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Abstract

This research supports recent efforts to provide an energetic ap-
proach to the prediction of stress-strain relations for single crystals
and to give precise formulations of experimentally observed connec-
tions between hardening of single crystals and separation of active slip
bands. Non—classical, structured deformations in the form of two-level
shears permit the formulation of new measures of the active slip-band
separation and of the number of lattice cells traversed during slip. A
formula is obtained for the Helmholtz free energy per unit volume as
a function of the shear without slip, the shear due to slip, and the
relative separation of active slip bands in a single crystal.
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I Experimental Background

The connection between the behavior of single crystals at small length
scales and the macroscopic response of a crystal has been the subject of
a multitude of experimental studies. Here, we briefly collect experimental
evidence that points to a connection between hardening behavior of single
crystals and changes in the separation of active slip bands. Although the
relation between the structure and separation of both slip bands and of slip
lines, on the one hand, and the strain hardening of crystals, on the other
hand, is today not well understood (Kubin, 1993, pp. 145-146), the exis-
tence of such a relation was already well established by the year 1950 (Hill,
1950, p. 6). Experimental evidence is cited in Barrett (1952), p. 349 for two
basic phenomena: (i) in crystals that deform without appreciable hardening,
such as lead, cadmium, and mercury, further deformation due to slip contin-
ues on existing slip lines, and (ii) in crystals that deform with appreciable
hardening, such as aluminium, further deformation due to slip entails the
formation of new slip lines (Crussard, 1945, p. 291; Brown, 1952, p. 468).
Moreover, in aluminium crystals, a significant number of active slip lines be-
come inactive as deformation progresses (Crussard, 1945, p. 290). In spite of
the fact that the average separation of all slip lines, i.e., active and inactive
together, decreases with deformation in aluminium crystals (Crussard, 1945,
p. 291), there is evidence that the separation of active slip bands increases
with deformation in the f.c.c. alloy CuzAu (Salama, et al, 1971, p. 402).

The reader will notice that the experimental evidence cited above per-



tains in part to the distribution of slip lines and in part to the distribution of
slip bands. Although some authors carefully maintain a distinction between
slip lines and slip bands (Neuh#user, 1983, p. 323), others appear to use
these terms interchangeably. In this paper, we will model active slip bands
as surfaces in the crystal between which deformation procedes smoothly and
across which tangential discontinuities in displacement occur. This concep-
tion of active slip bands agrees with the descriptions in Hill, (1950), p. 6,
and in Brown, (1952), pp. 434, 436.

II Geometrical measures of slip-band separa-
tion and of slip
The geometrical framework that we employ here consists of a specific
class of non-classical, structured deformations (Del Piero & Owen, 1993)
called “two-level shears” (Choksi, et al, 1998). A two-level shear is specified

by giving two real numbers p and v, along with the following two mappings

gand G :
9(w,y,2) : = (z+uy,y,2)
(1)
1 v 0
G(z,y,2) : =1 0 1 0
0 0 1

=

The mapping g, called the transplacement for the two-level shear, is a simple
shear of the crystal relative to a suitably chosen cartesian coordinate system,
and the mapping G, called the deformation without slip, describes the de-

formation away from slip bands in the crystal. The Approximation Theorem
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(Del Piero & Owen, 1993) and the integral-gradient formula for structured
deformations (Del Piero & Owen, 1995) imply that there exists a sequence

n +— f, of piecewise smooth mappings such that

9(z,9,2) = lim_fu(z,y,2) (2)
G(z,y,2) = lirré lim (vol B(z,y, z;7)) ™" / Vf,dV (3)
r—0n—00
B(z,y,2;r)
and
M(z,y,2) = li_r% li_)m (vol B(z,y, z;7))~" / [fn]®@vdA, (4)
D(fn)NB(z,y,2;7)
where
0 pu—v O
M(z,y,z2) :=Vyg(z,y,2) — G(z,y,2) = | O 0 0 (5)
0 0 0

In eqns (3) and (4), B(z,y, z;r) is the ball of radius r centered at (z,y, 2),
V fn is the usual gradient computed away from any discontinuities of f,, [fy]
is the jump in the mapping f,, I'(f,) is the set of surfaces on which f, is
discontinuous, and v is the unit normal to I'(f,). Thus, G(z,y, z) represents
a volume average of deformation gradients computed away from jump sites,
and M(z,y,z) = Vg(z,y,z) — G(x,y, z) measures jumps in deformation per
unit volume. The sequence n +— f,, is called a determining sequence for the
given two-level shear. The specific example of a determining sequence given
in Choksi, et al, (1998), eqn 21, shows that I'(f,,) can be taken to be a family

of planes, each with normal v in the y direction, [f,] can be taken in the



z-direction, and V f,, has the same form as G-

1 (Vfu)ay O
Vi=10 1 0. (6)
o 0 1

We interpret each plane in the family I'(f,) as an individual, active slip
band in the crystal and each tangential jump [f,] as the slip experienced by
the crystal across that slip band. This interpretation and eqns (1), (3)-(5)
permit us to call the number «y the shear without slip and the number y—-y the
shear due to slip. Moreover, we may view each piecewise smooth mapping f,
as a mesolevel view of smooth lattice deformations and discontinuous slips
associated with the two-level shear.

