation of the matrices � and �, and of the orthogonal projections of the vectorse and � using these matrices. To this end, we de�ne�1 := �T (� + �) �; (24)�2 := �T (� + �) e; (25)�3 := eT (� + �) e; (26)� := (��1 � 1)(�� �3 � 1) + �(1� �2)2: (27)Above, � is the determinant of the 2 � 2 matrix encountered when using theSherman-Morrison-Woodbury formula to invert the left-hand-side matrix in (16).Note that the scalars de�ned above depend on the current iterate (x; s), but wewill suppress this dependence in our notation.Proposition 2.1 (Prop. 3.1, [12]) Let dRN be the unique solution to (16). Then,dRN = � 1� " (GX�2GT )�1GX�1(AS�2AT )�1AS�1 # (�(1� �2)� + (��1 � 1)e) : (28)Now let (�xT ;�sT )T = ZdRN . Then, �x and �s satisfy the following equations:X�1�x = ��(1� �2)� �� � ��1 � 1� �e; (29)S�1�s = ��(1� �2)� �� � ��1 � 1� �e: (30)In relation to the remarks following equation (16), we note that gdRN = ���1�1dRN ,so that if (g�xT ;g�sT )T = Z gdRN we then have:X�1g�x = ��(1� �2)��1 � 1 �� � �e; (31)S�1g�s = ��(1� �2)��1 � 1 �� � �e: (32)9



Note that the bulk of the work in computing �x and �s from (29) and (30) isin the factorization of the matrices AX2AT and AS�2AT . This is roughly twice thework required for an iteration of most interior-point methods. However, most path-following algorithms with quadratic convergence on degenerate problems requirethat each predictor step is followed by a corrector step to maintain the proximityto the central path. The combined progress of the predictor and corrector stepsof a path-following algorithm is comparable to a single step of ours, where wemeasure the progress in terms of the total complementarity, xT s. Therefore, theratio of e�ort to progress for our algorithm is similar to the same ratio for predictor-corrector path-following algorithms.Proposition 2.2 (Prop. 3.2, [12]) Let �x and �s be de�ned by (29) and (30),and let (x+; s+) = (x; s) + �(�x;�s). Then,(x+)T s+ = �1� ��(��1 � �2)�xT s: (33)Proposition 2.3 (Prop. 4.1, [12]) The search direction given by (29) and (30)is primal-dual symmetric and scale invariant.Proposition 2.4 (Prop. 4.2, [12]) Let (x; s) be a point on the central path C.Then, the search direction given by (29) and (30) is a scalar multiple of the primal-dual a�ne scaling direction.We will end this section by describing our algorithm formally. The reasons forstepsize selection rules below will be apparent after the analysis of the next threesections.Algorithm 1 Let � be an O(n) parameter greater than 2n+ 1 and let " > 0. Fi-nally, let (x0; s0) be a strictly feasible solution for this LP such that �� �(x0)Ts0� =O(n ln 1"). Let k=0.1. If (xk)T sk < ", stop.2. Compute the search direction (�x;�s) from (29) and (30). Choose a stepsize 15 � �k = �k�kmax, with�kmax = maxf� : xk + ��xk � 0; sk + ��sk � 0g;�k = 1���(xk)T sk�;10



such that ��(x+; s+)� ��(x; s) � �0:04:3. let (xk+1; sk+1) := (xk; sk) + �k(�x;�s), k = k + 1. Go to step 1.3 Polynomiality of the AlgorithmIn this section, we will demonstrate that it is always possible to reduce the potentialfunction �� by at least a constant amount as prescribed in the algorithm of theprevious section. This will lead to the conclusion that the algorithm �nds an "-complementary solution in polynomial time. We achieve this result by �rst derivinga quadratic underestimate of the reduction in the potential function and thenshowing that the linear part of this estimate is su�ciently negative.Let (�x;�s) be a feasible direction for the primal-dual pair of problems andlet (x; s) be the current iterate. For the feasibility of the next iterate (x+��x; s+��s), a su�cient condition on the stepsize � is:�max �kX�1�xk1; kS�1�sk1� � 1:By requiring the stepsize to satisfy a more stringent condition we can estimatethe change in the value of the potential function as a quadratic function of thestepsize:Lemma 3.1 Let (�x;�s) be a feasible direction for the primal-dual pair of prob-lems and let (x; s) be the current feasible iterate. If the stepsize � satis�es�max �kX�1�xk1; kS�1�sk1� � 1=2; (34)then we have ��(x + ��x; s+ ��s)� �� � �u1 + �2u2; (35)where u1 = �xT�s+ sT�xxT s � eT �X�1�x + S�1�s� = [r��]T " �x�s # ; (36)u2 = kX�1�xk22 + kS�1�sk22: (37)11



Proof:The inequality (35) is well known, see, e.g., [13, page 71] and substitute � = 0:5.To show that a reduction is always possible, we will demonstrate that u1 issu�ciently negative using techniques similar to those of [4]:Lemma 3.2 If (�x;�s) is given by (29) and (30) then, the scalar u1 de�ned in(36) is less than �12 .Proof:Let us denote the reduced gradient vector ZTr�� and the reduced Hessian matrixZT (r2�� + r��r�T� )Z with g and H to simplify the notation. By de�nition,HdRN = �g. We start by noting that the reduced Newton direction dRN given by(16) maximizes the following function:h(d) := � gTdpdTHd: (38)Hence, �maxd h(d)�2 = (gTdRN)2dTRNHdRN = �gTdRN : (39)Next, we will show that there is a vector d̂ satisfying h(d̂) > 1p2 which will lead tothe conclusion that u1 = gTdRN < �12 using (39).Let (x�; s�) be an optimal pair of primal-dual solutions to problems (1) and(4), and let (x; s) be the current iterate. Then, the vector � := " x� � xs� � s # is inthe range space of the matrix Z. Let d̂ be a vector such that Zd̂ = �. Note that" sx #T � = xT s� + sTx� � 2xT s = �xT s, since (x� � x)T (s� � s) = 0.Using (8) we observe thatgT d̂ = r�T�Zd̂ = r�T� �= �xT s 0@" sx #T �1A� �eTX�1(x� � x) + eTS�1(s� � s)�= �(�� 2n)� �eTX�1x� + eTS�1s�� : (40)12



Next, using (8) and (9) we obtaind̂THd̂ = �T (r2�� +r��r�T� )� = �Tr2��� + (gT d̂)2= (x� � x)TX�2(x� � x) + (s� � s)TS�2(s� � s) + 2(x� � x)T (s� � s)� �(xT s)2 �(x� � x)T s+ (s� � s)Tx�2 + (gT d̂)2= �(x�)TX�2x� + (s�)TS�2s��� 2 �eTX�1x� + eTS�1s��+ 2n�� + (gT d̂)2< 2(gT d̂)2: (41)Above, we used the identity " sx #T � = �xT s. The �nal inequality can be veri-�ed by squaring both sides of (40) and using the inequality Pw2i � (Pwi)2 fornonnegative wi.Since (41) implies that h(d̂) > 1p2 , using (39) we concludeu1 = [r��]T " �x�s # = gTdRN < �12 : (42)Next, we will demonstrate that the term u2 is bounded above. This analysisis also similar to that of [4]. For this proof we will need a larger value for thepotential function parameter �. Fortunately, this requirement does not a�ect theoverall complexity.Lemma 3.3 Let (�x;�s) be given by (29) and (30). Further, assume that � �4n+ 2. Then, the scalar u2 de�ned in (37) is at most 2518 .Proof:Let Ĥ = dTRNHdRN . Since HdRN = �g, we have that Ĥ = dTRNHdRN =�gTdRN > 12 and that̂H = dTRNHdRN = �gTdRN = ��
1 + 
2 (43)where 
1 = sT�x + xT�sxT s and 
2 = eT (X�1�x+ S�1�s):13



