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Abstract
A lower semicontinuity and relaxation result with respect to weak-* convergence of measures
is derived for functionals of the form

pe M@y > [ for@)des [ 5 (dm )dw(x),

where admissible sequences {yn} are such that {Au,} converges to zero strongly in W %(Q)
and A is a partial differential operator with constant rank. The integrand f has linear growth
and L°°-bounds from below are not assumed.

1 Introduction

In this work we start by deriving a lower semicontinuity result with respect to weak-* convergence of
A-free measures for the functional

0= [ wnyae s [ 7= (G5) duwl, e meosr), (1)
where ) is an open bounded subset of RY, M (Q;R9) stands for the set of finite R%valued Radon
measures over , p = p*LY + p® is the Radon-Nikodym decomposition of p with respect to the
Lebesgue measure £V, Here and in what follows, the integrand f : R? — R is assumed to be A-
quasiconvex (see Section 2 for other notations and preliminary definitions), where A is a linear first
order partial differential operator of the form

AW e MM*4R), M €N, (1.2)

N
A= Z
i=1

that we assume throughout to satisfy Murat’s condition of constant rank (see Murat [15] and Fonseca
& Miiller [10]) i.e., there exists ¢ € N such that

N
rank (Z A(i)@) =c forall £=(&,...6x) eSSV

In addition we assume f to be Lipschitz continuous and we remark that this condition implies f to
satisfy a linear growth condition at infinity of the type

[f(v)] < K(1+[v]) (1.3)

for all v € R? and for some K > 0. As usual (see Remark 3.1) we denote by f> the recession function
of f, which for our problem is defined as

o) = limsup@. (1.4)

t—o0 t



As already proved by Fonseca & Miiller [10] A-quasiconvexity with respect to the last variable
turns out to be a necessary and sufficient condition for the lower semicontinuity of

(u,v) = [ flz,u(z),v(z))de
Q
for positive normal integrands f with linear growth among sequences (u,,v,) such that u, — u in
measure, v, — v in L' and Awv, = 0. In Fonseca, Leoni & Miiller [9] this result was partially extended

by considering weak-* convergence in the sense of measures (in the variable v). Precisely the authors
considered a funtional of the form

v—>/9f(ar,v(x))dx

and, in particular, it was proved that

/Qf (z,p%(x)) dx < lim [ f(x,v,(x))dx (1.5)

n— oo Q

for any sequence v,, C L'(€;R%) Nker A and such that v,, — p in the sense of measures, under the

assumptions that f is a Borel measurable positive function with linear growth, Lipschitz continuous
and A-quasiconvex in the last variable, and satisfying an appropriate continuity condition on the first
variable (see Theorem 1.4 in [9]). Note that in (1.5) the term p® has not been considered.

Here we extend this last result for a larger class of integrands where L°°-bounds from below are
not assumed and to functionals taking into account the singular part of the limit measure y. Namely,
we prove the following theorem.

Theorem 1.1. Let Q@ C RN be a bounded open set and let f : Rdiﬁ R be A-quasiconver and
Lipschitz continuous. Let {11, € M(Q;R?) be such that p, = € M(QRY), A, € Wi 9(Q;RM),

—1,q oM J—
w, ﬁ;R )O and |pn| = A € M(Q) with A(0Q) = 0. Then

loc

1<q<%,Aun

F(p) < liminf F(un,) (1.6)

n— 00

where F is the functional in (1.1) with f*° defined by (1.4).

Note that lower semicontinuity may fail if A(02) # 0 (see Example 3.3).

The proof of Theorem 1.1 is reduced to the case of sequences of C'*°-functions by a regularization
argument and an upper semicontinuous result based on Reshetnyak Continuity Theorem (see Section
3 and Proposition 3.2). To show Proposition 3.2 with a regular sequence of functions {u,} we start,
following ideas of Kristensen & Rindler [13], by estimating from below the limit of the sequence
of local energies A\,(A) := [, f(u,)dz. Contrary to the case for positive integrands, this step is
essential to write the limit energy of A,, A, exclusively in terms of pu. The result then follows from
pointwise estimates on the Radon-Nikodym Derivatives of A obtained by the usual blow-up argument
(introduced in Fonseca & Miiller [11]). The main difficulty here arises in the treatment of the singular
part % since we do not know how to characterize the blow-up limit. This difficulty is overcomed
by an appropriate average process that allows us to get the estimate for this singular part.

The motivation for this work relies on a characterization of Young measures generated by uniformly
bounded and A-free sequences of measures through the duality with an appropriate set of functions
with linear growth (work in progress).