We consider henceforth only determining sequences n +— f, such that
['(f,) can be taken to be a family of planes, each with normal v in the y di-
rection, and [f,] points in the z-direction. For these determining sequences,

eqn (5) can be written in the scalar form

p—y=lim lim s,(z,y,z2;7), (7)

r—0n—o00

where the dimensionless quantity

su(T,y, 2;7) == (vol B(z,y, z;7)) / [fnlz dA (8)

L(fn)NB(x,y,2;7)
is the amount of tangential jump per unit volume within the ball B(z,y, z;7)
and where [f,], is the z-component of the jump [f,]. Because the num-
bers p and v are part of the specification of the two-level shear, the limit

lim lim s,(z,y,2;r) is independent of the choice of determining sequence
r—0n—o0



for the given two-level shear, even though each term s,(z,v,2;r) need not
be.

Analogues for the shear without slip v of equs (7) and (8) are obtained
from eqns (3) and (6):

v =1lim lim ,(z,y,z7), 9)

r—0n—o0

where the dimensionless quantity

Yo(z,y, 2;7) == (vol B(z,y, z;7)) " / (Vfn)zy dV (10)

B(z,y,z;r)
is the average lattice shear within the ball B(z,y, z;7). Again, the limit y =
1i_r)r(1] nh_)ncr)lo Yn(x,y, z;7) is independent of the choice of determining sequence,
whereas each term 7, (x,y, z;7) need not be.

It is useful to specify for each index n a level of magnification in terms
of which we may view the deformation f, for various determining sequences.
We employ as a measure of this magnification a positive number ¢,, the
cell-size of the crystal lattice in the level of magnification for the index n.

We now fix our attention not only on a given two-level shear but also on

a given sequence n — ¢,. For each determining sequence n — f,, we define a

sequence (r,n) — d,(z,y, z;r) of positive numbers through the formula

1 vol B(x,y, z;r)

cn area(T(f,) N B(z,y, z;7)) (11)

dn(z,y,2;7) =

The second fraction in the right-hand side of this formula is the ratio of the

volume of the given ball to the total area of active slip bands within that



ball and, thus, measures the average separation of active slip bands within
the ball. Consequently, the dimensionless number d,(z,y, z; ) measures the
average separation of active slip bands within the ball, relative to the cell-
size of the crystal lattice, or, more briefly, the average relative separation of

active slip bands for the index n. By eqns (11) and (8) we may write

jn(x,y,Z;T) : :dn(xayaz;,r) sn(m,y,Z;T‘)
[ (fala fen)dA
D(fn)NB(z,y,2;7)

area(T'(f,) N B(z,y, z;7))’

(12)

so that the product j,(z,y,z;7) of the average relative separation of active
slip bands within the ball and the tangential jump per unit volume is the
average with respect to area of non-dimensional tangential jumps. Because
the non-dimensionalization of the jump in eqn (12) is taken with respect
to the cell-size of the crystal lattice, j,(z,y, z;7) may be called the average
(possibly fractional) number of cells spanned by the tangential jumps for the
indez n within the given ball.

As we pointed out in eqn (7), the tangential jump per unit volume
sn(,y, z;7) approaches the shear due to slip 4 —y as n — oo and r — 0,
no matter what the choice of determining sequence. However, the condition
that n — f, is a determining sequence for the two-level shear does not, in
itself, guarantee that the relative separation of active slip bands d,(z,y, z;7)

has a limit. We now assume that both the the average separation of active

slip bands within the ball Mea&o(lfi()ﬁ%zz;”) and the cell-size of the crystal

lattice ¢, tend to zero in such a way that d,(z,y,z;r) does have a limit
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d(z,y, z), which we call the relative separation of active slip bands for the

given determining sequence. Eqn (12) now tells us that j,(z,y, z;r) has the

lim lim j, (2,9, 2;7) = (1 —7)d(z, 9, 2), (13)

r—0n—oo

so that the product (u—)d(z, y, z) represents an average (possibly fractional)
number of cells spanned by the tangential jumps for the given determining
sequence. 'Thus, while y — v measures the amount of shear due to slip,
the product (u — v)d(z,y,2) measures the average number of lattice cells

traversed during the shear.