On the other hand, using the de�nition of H, (9), and (12) we obtainĤ = u2 � �
21 + Ĥ2: (44)Since u2 = (kX�1�xk22 + kS�1�sk22) = �2 + 
222n , where�2 = 





 X�1�x� eT (X�1�x+S�1�s)2n eS�1�s� eT (X�1�x+S�1�s)2n e 





22we can rewrite (44) as �
21 � 
222n = Ĥ2 � Ĥ + �2: (45)Now we can solve for 
1 and 
2 in terms of Ĥ and � using (43) and (45). Since(45) is quadratic we get two roots for each 
i:
1 = � 1�� 2nĤ �vuut 2n�(�� 2n)  Ĥ � �� 2n� 1�� 2n Ĥ2 � �2! (46)
2 = � 2n�� 2nĤ �vuut 2n��� 2n  Ĥ � �� 2n� 1�� 2n Ĥ2 � �2!: (47)Since 
i's are real numbers, the term inside the square-root must be nonnegative.Since �2 � 0 and � > 2n+ 1, we conclude thatĤ � �� 2n�� 2n� 1 : (48)Also note thatĤ � �� 2n� 1�� 2n Ĥ2 = Ĥ(1� �� 2n� 1�� 2n Ĥ) � �� 2n4(�� 2n� 1) : (49)Now, u2 = �2 + 
222n� �2 + 2n 1�� 2nĤ +s �2n(�� 2n) �Ĥ � �� 2n� 1�� 2n Ĥ2 � �2�!2 (50)� 2n 1�� 2nĤ +s �2n(�� 2n) �Ĥ � �� 2n� 1�� 2n Ĥ2�!2 (51)�  p2n�� 2n� 1 + 12r ��� 2n� 1!2 : (52)14



Above, (50) uses (47) and the fact that Ĥ is positive. (51) holds since the right-hand-side of (50) is a decreasing function of �2. Finally, (52) follows from (48) and(49).Now, using the assumption � � 4n+ 2 we getu2 �  p2n�� 2n� 1 + 12s ��� 2n� 1!2� 0@ p2n2n+ 1 + 12s4n+ 22n+ 11A2 � (p23 + 12p2)2 = 2518 :Now we are ready to demonstrate that �� can be reduced by at least a constantusing a step in the direction given by (29) and (30):Lemma 3.4 Let (�x;�s) be given by (29) and (30). Further, assume that � �4n+2. Then there exists a stepsize � no less than 15 that yields at least a reductionof 0:04 in ��.Proof:We will show that � = 15 satis�es the statement of the lemma. First, note that� = 15 satis�es (34). Indeed,max �kX�1�xk1; kS�1�sk1� = 




 X�1�xS�1�s 




1 � 




 X�1�xS�1�s 




2 = pu2 � r2518 : (53)Accordingly, it follows from Lemma 3.1 that��(x + 15�x; s + 15�s)� �� � 15u1 + 152u2 < � 110 + 118 < �0:04: (54)The lemma above leads to the following polynomial complexity result:Theorem 3.1 Given (x0; s0) 2 F0 and � � 4n + 2, Algorithm 1 given in Section3 generates iterates satisfying ��(x+; s+)���(x; s) � �0:04 using steps of size atleast 15 and there is an index K given byK = 10:04(��(x0; s0) + (�� n) log(1="))such that (xk)T skn � " for k � K.We omit the simple proof of the theorem above, see, e.g., [13] for a similar result.15



4 Asymptotic Analysis of the Search Directions4.1 Basics and NotationThe local convergence analysis of the interior-point algorithm described in Section2 requires an accurate estimation of the di�erent vectors and scalars appearingin equations (29) and (30). This, in turn, requires a careful analysis of the theprojection matrices �(xk) and �(sk) in the neighborhood of the optimal solutionset. In [12], such an analysis was performed with the assumption that the LP andits dual have nondegenerate solutions.In the nondegenerate case, the optimal solution set 
 is a single vertex andtherefore, convergence to 
 implies the convergence of the iterates to this uniquepoint. In the degenerate case, however, even when 
 is bounded, a proof of theconvergence of the iterates is more involved since there may be several accumulationpoints in 
. Our strategy to prove convergence is as follows: First, through acareful asymptotic analysis of the Newton search directions we will demonstratethat all accumulation points lie in the relative interior of a particular face F of 
(Theorem 4.2)1. Then, we will show that either F is a vertex, or there is a uniqueaccumulation point which is the relative analytic center of F (Theorem 4.3).We start by identifying the face F of 
 mentioned in the previous paragraph. Toprove convergence of the iterates of a potential-reduction algorithm, one normallyhas to assume that the optimal solution set is bounded. Otherwise, one may beable to keep reducing the potential function and keep approaching the optimalface with divergent iterates. With our assumption of the existence of a strictlyfeasible primal-dual pair, we have that 
 is bounded. Since the sequence of iteratesgenerated by our algorithm will converge to the set 
, as illustrated in Theorem3.1, this sequence will have all its accumulation points on 
.Let (x�; s�) 2 
 be an accumulation point of the sequence of iterates generatedby Algorithm 1 that has the maximum number of zeros, in x and s variablescombined. We de�ne F to be the face of 
 that contains (x�; s�) in its relativeinterior. If (x�; s�) is a vertex, then F is chosen to be this vertex. This de�nitionof F is analogous to Tsuchiya's choice in the proof of Theorem 4.2 in [11]. Notethat, given (x�; s�) 2 
, the face F is uniquely determined. Potentially, there maybe several accumulation points with the same maximum number of zeros. We willshow in Theorem 4.2 that they must all lie in the relative interior of F . We also1The relative interior of a vertex is taken to be the vertex itself.16



note for future reference that no proper face of F can contain an accumulationpoint since such points would have more zeros than the points in the relativeinterior of F , contradicting our choice of F .Next, we introduce the notation we will employ in the remainder of our analysis.Let F be the face of the primal-dual optimal solution set 
 de�ned in the previousparagraph. Let Fx and Fs denote the restrictions of the set F to the x and scomponents, respectively. In other words,Fx := fx : 9s 2 <n s.t. (x; s) 2 Fg;Fs := fs : 9x 2 <n s.t. (x; s) 2 Fg:De�ne F 0x as the set of indices i for which xi = 0 whenever x 2 Fx, and letF+x = f1; � � � ; ng n F 0x . Therefore,F+x = fi : 9x 2 Fx s.t. xi > 0g:Likewise, de�ne F 0s as the set of indices i for which si = 0 whenever s 2 Fs and letF+s = f1; � � � ; ng n F+s . From complementary slackness conditions it follows thatF 0x [ F 0s = f1; � � � ; ng, and that F+s � F 0x as well as F+x � F 0s . The inclusions maybe strict if the LP is degenerate.In what follows, given a matrix H and an index set I, let HI denote thesubmatrix of H consisting of columns indexed by I, unless speci�ed otherwise.Choose a subset Bx of F+x such that columns of ABx form a basis for the rangespace of AF+x . Let Nx = F+x n Bx. Note that there exists a matrix �NxBx thatsatis�es ANx = ABx�NxBx: (55)Since the matrix A is assumed to have full row rank, we can �nd an index set Bx �F 0x such that the matrix ABx[Bx is square and nonsingular. De�ne Nx := F 0x nBx.Therefore, the index sets Bx, Nx, Bx, and Nx form a partition of f1; � � � ; ng. Wewill use the following notation for the inverse of the matrix ABx[Bx:A�1Bx[Bx = hABx ABxi�1 = " ABxABx # : (56)Above, ABx and ABx denote the submatrices of A�1Bx[Bx consisting of rows indexedby Bx and Bx respectively. From (56) it follows thatABxABx + ABxABx = Im; (57)17