In the particular case where p = Du for w € BV (i.e. A = curl) Theorem 1.1 has been derived
by Kristensen & Rindler [13]. In this context the notion of A-quasiconvexity reduces to that of
quasiconvexity (which implies Lipchitz continuity).



The second objective of the present paper is to give a relaxation result for the functional (1.1) in
the context of A-quasiconvexity. Namely, in the next theorem we show that the functional G defined
by
Wige * (RM)

— 0,

n— 00 loc

G(p) ::inf{ liminf F(pin) : fin — py Apn € W DU RM), Apy
lftn] = A with A(OQ) = 0}.

admits an integral representation.

Theorem 1.2. Let 2 C RY be a bounded open set and let f : R* — R be Lipschitz continuous. Then
for p € M(Q;RY) NkerA such that |u|(02) = 0 we have that

6n) = [ Quftu@) de+ [ (@an™ () dl

where Q4 f denotes the quasiconvex envelope of f and (QAf)OO denotes its recession function.

In the proof of Theorem 1.2 the lower bound is a immediate consequence of Theorem 1.1, while
the upper bound is based on a regularization procedure together with an approximation by piecewise
constant functions, that follows naturally from the definition of A-quasiconvexity.

We finish this introduction by referring to Braides, Fonseca & Leoni [6] for other relaxation results
in the context of A-quasiconvexity (for p > 1) and to Kristensen & Rindler [13] for relaxation for
signed functionals in the context of gradients (i.e, as mentioned before p = Du for some u € BV).

The overall plan of this work in the ensuing sections will be as follows: Section 2 collects the main
definitions and auxiliary results used in the proof of Theorem 1.1 that can be found in Section 3. In
Section 4 we present the proof of Theorem 1.2.

2 Preliminary results

In this section we recall the main results used in our analysis. We start by fixing some notations.

2.1 General Notations

Throughout the text we will use the following notations:

- QC RY, N > 1, will denote an open bounded set;

- LN and HN-! denote, respectively, the N-dimensional Lebesgue measure and the (N — 1)-
dimensional Hausdorff measure in RY;

- SN=1 stands for the unit sphere in RY;

- @ denotes the open unit cube centered at the origin with one side orthogonal to ep, where ey
denotes the N*'-element of the canonical basis of RY;

- Q(z,0) denotes the open cube centered at x with side length § > 0 and with one side orthogonal
to en;

- B stands for the unit open ball centered at the origin;
- B(z,9) denotes the ball centered at x with radius § > 0;

- MM*4(R) stand for the set of M x d real matrices;



- C22.(Q;RY) is the space of all Q-periodic functions in C*°(RY; R%);
- L (Q; R?) is the space of all Q-periodic functions in LI (RN;R9);

loc

- D'(Q2; RM) denotes the space of distributions in Q with values in RM .

C represents a generic positive constant, which may vary from expression to expression;
- lim:= lim lim .

n,m n—o0 MmMm—oo

2.2 Measure Theory

In this section we recall some notations and well known results in Measure Theory (see e.g Ambrosio,
Fusco & Pallara [5], Evans & Gariepy [12] and Fonseca & Leoni [8], as well as the bibliography therein).

Let X be a locally compact metric space and let C.(X;R%), d > 1, denote the set of continuous
functions with compact support on X. We denote by Cy(X;R?) the completion of C.(X;R?) with
respect to the supremum norm. Let B(X) be the Borel o-algebra of X. By the Riesz-Representation
Theorem the dual of the Banach space Co(X;R?), denoted by M(X;R?), is the space of finite R%-
valued Radon measures p : B(X) — R? under the pairing

d
<u7so>:=/ @duEZ/ i dp;
X — Jx

where ¢ = (1,...,04) and = (1, ..., tq). The space M(X;R?) will be endowed with the weak*-
topology deriving from this duality. In particular a sequence {j,} C M(X;R9) is said to weak*-
converge to u € M(X;R?) (indicated by p, = u) if for all p € Co(X;R?)

lim god,un:/ pdu.
X X

n—oo

If d = 1 we write by simplicity M(X) and we denote by M™(X) its subset of positive measures.
Given u € M(X;R?) let |u| denote its total variation and let supp u denote its support.
The following result can be found in Fonseca & Leoni [8, Corollary 1.204].

Proposition 2.1. Let p, € M(X) such that p, —p in M(X) and |p,| v in M(X). fAcC X
is open, A compact and v(0A) = 0 then
fin(4) = 1(A).