IIT Helmholtz free energy

Our goal in this section is to obtain a formula for the Helmholtz free en-
ergy associated with a two-level shear. We follow the idea proposed and ana-
lyzed in Choksi & Fonseca (1997) for determining the form of the Helmholtz
free energy of arbitrary structured deformations, although the steps in our
implementation of this idea differ in significant ways from those in that anal-
ysis. We begin with a two-level shear, a sequence n — ¢, of cell-sizes, and
sequences n — d,(z,y,z;7) and n — s,(x,y, z;7) associated with a deter-
mining sequence n — f, satisfying the assumptions in Section II. For each
index n and positive number r we wish to assign a number that measures the
Helmholtz free energy per unit volume of the crystal undergoing the piece-
wise smooth deformation f,. We assume that this number is a sum of two

other numbers, the first being the free energy density due to lattice distortion
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fHd

n and the second being the free energy density due to tangential jumps

across slip bands H;, . Because v, (x,y, z;7) given in eqn (10) measures the

deformation of the lattice away from slip bands, we assume

My, = @(l@,y, 7)) (14)

with ¢ a continuous convex constitutive function determined by the slip-free
portions of the crystal.

The Helmholtz free energy H, , per unit volume due to tangential jumps
across slip bands should reflect the fact that a single tangential jump of
amount [f,], = kc,, with k an integer and ¢, the cell-size at magnification
n, cannot be detected geometrically and, hence, should not change the free
energy. By eqn (12), such a jump gives the value j,(z,y, z;7) = k, i.e., the
number of cells spanned by this jump is &, so that #;, . should be unchanged

in jumps j,(z,y, z;7) = k. This leads us to assume

%'fz,r = &(]n(‘r:y: Z;T)) (15)

where @E is continuous and periodic of period 1. The assumed oscillatory
nature of the constitutive function ¢ reflects the tacit physical assumption
that mesolevel control of relative tangential lattice displacements across a slip
band would result in recoverable work being performed without dissipation.
We note, of course, that corresponding control at the macrolevel can result
in dissipation (Choksi, et al 1998; Deseri & Owen, 1998).

Our assumptions on the determining sequence n — f,, and the continuity

of the constitutive functions ¢ and 1) imply that the sum HE, + H, of the
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volume densities of free energy due to lattice distortion and due to tangential
jumps across slip bands has a limit as n tends to infinity and as r tends to

Zero :

H,y,z) : =lim lim (ML, +H3,)

r—0n—o0

= g(lim lim (2,9, % 7)) + P(lim lm ja(z,y, 2 7))

r—0n—oo0 r—0n—oo

= 3(7) +¥ ((n—7)d(z,y,2)). (16)

The number H(z,y, z) is the Helmholtz free energy per unit volume at the
point (x,y,z), and this relation tells us that the H(z,y, z) is determined
by the shear without slip 7y, the shear due to slip # — 7, and the relative
separation of active slip bands d(z, v, z).

We emphasize that v and u— 7 depend only on the given two-level shear,
whereas d(z,y, z) depends also on the given determining sequence n — f,
for the two-level shear, so that eqn (16) tells us that the free energy density
need not be determined by the two-level shear alone. In spite of the general
lack of experimental observations on the separation of active slip bands in
single crystals, the reference Salama, et al, (1971) cited in Section I suggests
that relative separation d,(z,y, z;r) may be regarded in a particular crystal
as an increasing function of the amount of tangential jump per unit volume
sn(z,y, 2;7):

dn(z,y, 2;1) = cz(sn(:r, Y, 2;7)) - (17)

If the constitutive function d is continuous, then eqn (7) permits us to pass
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to the limit in both sides of this relation to obtain

d(.’]?, Y, Z) = CZ(#’ - 7)’ (18)

and eqns (16) and (17) yield the following constitutive formula for the free

energy density H(z,y,z) :

H(w,y,2) = $(0) + 0 (= )d(n—7)). (19)

Of course, this relation tells us not only that the Helmholtz free energy per
unit volume is determined by the two-level shear alone, but also that this
free energy density is constant throughout a crystal that undergoes the two-
level shear. The formula eqn (19), together with the assumption that the
derivative of the function y—~ — (—~)d(i — ) is increasing, is the basis
for a model of hardening of single crystals (Deseri & Owen, 1998) that is
consistent with observed phenomena such as the Portevin-le Chatelier effect
and the existence of a critical resolved shear stress.

Suppose now that a crystal has the property that the separation of active

slip bands is independent of deformation. We may then take d to be a positive

constant dy, and eqn (19) for H(z,y, z) becomes

H(z,y,2) = (7) + ¢ (1= 7)do) - (20)

In this case, the free energy density due to tangential jumps across slip bands
is a periodic function of the shear due to slip y—-y, with period % . According
to Hill (1950), dy is of the order 10* in many crystals, so that the period of

the function g — v — 9 ((u — 7)do) is of the order 10~* (Choksi, et al,
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1998). Eqn (20) together with smoothness assumptions on @ and on ¢ is the
basis of a model of the response of single crystals (Choksi, et al, 1998) that is
consistent with the observed yielding, hysteresis, and dissipation in crystals

that do not appreciably harden.
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