ABxABx = IjBxj; and ABxABx = IjBxj; (58)ABxABx = 0; and ABxABx = 0: (59)Using the partition described above, we can write the matrix AX as follows:AX = h AF+x XF+x AF 0xXF 0x i = h ABxXBx ANxXNx ABxXBx ANxXNx i= h ABxXBx ABxXBx i " I X�1BxABxANxXNx 0 X�1BxABxANxXNx0 X�1BxABxANxXNx I X�1BxABxANxXNx # :Let RBxNx = X�1BxABxANxXNx, and de�ne RBxNx, etc., similarly. From (55) and(59), we have that RBxNx = 0. Next, we de�neRBxF+x = h RBxBx RBxNx i = h IjBxj RBxNx i ; (60)RBxF 0x = h RBxBx RBxNx i = h 0 RBxNx i ; (61)RBxF 0x = h RBxBx RBxNx i = h IjBxj RBxNx i ; (62)where the zero matrix in (61) is jBxj � jBxj. Above, RBxF+x 2 IRjBxj�jF+x j, RBxF 0x 2IRjBxj�jF 0x j, and RBxF 0x 2 IRjBxj�jF 0x j. Using this notation, we can simplify the ex-pression for AX:AX = h ABxXBx ABxXBx i " I RBxNx 0 RBxNx0 0 I RBxNx #= ABx[BxXBx[Bx " RBxF+x RBxF 0x0 RBxF 0x # : (63)Using the de�nitions above we introduce two orthogonal projection matrices thatwill be useful in the decomposition of the matrix �:�+ := RTBxF+x �RBxF+x RTBxF+x ��1RBxF+x ; (64)�0 := RTBxF 0x �RBxF 0xRTBxF 0x��1RBxF 0x : (65)An analogous development with the dual variables leads to the two orthogonalprojection matrices given below:�+ := RTBsF+s �RBsF+s RTBsF+s ��1RBsF+s ; (66)�0 := RTBsF 0s �RBsF 0sRTBsF 0s ��1RBsF 0s ; (67)where Bs, Bs, RBsF+s , etc., are de�ned analogously to the corresponding de�nitionsinvolving x variables. Finally, let �+ = I � �+, �0 = I � �0, etc.18



4.2 Estimation of the Projection MatricesIn this section we will provide asymptotic estimates of the projection matrices �and � de�ned in (19)-(20) using the partitions described in the previous subsection.These estimates will involve the matrices �+, �0, �+, and �0 and an error term.The accuracy of our estimates will depend on the magnitude of the error term,which is bounded by a constant multiple of kX�1F+x k � kXF 0xk + kS�1F+s k � kSF 0s k. Wewill later show that all accumulation points of our algorithm are in the relativeinterior of the face F . Therefore, the sequence f(xF+x ; sF+s )g remains bounded awayfrom zero and f(xF 0x ; sF 0s )g approaches zero, which indicates that the error termapproaches zero in magnitude.Lemma 4.1 Let F , �+, �0, �+, �0, and Bx, Bs, etc., be as de�ned above. Let�+ = I��+, etc. Further assume that kX�1F+x k�kXF 0xk ! 0 and kS�1F+s k�kSF 0s k ! 0.Then, the matrices � and � de�ned in (19) and (20) can be partitioned as follows(after possible row/column permutations):� = " �+ �0 # +O�kX�1F+x kkXF 0xk�; (68)� = " �0 �+ #+O�kS�1F+s kkSF 0s k�: (69)Proof:We give a proof of this lemma in Section 7.4.3 Estimation of the Projected VectorsIn order to estimate the asymptotic values of the search directions �x and �sas iterates approach the optimal face, we need to evaluate the asymptotic valuesof the matrix-vector products (� + �)� and (� + �)e and the parameters �i, fori = 1; 2; 3, and �. We will rely on Lemma 4.1 and the following two lemmas:Lemma 4.2 Let e be a column vector of ones of appropriate dimension in thefollowing statements. Then, e 2 N (RBxF 0x ) and e 2 N (RBsF 0s ). Therefore,�0e = e; (70)�0e = e: (71)19



Proof:Since x is a feasible vector for (1), Ax = AXe = b. Therefore, from (63) we haveABx[BxXBx[Bx " RBxF+x e+RBxF 0x eRBxF 0x e # = b: (72)Since x̂i = 0 for i 2 F 0x whenever x̂ 2 Fx, and since F is assumed to benonempty, the right-hand-side vector b is in the range space of AF+x , which is thesame as the range space of ABx . Therefore, there exists a vector z 2 <jBxj such thatABxz = b. So, hABx ABxi " z0 # = b, or " ABxbABxb # = " z0 #. Now, premultiplyingboth sides of (72) by ABx, using (58), (59), and the identity ABxb = 0, we obtainXBxRBxF 0xe = 0:Since XBx is a positive diagonal matrix, this last result indicates thatRBxF 0xe = 0, i.e., e 2 N (RBxF 0x ). Furthermore, since �0 is the orthogonal projec-tion matrix onto the null-space of RBxF 0x , it maps e onto itself. The correspondingresult for the dual variables is proved identically.We have a similar result involving the matrices RBxF+x , RBsF+s , and the vector� := XSexT s :Lemma 4.3 Let � be as de�ned in (23). Then, �F+x 2 R(RTBxF+x ) and �F+s 2R(RBsF+s ). Therefore, �+�F+x = 0; (73)�+�F+s = 0: (74)Proof:We will prove the statement of the lemma only for the x variables; the analogousresult for the dual variables can be proved identically. First, recall from (63) thatXAT = " RTBxF+x 0RTBxF 0x RTBxF 0x #XBx[BxATBx[Bx:Since XBx[Bx and ATBx[Bx are both nonsingular square matrices, the range spaceof (XAT )F+x = XF+x ATF+x = " XBxATBxXNxATNx # coincides with the range space of RTBxF+x .20