We recall that a measure p is said to be absolutely continuous with respect to a positive measure v,
written p << v, if for every E € B(X) the following implication holds:

v(E)=0 = pu(E)=0.

Two positive measures p and v are said to be mutually singular, written p L v, if there exists F € B(X)
such that ¥(E) =0 and u(X \ E) = 0. For general vector-valued measures p and v we say that p 1 v
i [pa] L [v].

Theorem 2.2 (Lebesgue-Radon-Nikodym Theorem). Let p € M (X) and v € M(X;R?). Then
(i) there exists two R¥-valued measures v, and vy such that
V=V, + s (2.1)

with v, << p and vs L p. Moreover, the decomposition (2.1) is unique, that is, if v = Uy + Us
for some measures Uy, Vs, with U, << p and vs L p, then v, = U, and vy = Uy;



(ii) there is a p-measurable function u € L'(Q;R?) such that

n(E) = [ ud

for every E € B(QY). The function u is unique up to a set of u measure zero.

The decomposition v = v, + v is called the Lebesgue decomposition of v with respect to u (see
[8, Theorem 1.115]) and the function w is called the Radon-Nikodgm derivative of v with respect to pu,
denoted by u = dv/du (see [8, Theorem 1.101]).

The next result is a strong form of Besicovitch derivation Theorem due to Ambrosio and Dal Maso
[4] (see also [5, Theorem 2.22 and Theorem 5.52] or [8, Theorem 1.155]).

Theorem 2.3. Let p € MT(Q) and v € M(Q;R%). Then there exists a Borel set N C ) with
w(N) =0 such that for every x € (supp pu)\N

dv  dv, y V((x +eD)N Q)

' x) =

du % u((z + eD) N Q) €R

and
dvg

dp

L vs((z +eD)N Q) B
(x)—elgr(l) p((z +eD) N Q) =0

where D is any bounded, convezx, open set D containing the origin (the exceptional set N is independent
of the choice of D).

In the sequel we denote by W ~14(Q;R?) the dual space of Wol’q/(Q;Rd) where ¢', the conjugate

exponent of g, is given by the relation % + % = 1. We finish this part by recalling that M (2;R?) is

compactly imbeded in W~54(Q;R?), 1 < g < %, since Wol’q/(Q;Rd) cC Cy(Q) for ¢’ > N.

2.3 A corollary of Reshetnyak’s Theorem

The objective of this part is to present a corollary of Reshetnyak Continuity Theorem useful for our
main result in Section 3.

Definition 2.4. (The space E(£;R%)) Let E(S;RY) denote the space of continuous functions f :
Q x R4 = R such that the mapping

(@) + (1= leDf (o S ) v g€ B (22

can be extended to a continuous function to the closure (2 x B.

The recession function of an element f of E(Q;R?) is the continuous extension of (2.2) to the
boundary of €2 x B. Namely we have the following definition.

Definition 2.5. (Recession function) Let f be a function in E(Q;R?). Then recession function of f
is defined by

o= gm IO (2.3)
£ — £

t — oo

’

for all (z,£) € Q x B.



The next lemma is an approximation result by functions in E(Q;R%) and is due to Alibert and
Bouchitté ([3, Lemma 2.3]).

Lemma 2.6. Let f: Q x R? — R be a lower semicontinuous function such that

f(@,8) = =C(1+[¢]).

Then, there exists an nondecreasing sequence { fr} C E(;R?) such that

supy fi (2, &) = f(2,€) and supy fi*(z,8) = hy(z, )

where

hy(z,§) == liminf

£ =€

t — oo

f@', )
REn),

The version of Reshetnyak’s Continuity Theorem we present here can be found in [13, Theorem 5]
Theorem 2.7. (Reshetnyak’s Continuity Theorem) Let f € E(Q;R?) and let u, pu, € M(;RY) be
such that p, — pu in MR and (1,)(Q) — (u)(Q), where

Wy =1+ PN + 0%, v=vLY +1° e M(Q;RY).
Then

lim () = (1)

n—oo

where

F(v) ::/Qf(ac,ya(ac))der/Qfoo <x,dc|lzzl(x)> dlv®|, ve M(QRY). (2.4)

As a corollary of Lemma 2.6 and Theorem 2.7 we derive an upper semicontinuity result useful in
the proof of our main result Theorem 1.1.

Corollary 2.8. Let f: Q x RY = R be a continuous function such that
If(x,6)| < CA+|€]), forallx €Q, all £ €RY, and some C > 0.