From complementary slackness conditions, ŝF+x = 0 whenever ŝ 2 Fs. Since Fsis nonempty and since (c� ŝ) 2 R(AT ) (recall that Gŝ = Gc and R(AT ) = N (G))we must have cF+x 2 R(ATF+x ). Further, since (c � s)F+x 2 R(ATF+x ) wheneverGs = Gc, we conclude that sF+x 2 R(ATF+x ) whenever s is feasible for the dualproblem.Now combining the fact that R(RTBxF+x ) = R(XF+x ATF+x ), and that sF+x 2R(ATF+x ), we conclude that �F+x = XF+x sF+xxT s 2 R(RTBxF+x ). This also indicates that�F+x is perpendicular to the null space of RBxF+x . Therefore, �+�F+x , the projectionof �F+x into this null space, is zero.Using Lemmas 4.2 and 4.3 we can now evaluate the asymptotic values of thescalars �i and �:Lemma 4.4 Let F , F+x , F 0x , F+s , and F 0s be as de�ned in Section 4.1. IfkX�1F+x kkXF 0xk ! 0 and kS�1F+s kkSF 0s k ! 0, the scalars �i, i = 1; 2; 3, and � de-�ned in (24)-(27) satisfy the following relations:12n +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k� � �1 � 2; (75)�2 = 1 +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�; (76)0 � �3 � 2n; (77)� = �(1): (78)Proof:We start by noting that the union of the index sets F 0x and F 0s is f1; : : : ; ng fromcomplementary slackness conditions, and that these sets may have a non-emptyintersection if F does not contain a strictly complementary solution.Since � = XSexT s = �(1), using Lemmas 4.1 and 4.3 we have:�� = " �+�F+x�0�F 0x #+O�kX�1F+x kkXF 0x k� = " 0�0�F 0x #+O�kX�1F+x kkXF 0x k�; (79)�� = " �+�F+s�0�F 0s #+O�kS�1F+s kkSF 0s k� = " 0�0�F 0s #+O�kS�1F+s kkSF 0s k�: (80)Therefore, using Lemma 4.2, �2 = eT (� + �) � can be written as�2 = eT�0�F 0x + eT�0�F 0s +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�21



= eT�F 0x + eT�F 0s +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�= 1 +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�;which proves (76). The last equality above follows from the fact thateT�(F 0x\F 0s ) = O�kXF 0xkkSF 0s k� = O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�;since both xF+x and sF+s are bounded.Next, note that �1 = �T��+�T�� = �T�2�+�T�2�, since � and � are orthog-onal projection matrices. Therefore, �1 = k��k22 + k��k22 � 2k�k22 � 2k�k21 = 2;establishing the second inequality in (75). A similar argument shows that �3 =eT (� + �)e � 2kek22 = 2n. Since � and � are also positive semide�nite, �3 � 0.Therefore, (77) holds.From (79) and (80) it also follows that �1 = �TF 0x�0�F 0x+�TF 0s�0�F 0s+O�kX�1F+x kkXF 0xk+kS�1F+s kkSF 0s k�: On the other hand, from the Cauchy-Schwartz inequality we havethat (eT�0�F 0x )2 = (eT�F 0x )2 � jF 0x j(�TF 0x�0�F 0x ) � n(�TF 0x�0�F 0x )(eT�0�F 0s )2 = (eT�F 0s )2 � jF 0s j(�TF 0s�0�F 0s ) � n(�TF 0s �0�F 0s )Since eT�F 0x +eT�F 0s � 1, the sum of the left hand side terms of the two inequalitiesabove is at least 12 . Therefore,�1 � 12n +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�:Finally, recall that � = (��1 � 1)(�� �3 � 1) + �(1� �2)2:Since � > 2n+ 1, (77) indicates that (�� �3 � 1) is always positive and (75) indi-cates that ��1 � 1 is positive when kX�1F+x kkXF 0xk and kS�1F+s kkSF 0s k are su�cientlysmall. In any case, � = �(1) and positive for su�ciently small kX�1F+x kkXF 0xk andkS�1F+s kkSF 0s k. This concludes the proof.We now are ready to give an estimation of the search directions obtained wheniterates approach the face F of the optimal set. This is a less precise analogueof Lemma 4.3 in our previous paper [12] that does not require a nondegeneracyassumption. 22



Theorem 4.1 Let F , F+x , F 0x , F+s , and F 0s be as de�ned in Section 4.1. IfkX�1F+x kkXF 0xk ! 0 and kS�1F+s kkSF 0s k ! 0, the search direction de�ned by (29)and (30) satis�es the following relations:X�1�x = � 1�� �3 � 1 " �+ee #+O�kX�1F+x kkXF 0x k+ kS�1F+s kkSF 0s k�; (81)S�1�s = � 1�� �3 � 1 " �+ee #+O�kX�1F+x kkXF 0x k+ kS�1F+s kkSF 0s k�: (82)Proof:First, note that � and � are both orthogonal projection matrices, and � = �(1).Hence, the vectors �� and �� are both O(1) vectors. Recall from Lemma 4.4 that(1� �2) = O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�, and that � = �(1). Therefore, bothof the terms ��(1��2)� �� and ��(1��2)� �� are O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�.Using Lemmas 4.1 and 4.2 we also have:�e = " �+e�0e #+O�kX�1F+x kkXF 0xk� = " �+ee # +O�kX�1F+x kkXF 0xk�; (83)�e = " �+e�0e # +O�kS�1F+s kkSF 0s k� = " �+ee # +O�kS�1F+s kkSF 0s k�: (84)Recalling that � = (��1 � 1)(� � �3 � 1) + �(1 � �2)2 and using Lemma 4.4,we observe that��1 � 1� = 1�� �3 � 1 +O�kX�1F+x kkXF 0xk+ kS�1F+s kkSF 0s k�:Now the assertion of the theorem follows by noting that k(�+e;�+e)k = �(1).Theorem 4.1 forms, in a sense, the backbone of our analysis. We will later seethat �+e and �+e approach zero as iterates approach F . This, in combinationwith Theorem 4.1, indicates that search directions of our algorithm approach thea�ne-scaling direction. This is a promising feature of our search directions sinceit is necessary to phase out centering from search directions to ensure eventualsuperlinear convergence.Also, observe that, if F is a vertex, elementary theory of linear programmingindicates that the columns of the matrix AF+x are linearly independent, i.e., Nx = ;.Therefore, RBxF+x and �+ are identity matrices, and �+e = 0. An identical resultholds for �+e. 23