Let pi, pin, € M(S;RY) be such that p, — p in M RY) and (1,)(Q) — (u)(Q). Then

F() > limsup F(p, ) (2.5)

n—oo

where F is the functional defined in (2.4) and where the recession function of f is defined as follows

foo(xug) = lim5up M
¢ ::

t — oo

Proof. By Lemma 2.6 we can find a nondecreasing sequence of continuous functions f;, € E(Q;R?),
h € N, such that for all (z,&) € Q x R?

sup fu(z,§) = —f(2,§) and Zlégf;?o(w,é“) = hy(x, ) = =7 (2, ).

heN



For each h € N we have that

limsup F(p,) = —liminf{—F(u,)}

n—o00 n—00

-t | [ s senass [ g ( ) ) dis|
_ [/th(x,ua(x d:v+/fh ( i S|( )) dlp® @ (2.6)

by Theorem 2.7. Taking the infimum over h in (2.6), inequality (2.5) follows by the Monotone
Convergence Theorem.

IA

O

2.4 A-quasiconvexity

We recall here the notion of A-quasiconvexity introduced by Dacorogna [7] and further devoloped by
Fonseca & Miiller [10], as well as some of its main properties.

Let A: D (4 R%) — D (Q;RM) be the first order linear differential operator defined in (1.2).

Definition 2.9. (A-quasiconver function) A locally bounded Borel function f :R? — R is said to be

A-quasiconvez if
W< [ o+ de

Jor all v € RY and for all w € C3%,(Q;R?) such that Aw =0 in RN with fQ x)dx = 0.

Remark 2.10. If f has g-growth, i.e. |f(v)] < C(1 + |[v]?) for all v € R?, then the space of test

functions C52,(Q;R?) in Definition 2.9 can be replaced by Lg,,.(Q,R?) (see Remark 3.3.2 in [10]).

Definition 2.11. (A-quasiconver envelope) Let f : R? — R be a continuous function. We define the
A-quasiconvez envelope of f, Qaf : R* = RU {—occ}, as

Qaf(v) :=inf {/ fo+w)dr: we ngr(Q;Rd) such that Aw =0 in RY and /
Q Q

w(z) de = 0} .
Remark 2.12. Let f: R? — R be a continuous function.

i) If f has linear growth at infinity and Q4 f(0) > —oco then Q4f(v) is finite for all v € R In
addition Q4 f has also linear growth at infinity.

ii) If f is Lipschitz continuous then Q4 f is also Lipschitz continuous.

The next lemma is an adapted version of Lemma 4 in Kristensen & Rindler [13] for .A-quasiconvex
envelopes.

Lemma 2.13. Let f : R — R be a continuous function with linear growth at infinity such that
Q4f(0) > —oco. Given v > 0 define f,(v) := f(v) +y|v| for v € RL Then Qaf,(v) L Qaf(v) and
(Qafy)® ) L (Qaf)>®(v) pointwise in v as v — 0.

The following proposition can be found in [10, Lemma 2.14].

Proposition 2.14. Given q > 1, there exists a linear bounded operator P : L., (Q; RY) — L. (Q; R%)
such that A(Pu) = 0. Moreover we have the following estimate

lu = Pull s < CllAully -1

Jor every u € L2, (Q; RY) with fQ u=0.



The following lower semicontinuity result is used in the proof of Theorem 1.1.
Lemma 2.15. Let f : R? — R be a A-quasiconvexr and Lipschitz continuous function. Let a E@d
and {u,} C L9, (Q;R?) be a sequence such that u, — alV in M(Q;R?) and |u,| = A in MT(Q),

per

with A(0Q) = 0, and Au,, — 0 in W=H4(Q; RM) for some 1 < g < i~. Then

n—oQ

liminf/Qf(un) dz > f(a).

Proof. Choose ¢, € C(Q;[0,1]) satisfying the condition ¢, = 1 on Q(0;1— 1) and define
{wm,n} C Lger(Q;Rd) by Wm.n = @m(un — a). Writting

A(wm,n) = (Apm) (un — a) + pmAuy,
we can conclude that

W I(QRY)

lim Wi n(x)dr =0 and AW 0 (2.7)

n—-+o0o Q n— o0

since u, — a in M(Q;R?) implies that u, — a in W~19(Q; RM). Define now the sequence {z,, ,} C

L. (Q;RY) by
Zmmn = P (wm,n - / Wm,n dl‘) .
Q

Then, by Lipschitz continuity, .A-quasiconvexity (see Remark 2.10) and Proposition 2.14 we have that

flup)de = flup —a+a)dx
Q Q

> /f(wm’n—l—a)dx—L/|1—<pm||un—a| dx
Q Q
> /f(wm,n—/wm7n+a> dx—L/|1—gpmHun—a|dx
Q Q Q
_L‘/ Wm,n dl“
Q
> /f(zm,n—l—a)—L/ 11— omllun — al dx—L’/wm’nda:‘
Q Q Q
—L/ ‘wm,n—/ Wi n AT — 2Zm n| dx
Q Q
> f(a)—L/ 11— om|u, — al d:c—L’/wmynd:c‘
Q Q

—CL|| Al w—1.0.