4.4 Accumulation PointsIn this subsection, we will prove that the iterates of Algorithm 1 has a uniqueaccumulation point. To this end, we �rst prove that all the accumulation pointsof our algorithm lie in the interior of the face F de�ned above. This result isan extension of a theorem by Tsuchiya [11], who proves a similar result for theIri-Imai algorithm. Next, we will demonstrate that even when F is not a vertex,the accumulation point is unique: the relative analytical center of F .Theorem 4.2 (Theorem 4.2, [11]) Let F be as de�ned above. Then, all the ac-cumulation points of the algorithm described in Section 2 lie in the relative interiorof F .Proof:A detailed proof of the statement of the theorem in the primal-only setting is givenin [11]. His proof can be generalized into our primal-dual setting in a straightfor-ward manner. Therefore, we only give a sketch of the proof and skip some details.Recall that, by de�nition, F contains in its relative interior an accumulation pointof our iteration sequence with the maximum number of zeros. Since (x�; s�) is inthe relative interior of F we must have that x�F+x > 0 and that s�F+s > 0. Also, byde�nition, x�F 0x = 0 and s�F 0s = 0.Note that, no other acceleration point (x; s) can have xF 0x = 0 and sF 0s = 0,as well as xi = 0 for some i 2 F+x or si = 0 for some i 2 F+s . Therefore, forlarge enough k, having small kXkF 0xk and kSkF 0s k will imply that k(XkF+x )�1k andk(SkF+s )�1k are both bounded. Consequently, we can choose a large enough indexk, for which k(XkF+x )�1kkXkF 0xk+ k(SkF+s )�1kkSkF 0s k is su�ciently small.Since Algorithm 1 uses step sizes that are at least 1/5, using Theorem 4.1it is observed that the components of the vectors xk+1F 0x and sk+1F+s will be smallerthan those of xkF 0x and skF+s . Furthermore, k can be chosen large enough so thatxk+1F 0x � 
xkF 0x , for some constant 
 2 (0; 1). Then, repeating this argument with thenew iterate one observes that xkF 0x and skF 0s both converge to zero and that they doso at least linearly. So, xF 0x and sF 0s are both zero for any accumulation point (x; s)of our algorithm. Now, using the maximality of the number of zeros of (x�; s�), weconclude that xF+x and sF+s must be strictly positive for any accumulation point(x; s) of the algorithm. This completes the proof of the theorem.24



Since the accumulation points of our algorithm are in the relative interior ofthe face F , the vectors xF+x and sF+s remain bounded away from zero. Therefore,the error terms O�kX�1F+x kkXF 0xk� and O�kS�1F+s kkSF 0s k� in Lemmas 4.1, 4.4, andTheorem 4.1 can be replaced by O�kXF 0xk� and O�kSF 0s k�.At the end of Section 4.3 we observed that �+e and �+e are both zero vectorsif F is a vertex. Next, we prove that these vectors converge to vectors of zeroswhen F is not a vertex. This result is also based on a similar result by Tsuchiyagiven for the primal-only version of our algorithm.Lemma 4.5 Let F , �+, and �+ be as de�ned in Section 4.1. If F is not a vertex,�+e and �+e converge to vectors of zeros.Proof:Note that k�+ek22 = eT�+e and k�+ek22 = eT�+e. We will show that Pk(eT�k+e+eT�k+e) is a convergent series, which immediately implies the lemma. The super-scripts in �k+ and �k+ signify the dependence on the iterate (xk; sk).Consider the function de�ned below:�F(x; s) := Xi2F+x lnxi + Xi2F+s ln si: (85)Since � is a concave function, the change in its value from one iteration of our algo-rithm to the next can be bounded above by the change in its linear approximationat the current iterate. Thus,�F(x + ��x; s+ ��s)� �F(x; s) � �eTr�F(x; s) " �x�s #= �� 1���3�1(eT�+e + eT�+e) +O�kXF 0xk+ kSF 0s k�� �� 1��2n�1(eT�+e+ eT�+e) +O�kXF 0xk+ kSF 0s k�:The equality above follows from the fact that r�F(x; s) = diag(X�1F+x e; S�1F+s e) andTheorem 4.1. The second inequality uses 77.Since, by Theorem 4.2, all accumulation points of our algorithm are in therelative interior of F , xki and skj remain bounded away from zero for i 2 F+x andj 2 F+s . Therefore, if we add the above inequality for successive iterates, thetelescopic series on the left will remain bounded below. Furthermore, from theproof of Theorem 4.2 we have that xkF 0x and skF 0s both converge to zero, at least25



linearly. So, the sum of the O�kXF 0xk + kSF 0s k� terms on the right-hand-side ofthe inequality is bounded above by a constant independent from the number ofterms being added. Recalling that the stepsize � is at least 15 in every iterationof Algorithm 1, this last conclusion indicates that the sum Pk(eT�k+e+ eT�k+e) isalso bounded above. Since, this is a monotone increasing series, it is convergent.This completes our proof.Recall from Lemma 4.3 that �+�F+x = 0 and �+�F+s = 0, while from Lemma4.5 �+e! 0 and �+e! 0 when F is not a vertex. This happens because �F+x [F+sand e are asymptotically collinear. Indeed, the iterates converge to the relativeanalytical center of the face F when it is not a vertex.Theorem 4.3 The iterates converge to the relative analytical center of the faceF .Proof:The relative analytical center of the face F is the unique point that minimizes��F(x; s) = �Pi2F+x lnxi �Pi2F+s ln si among all the points on F . KKT condi-tions for this optimization problem indicate that there exist vectors y and w suchthat: X�1F+x e = �ATF+x y;S�1F+s e = �GTF+s w;AF+x xF+x = b;GF+s sF+s = Gc;as well as (xF 0x ; sF 0s ) = 0; and (xF+x ; sF+s ) > 0: All but the �rst two conditionsare satis�ed by all points in the relative interior of F . Therefore, it su�ces toprove that any accumulation point also satis�es the �rst two conditions. Since allthe accumulation points are in the relative interior of the face F , xFx+ is boundedaway from zero for all iterates, and the matrix RBxF+x = h IjBxj X�1BxABxANxXNx iis well-de�ned and varies continuously with x. Therefore, �+, the orthogonalprojection matrix into the null space of RBxF+x , is also well-de�ned and a continuousfunction of x. Since �+e! 0, as iterates approach F , �+e = 0 for an accumulationpoint (x; s) on F of our iteration sequence. Therefore, e is in the range space ofRTBxF+x , which, as we have seen in the proof of Lemma 4.3, is the same as the range26



space of XF+x ATF+x . This indicates that X�1F+x e is in the range space of ATF+x , i.e.,there exists a vector y such thatX�1F+x e = �ATF+x y:Similarly, for an accumulation point (x; s) on F of our iteration sequence we havethat �+e = 0, which leads to an analogous conclusion: There exists a vector wsuch that S�1F+s e = �GTF+s w:Therefore, our accumulation points in the relative interior of the face F all satisfythe �rst two equations de�ning the relative analytical center of this face. Sincethis center is unique, there is a single accumulation point of our iteration sequenceand it is the relative analytical center of the face F .5 Quadratic ConvergenceWe will prove a Q-quadratic convergence result for our algorithm in this section.This objective requires a delicate balance in the selection of the step sizes in �-nal iterations of Algorithm 1. Larger steps necessary for quadratic convergencemay not guarantee reduction in the potential function while such reductions arenecessary for polynomial convergence.Recall that �kmax is de�ned to be the largest feasible step size in iterationk. We will choose stepsizes of the form �k = �k�kmax � 1=5 where �k = 1 �� �kXF 0xk+ kSF 0s k� < 1 as given in Algorithm 1. This strategy ensures that moreaggressive steps can be taken as we approach the optimal set while it also keepsus a healthy distance away from the boundary so that the barrier terms in thepotential function do not explode and the function can still be reduced. Our �rstresult in this section indicates that this stepsize selection strategy is consistentwith potential reduction:Lemma 5.1 Let �x and �s be given by (29) and (30). Let �k = �k�kmax with�k = 1�� �kXF 0xk+ kSF 0s k� < 1, and (xk+1; sk+1) = (xk; sk)+�k(�x;�s). Then,��(xk+1; sk+1)� ��(xk; sk) � (�� n) ln �O �kXF 0xk+ kSF 0s k�� :27



Proof:To simplify the notation we let (x+; s+) = (xk+1; sk+1), (x; s) = (xk; sk), and� = �k. From Proposition 2.2,��(x+; s+)� ��(x; s)= � ln (x+)T s+xT s !� nXi=1 ln�1 + ��xixi �� nXi=1 ln�1 + ��sisi �= � ln�1� ��(��1 � �2)�� nXi=1 ln�1 + ��xixi �� nXi=1 ln�1 + ��sisi � :Next, note that from Theorem 4.1 and Lemma 4.5 we have�max = (� � �3 � 1) + O �kXF 0xk+ kSF 0s k�. Recalling the de�nition of � andusing Lemma 4.4, we conclude that��(��1 � �2) = 1�� �kXF 0xk+ kSF 0s k� :From Theorem 4.1 and Lemma 4.5 we also have that1 + ��xixi = � �kXF 0xk+ kSF 0s k� i 2 F 0x , 1 + ��xixi = �(1) i 2 F+x ,1 + ��sisi = � �kXF 0xk+ kSF 0s k� i 2 F 0s , 1 + ��sisi = �(1) i 2 F+s :From the de�nition of the order notation, there exist positive real numbersr and R independent from the current iterate (x; s) such that, any number z =� �kXF 0xk+ kSF 0s k� satis�esr �kXF 0xk+ kSF 0s k� � z � R �kXF 0xk+ kSF 0s k�and any number z = O �kXF 0xk+ kSF 0s k� satis�es z � R �kXF 0xk+ kSF 0s k�. Usingthe asymptotic relations above, we obtain:��(x+; s+)� ��(x; s)� � ln(R �kXF 0xk+ kSF 0s k�)� n ln(r �kXF 0xk+ kSF 0s k�)�O(1)= (�� n) ln(�kXF 0xk+ kSF 0s k�) +O(1)= (�� n) ln �O �kXF 0xk+ kSF 0s k�� :28



Therefore, as kXF 0xk+ kSF 0s k tends to zero, the reduction in the potential functiontends to �1.Next, we observe that with the given stepsize selection strategy the variablesthat converge to zero do so quadratically:Lemma 5.2 Let �x and �s be given by (29) and (30). Let �k = �k�kmax with�k = 1�� �kXF 0xk+ kSF 0s k� < 1, and (xk+1; sk+1) = (xk; sk)+�k(�x;�s). Then,k(xk+1F 0x ; sk+1F 0s )k � C1k(xkF 0x ; skF 0s )k2;where C1 is a constant independent from k.Proof:As in the proof of Lemma 5.1,xk+1i = xki  1 + ��xkixki ! = xki� �kXkF 0xk+ kSkF 0s k� ;for i 2 F 0x , and similarly for sk+1i with i 2 F 0s .Corollary 5.1 Let �x and �s be given by (29) and (30). Let (xk+1; sk+1) =(xk; sk) + �k(�x;�s) with �k = �k�kmax and �k = 1� � �kXF 0xk+ kSF 0s k� < 1. IfF is a vertex, then the sequence (xk; sk) converges to F Q-quadratically.Proof:Let F = (x�; s�). It su�ces to prove that xkF+x = xkBx converges to x�Bx quadrati-cally and likewise for s variables. Note that x�Bx = ABxb and since our iterates arefeasible, xkBx = ABxb�ABxAF 0xxF 0x . Now, the result follows from Lemma 5.2. Theproof with the dual variables is identical.The task that remains is to prove Q-quadratic convergence for the case whenF is not a vertex. As in the corollary above, we will reach this conclusion byshowing that kxkF+x � x�F+x k is bounded by a scalar multiple of kXkF 0xk + kSkF 0s k,and similarly for the dual variables. To prove this result we �rst observe that theF+x components of the search directions generated by Algorithm 1 converge to anegative scalar multiple of the Newton direction for a system of nonlinear equations29



with a nonsingular Jacobian matrix at the solution of the system. More precisely,we will demonstrate that the directionsd�x+ = XF+x �+e; d�s+ = SF+s �+e (86)are Newton directions for a nonlinear system whose solution is the convergencepoint of our algorithm.Let (x�; s�) be the relative analytical center of the face F . Recall the de�nitionsof the index sets Bx, Nx, etc. from Section 4.1. Also recall that �NxBx was de�nedas the matrix satisfying ANx = ABx�NxBx. Below, we will refer to this matrix as �(without the subscripts) for simplicity. Consider the following system:xBx + �xNx = ABxb; (87)�TX�1Bx e�X�1Nxe = 0: (88)We �rst show that x�F+x solves the system above. Recall the KKT conditionsgiven in the proof of Theorem 4.3 that de�ne x�. Premultiplying the equalityAF+x x�F+x = b by ABx we observe that x�F+x satis�es (87). Next, by partitioning theequality X�1F+x e = �ATFTx y we get (X�Bx)�1e = �ATBxy, and (X�Nx)�1e = �ATNxy =��TATBxy, from which it follows that x�F+x also satis�es (88).Next, we observe that the Jacobian of the system (87){(88) is nonsingular atx�F+x . Indeed, the Jacobian can be partitioned into components corresponding toBx and Nx: J(x) = " I ���TX�2Bx X�2Nx #Since x�F+x > 0, both diagonal matrices X�2Bx and X�2Nx are strictly positive at x =x�F+x . If J(x�)[uT ; vT ]T = 0, the �rst block indicates that u = ��v. Substitutingit in the second block we get (�TX�2Bx� + X�2Nx )v = 0, which implies that v = 0since the left-hand-side matrix of this equation is positive de�nite. Now, u = 0also follows and therefore J(x�) is nonsingular.Next, we will observe that the Newton direction for �nding a zero of the system(87){(88) coincides with d�x+ given in (86). Let �xN be the Newton direction forthe system (87){(88) and let �xN = X�1F+x �xN . Then, �xN = " d1d2 # satis�es" XBx �XNx��TX�1Bx X�1Nx # " d1d2 # = � " 0�TX�1Bx e�X�1Nxe # :30



On the other hand, �+e is the orthogonal projection of the vector e into the nullspace of RBxF+x = h I X�1BxABxANxXNx i = h I X�1Bx�XNx i which is the same asthe null space of R := h XBx �XNx i. Now note that �xN is in the null space ofR because of the �rst block equation in the system above. Let y = X�1Bx e�X�1Bxd1and observe that XNx�Ty = e � d2. In other words, RTy = e � �xN , i.e., thevectors �xN and e � �xN are in orthogonal spaces (null space of R and rangespace of RT ) and their sum is e. Therefore, �xN is the projection of the vectore into N (R), which is exactly �+e. So, �xN = XF+x �xN = XF+x �+e = d�x+.Identical arguments can be carried out with s variables also. Thus, we proved:Lemma 5.3 Let F be a face of dimension at least one of the optimal solution setcontaining the convergence point (x�; s�) of Algorithm 1 in its relative interior. Letd�x and d�s be given by (86). These directions are Newton search directions forparticular nonlinear systems which have their solutions at x� and s�, respectively,and have nonsingular Jacobians at these points.Lemma 5.4 Let (x�; s�) be the convergence point of Algorithm 1. If stepsizes inAlgorithm 1 are chosen as in Lemma 5.1, then there exists a positive constant C3such that the inequalitieskxkF+x � x�F+x k � C3�kxkF 0xk+ kskF 0s k�; (89)kskF+s � s�F+s k � C3�kxkF 0xk+ kskF 0s k� (90)are satis�ed in all but a �nite number of iterations.Proof:We will show that if the inequalities above are not satis�ed for a certain C3 then theterm on the left-hand-side of each inequality grows signi�cantly from one iterationto the other. From Lemma 5.3, using the standard theory of Newton updates, wehave that there exist a neighborhood of x� and a scalar 0 < 
 < 1=2 such thatkxkF+x +XkF+x �+e� x�F+x k � 
kxkF+x � x�F+x k: (91)Also observe that,xk+1F+x = xkF+x � �k "� 1�� �3 � 1XkF+x �+e+O �kXkF 0xk+ kSkF 0s k�#= xkF+x �XkF+x �+e+� �kXkF 0xk+ kSkF 0s k� :31