Taking first the limit as n — oo and using the definition of w,, ,, and (2.7), we have

liminf [ f(u,)dz > f(a)— LA (Q\Q (O’ 1- 7}1))

o (1-(1- 1))



The result now follows letting m — oo since by hypothesis A(0Q) = 0. O

Remark 2.16. Lemma 2.15 can also be applied to any cube P C RYN.

2.5 Regularization of measures

The aim of this part is to recall the definition of the regularization of a measure by means of its
convolution with a standard mollifier as well as to gather its main properties.

Let p € C° (RN) with supp p C B and fRN p(z) dz = 1. For every € > 0 let us define the mollifier

pe () == gin (g) , zeRV. (2.8)

Note that suppp. C B(0,¢). Given p € M (2;R?) we may think p as an element of M (RY;R?)
with support contained in Q. We define u. : RV — R? by

%m:wmmzk%mmw@vmw (2.9)

and for every Borel set E C Q2 we denote
B.(E) :={z ¢ RN : dist (2, E) < ¢}.

Proposition 2.17. Let p € M (ﬁ; Rd) and ue be given as in (2.9). Then the following statements
hold:

(i) The function u. € C* (RV;R?) and suppu. C B-(Q). Moreover D*(pu x p.) = D®u * p. for
a € NN and the inequality

[ I pel) de < 1 Bo(2)) (2.10)
holds whenever E C ) is a Borel set.
(i) The measures p. = u-LY and |p.| weak™- converge in RN to p and |p|, respectively, as ¢ — 0.
(i) If |p](02) = 0 then (ue)(2) — (u)(Q) ase — 0.

Wb (RM
(i) If Ap € ngl,q(Q;RM)’ 1< ¢ < oo, then Au,, IOC_(> )Au-

¢ n— o0
Proof. The assertions (i)-(ii) follow Theorem 2.2 in Ambrosio & Fusco & Pallara [5].
Proof of (iii). Let fi:= (u, LN). As fi % p. = i, we have
limin |7+ 2| (©) > |2l(5).
On the other hand as |fi * p.| = |f1| and |u|(99) = 0 we have that
lim sup 7 pe] () < i sup |7 # o (@) < 7I(@) = ().
Now the result follows from the equalities (u:)(Q) = | * p-|(£2) and (u)(Q) = |4](92).
Proof of (iv). We have that Au,, = Au * pe,, . Given U CC Q let us see that

w—byUuRrM
Au,, L> )A,u.

n—oo

Let V with U cC V cC Q. As Ay € W—H4(V;RM) there exist T; € LY(V;RM), i = 0,..., N, such
that

N
,A,u:To-i-ZaTi

Ox;
i=1 "



(see Adams [1]). Given ¢ € C°(U;RM)

oT; N oot
(Aup — Ap, ) = <Pen * <T0 +D ax.> - (TO 2 8x~)’¢>

i=1

N
Iy
= € T_T7 - e Ti_T‘iai
(e, * To — To, ¥) § <Pn* 6a:,»>

and consequently, by Holder inequality
N
‘ <-Aun - A,U, 90> | < Z Hﬂsn * le - 711'||L‘1(U;]R1V[) ||S0||W1,q’ (U;RM)" (211)
i=0

By density (2.11) holds for any ¢ € Wol’q (U;RM) and then as

N
Z lpe, * Ti = Till Lowimry —2 0
i=0
—1,q M
we conclude that Au, woR )Au.

n—oo

3 Lower semicontinuity theorem

The aim of this section is to prove Theorem 1.1. Namely, given {1, } € M(€;R%) such that s, — p

in M(QRY), Au, € Wi RM), Ap, Wie MR 6 and lftn] = A in M(Q) with A(Q) = 0

loc
then

F(p) < liminf F(un,) (3.1)

n—0o0

where F is the functional defined in (1.1), that is

:/Qf(,/ dm+/f°° (d| S| )) dv®|, ve M(Q;R?),

with f : R? — R a A-quasiconvex and Lipschitz continuous function with recession function > given
by (1.4).