Above, the �rst equality follows from Theorem 4.1 and the second equality followsfrom the fact that �k = (�� �3 � 1) + � �kXkF 0xk+ kSkF 0s k�. Therefore,kxk+1F+x � x�F+x k = kxkF+x �XkF+x �+e� x�F+x k+��kXkF 0x k+ kSkF 0s k�= k2(xkF+x � x�F+x )� (xkF+x +XkF+x �+e� x�F+x )k+� �kXkF 0x k+ kSkF 0s k�� (2� 
)kxkF+x � x�F+x k � C2 �kXkF 0x k+ kSkF 0s k�where C2 is a positive constant and the last inequality uses (91). Let C3 = C2
 .Then, if (89) is violated, we have that kxk+1F+x �x�F+x k � (2�2
)kxkF+x �x�F+x k, where2 � 2
 is a constant greater than 1. Furthermore, as long as the current iterateremains in the neighborhood of x� where (91) holds, all the arguments remaintrue (note that kXkF 0xk + kSkF 0s k decreases to zero quadratically) and the norm ofthe residual xkF+x � x�F+x is multiplied by at least 2 � 2
 in each iteration. Since(x�; s�) is the only accumulation point of Algorithm 1, the iterates cannot leavea neighborhood of (x�; s�) in�nitely many times. Therefore, (89) can be violatedonly �nitely many times. An identical proof works for the second inequality of theLemma.Now, we are ready to prove:Theorem 5.1 Iterates of Algorithm 1 converge Q-quadratically to (x�; s�).Proof:In view of Lemmas 5.4 and 5.2, there exist positive constants C4 and C5 such thatk(xk+1; sk+1)� (x�; s�)k � C4k(xk+1F 0x ; sk+1F 0s )k � C5k(xkF 0x ; skF 0s )k2� C5k(xk; sk)� (x�; s�)k2: (92)
6 ConclusionWe developed a potential-reduction algorithm that converges to optimal solutionsof linear programming problems quadratically. This fast convergence is obtainedeven with degenerate problems and without making any path-following restrictions32



on the iterates. To the best of our knowledge, this is the �rst such result for aprimal-dual interior-point algorithm. Finally, what we have is a Q-order quadraticconvergence result rather than the inferior R-order convergence as Todd anticipatedfor potential-reduction algorithms [8].The only signi�cant assumption we made to achieve the quadratic convergenceresult is the existence (and the availability) of a strictly feasible solution to theprimal-dual pair of problems. Under this assumption, the optimal solution set isbounded, which is often a necessary assumption for the convergence of potential-reduction methods. For any linear programming problem, there is a correspond-ing arti�cial problem, a so-called homogeneous self-dual LP, which has a knownstrictly feasible solution [14]. Furthermore, certain solutions to this arti�cial prob-lem provide either the solution to the original primal-dual pair of problems ordemonstrate that one (or both) of these problems must be infeasible. For ourpotential-reduction algorithm, however, it is not clear that the solutions generatedwill produce such solutions, i.e., to use the notation of [14], it is not clear thatwe will have �� + � � > 0. Indeed, the behavior of potential-reduction methods onthe self-dual homogeneous formulations is not well understood and remains to beinvestigated.One of the main di�culties in developing a complete quadratic convergencetheory for potential-reduction methods is the possibility of having a convergencepoint that is not a vertex. While this possibility exists and cannot be excluded, ourpreliminary computational experiments demonstrated that such situations are rare.In fact, in all but a few specially constructed examples, we observed convergence tovertices of the optimal solution set. This phenomenon is contrary to the behaviorof most interior-point algorithms that converge to the relative analytical center ofthe full optimal face. It may be possible to get more insight into this behaviorby analyzing the existence and convergence of certain trajectories that have theproperty that the tangent to the trajectory at a given point is equal to the searchdirection used by our algorithm. This, also, is a topic for future research.7 Proof of Lemma 4.1Below, positive de�nite and positive semide�nite will be abbreviated as pd andpsd. Using the partition of the matrix AX given in (63), we evaluate the matrix
33



AX2AT :AX2AT = BXB " RBxF+x RTBxF+x +RBxF 0xRTBxF 0x RBxF 0xRTBxF 0xRBxF 0xRTBxF 0x RBxF 0xRTBxF 0x #XBBT= BXB " RBxF+x RTBxF+x +RBxNxRTBxNx RBxNxRTBxNxRBxNxRTBxNx I +RBxNxRTBxNx #XBBTwhere B = ABx[Bx and XB = XB[Bx. Let Z denote the 2� 2 block matrix in themiddle of the right-hand-side expression above. Z can be written asZ = " RBxF+x RTBxF+x 00 I #+ " RBxNxRBxNx # " RBxNxRBxNx #T :To determine the projection matrix into the null space of AX, we will need toevaluate the inverse of AX2AT , and consequently, of Z. Recall the Sherman-Morrison-Woodbury formula:(E + UV T )�1 = E�1 � E�1U �I + V TE�1U��1 V TE�1: (93)Let W = (RBxF+x RTBxF+x )�1 = (I + RBxNxRTBxNx)�1. The inverse exists since theterm inside the parentheses is the sum of the identity matrix and a psd matrix,and therefore is pd. Note also that W itself is pd. Using (93) and letting U =�I +RTBxNxWRBxNx +RTBxNxRBxNx��1, we obtain the following expression for theinverse of the matrix Z:Z�1 = " W 00 I #� " WRBxNxRBxNx #U h RTBxNxW RTBxNx i= " W �WRBxNxURTBxNxW �WRBxNxURTBxNx�RBxNxURTBxNxW I �RBxNxURTBxNx # =: " Z11 Z12ZT12 Z22 # :Let us analyze U �rst. SinceW is pd, RTBxNxWRBxNx is psd. Further, RTBxNxRBxNxis also psd and therefore U�1 and U are pd. Since all eigenvalues of U�1 are atleast one, kUk, the operator norm of U , is at most 1.Now, we are ready to evaluate the orthogonal projection matrix � = I �XAT (AX2AT )�1AX:� = I �XAT (AX2AT )�1AX34



= I � " RTBxF+x 0RTBxF 0x RTBxF 0x #Z�1 " RBxF+x RBxF 0x0 RBxF 0x #= " �F+x F+x �F+x F 0x�F 0xF+x �F 0xF 0x # ;with �F+x F+x = I � RTBxF+x Z11RBxF+x�F+x F 0x = �(RTBxF+x Z11RBxF 0x +RTBxF+x Z12RBxF 0x ) = �TF 0xF+x�F 0xF 0x = I � RTBxF 0xZ11RBxF 0x �RTBxF 0xZ12RBxF 0x�RTBxF 0xZT12RBxF 0x �RTBxF 0xZ22RBxF 0x :We analyze the blocks of the matrix � individually to establish the statementof the lemma. Let us start with the upper left corner. Recalling that Z11 =W �WRBxNxURTBxNxW and W = (RBxF+x RTBxF+x )�1 we have:�F+x F+x = �I � RTBxF+x �RBxF+x RTBxF+x ��1RBxF+x �+RTBxF+x WRBxNxURTBxNxWRBxF+x : (94)The term in the square brackets is the orthogonal projection matrix �+ de�ned atthe end of Section 4.1. Also note that�+ = RTBxF+x �RBxF+x RTBxF+x ��1RBxF+x :De�ne RF+x Nx = " RBxNx0 # ; (95)where the zero matrix is jNxj�jNxj. Then, from (60) we have RBxNx = RBxF+x RF+x Nx.Now, the second term in (94), which we will call ��F+x F+x , can be written as:��F+x F+x = RTBxF+x WRBxNxURTBxNxWRBxF+x = �+RF+x NxURTF+x Nx�+:Since kUk � 1, k�+k = 1, andkRF+x Nxk = kRBxNxk = O(kX�1BxkkXNxk); (96)35



we have k��F+x F+x k = O(kX�1Bxk2kXNxk2): (97)Next, we analyze the o�-diagonal blocks:�F+x F 0x = �(RTBxF+x Z11RBxF 0x +RTBxF+x Z12RBxF 0x )= � �RTBxF+x WRBxF 0x�+ �RTBxF+x WRBxNxURTBxNxWRBxF 0x�+ �RTBxF+x WRBxNxURTBxNxRBxF 0x� : (98)Since RBxF 0x = h 0 RBxNx i and RBxNx = RBxF+x RF+x Nx, we haveRBxF 0x = RBxF+x h 0 RF+x Nx i (99)where the zero matrix is jF+x j � jBxj. Therefore,RTBxF+x WRBxF 0x = RTBxF+x WRBxF+x h 0 RF+x Nx i = �+ h 0 RF+x Nx i ;and therefore, kRTBxF+x WRBxF 0xk = O(kX�1BxkkXNxk). Similarly,RTBxF+x WRBxNxURTBxNxWRBxF 0x = �+RF+x NxURTF+x Nx�+ h 0 RF+x Nx i ;which indicates that kRTBxF+x WRBxNxURTBxNxWRBxF 0xk = O(kX�1Bxk3kXNxk3).The last term on the right hand side of (98) isRTBxF+x WRBxNxURTBxNxRBxF 0x = �+RF+x Nx h URTBxNx URTBxNxRBxNx i :(100)Next, we will bound the two terms in square brackets through a more careful lookat the U matrix. Recall thatU = �I +RTBxNxWRBxNx +RTBxNxRBxNx��1 :Note that RTBxNxWRBxNx = RTF+x NxRTBxF+x WRBxF+x RF+x Nx= RTF+x Nx�+RF+x Nx = RTF+x Nx�2+RF+x Nx:36



The last equality follows from the fact that �+ is a projection matrix. Using theSherman-Morrison-Woodbury formula in (93) (with E = I + RTBxNxRBxNx) andde�ning V = (I +RTBxNxRBxNx)�1, we can write U as follows:U = V � V RTF+x Nx�+ �I + �+RF+x NxV RTF+x Nx�+��1 �+RF+x NxV (101)= V � VO(kX�1Bxk2kXNxk2)V: (102)The second equation above holds because k(I + �+RF+x NxV RTF+x Nx�+)�1k � 1,k�+k = 1, and kRF+x Nxk = O(kX�1BxkkXNxk).Since V RTBxNxRBxNx = I � V , and the pd matrix V is less than or equalto the identity matrix in the L�owner sense, kV RTBxNxRBxNxk � 1. If the sin-gular values of RBxNx are denoted by �i, singular values of the matrix V RTBxNxare �i1+�2i , all of which are between �12 and 12 . Therefore, kV RTBxNxk � 12 , andk URTBxNx URTBxNxRBxNx k = O(1). Combining this observation with (96) and(100), we obtainkRTBxF+x WRBxNxURTBxNxRBxF 0xk = O(kX�1B kkXNxk): (103)Therefore, k�F+x F 0xk = k�F 0xF+x k = O(kX�1BxkkXNxk): (104)Next, we analyze the lower right corner:�F 0xF 0x = I � �RTBxF 0xZ11RBxF 0x +RTBxF 0xZ12RBxF 0x +RTBxF 0xZT12RBxF 0x +RTBxF 0xZ22RBxF 0x�Using (99), we haveRTBxF 0xZ11RBxF 0x = h 0 RF+x Nx iT (RTBxF+x Z11RBxF+x ) h 0 RF+x Nx i ;where the middle term in parentheses is exactly the matrix I � �F+x F+x = O(1).Now, recalling (95) and (96), we havekRTBxF 0xZ11RBxF 0xk = O(kX�1Bxk2kXNxk2): (105)Similarly, RTBxF 0xZ12RBxF 0x = h 0 RF+x Nx iT RTBxF+x Z12RBxF 0x :37



From the analysis of the o�-diagonal blocks we have thatkRTBxF+x Z12RBxF 0xk = O(kX�1BxkkXNxk);and therefore,kRTBxF 0xZ12RBxF 0xk = kRTBxF 0xZT12RBxF 0xk = O(kX�1Bxk2kXNxk2): (106)Finally, using (102) we haveRTBxF 0xZ22RBxF 0x = RTBxF 0x (I �RBxNxURTBxNx)RBxF 0x= RTBxF 0x (I � RBxNxV RTBxNx)RBxF 0x= +RTBxF 0xRBxNxVO(kX�1Bxk2kXNxk2)V RTBxNxRBxF 0x : (107)Note that,I � RBxNxV RTBxNx = I � RBxNx(I +RTBxNxRBxNx)�1RTBxNx= (I +RBxBxRTBxNx)�1 = (RBxF 0xRTBxF 0x )�1:The last two equalities above follow from (93) and (62). Therefore, the matrixRTBxF 0x (I � RBxNxV RTBxNx)RBxF 0x = RTBxF 0x (RBxF 0xRTBxF 0x )�1RBxF 0x = �0is the orthogonal projection matrix de�ned in (65).Recall from the analysis for the o�-diagonal blocks that kV RTBxNxRBxF 0xk � 1.Accordingly, the second term on the right-hand-side of (107) has normO(kX�1Bxk2kXNxk2).Aggregating all the results for di�erent components of the lower right corner, wearrive at the following conclusion:�F 0xF 0x = �0 +O(kX�1Bxk2kXNxk2): (108)To summarize, we have� = " �+ �0 # + " O(kX�1Bxk2kXNxk2) O(kX�1BxkkXNxk)O(kX�1BxkkXNxk) O(kX�1Bxk2kXNxk2) # ; (109)concluding the proof of the �rst portion of the statement of the lemma. (69) isproved identically. 38
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