Remark 3.1. The definition of recession function given in (1.4) is the usual one when integrands
are assumed to be quasiconvex. It has the advantage to imply f*° to be quasiconvex whenever f is
quasiconvex (see Kristensen & Rindler [13]). We note that by a similar argument this last property
also holds in the case of A-quasiconvex integrands. If we were in the framework of quasiconvexity our
measures would be derivatives of BV-functions, i.e, v = Du for some u € L', and their singular part
v* would be rank-one (see Alberti [2]). As quasiconvex functions are convex in rank-one directions,
the limsup in definition (1.4) would be in fact a limit in these directions and thus

Fo) =5 0= [ st [ 1 (550) av)

ft6)
t

with
£°°(¢) = liminf

- t—o0

10



(see Miiller [14] for an example of quasiconvex function where f> # f°°).

In the A-quasiconvex framework we do not know if the singular part of an element v € M(Q;R?),
v*®, belongs to the directions along which an A-quasiconvex function is convex, i.e, the caracteristic
cone (see Fonseca and Muller [10]). If in (1.4) we would have used liminf instead, which is more natural
for lower semicontinuity results (see also Rindler [16]), we would have just able to prove the lower
semicontinuity of F for sequences of L!-functions, i.e., the case where p, = u,, C L' and u, LV R W
with u € M(Q;R9).

As it will be proven in Subsection 3.1 inequality (3.1) is a consequence of the following proposition.

Proposition 3.2. Let Q C RY be a bounded open set and let f : R? — R be A-quasiconvez and
Lipschitz continuous. Let u,, € C®(RN;R?) be such that |u,| = A in M(Q), with A(OQ) = 0. Then
of

Uy = pin M(Q;RY)  and  Au, — 0 in W 9(Q; RM)

loc

for some 1 < g < we have that

Nl’

F(p) < liminf F(u, LNY). (3.2)

n—oo

Proof. To show (3.2) we assume w.l.o.g. that liminf F(u,LY) = lim F(u,LY). In addition we may
n—oo n— oo
assume that lim F(u,LY) < oo, otherwise there is nothing to prove.
n—oo

Given a Borel subset A of Q) we define

Foid) = [ for@ydns [ 2 (15@) dl, v e MR
A dlve
and for any n € N we set
An(A) = unEN /fun

Since {\,} is a sequence of bounded Radon measures there exist A € M(Q;R?) and v € MT(Q) such
that (up to a subsequence still denoted by {A,})

An = A (3.3)
and
M Kﬁ)
An| © = v (3.4)

We remark that by the growth conditions on f (see (1.3)) it follows that

v< LN+ A (3.5)
Step 1. Our first goal is to show that
ALQ > —co(LVLQ+ |u)) (3.6)

for some positive constant ¢y depending just on the integrand f.

Proof of (3.6). By the inner regular property of Radon measures it suffices to prove (3.6) for every
closed cube P C 2. Fixed such a closed cube P C 2, let us see that

AP) =z =co(LY + |ul)(P). 3.7)

11



For r > 1 let P, denote the open concentric cube of side length r times that of P. Notice that since
Q is open Pr C (2 for some R > 1.

As A is a positive Radon measure the set
{re (1,R): A(OP,) > 0}

is at most countable. Therefore we can fix an r € (1, R) arbitrarily close to 1 such that

A(OP.) =0 (3.8)
and consequently, since |p] < A,

H(0F,) =0, (3.9)
Let &, >0, e, — 0, and define

n—oo
vn(2) = p*pe, (2), xRN,

where p. is as in (2.8). Then by Proposition 2.17

Up (3.10)

n—oo

oal = ] (311)
and since Ap = 0 we get that

Wiso 4 (QR?
Av,, o LD (3.12)

n—oo

By (3.3), the fact that v¥(OP.) = 0 (from (3.5) and (3.8)), the Lipschitz continuity of f, (3.11),
Lemma 2.15 (see also Remark 2.16), and (3.9) we have that

ANP) = nh_}ngo ; flup) dz
> liminf/ fup —vy)de — L 1im/ |vy, | d
n—oQ P7‘ n—oo P’!‘
= fO)P:| = Lip|(F,).

Therefore inequality (3.7) follows by letting r — 1 with ¢ = max{|f(0)|, L}.

Step 2. In this part we prove that
dA

dL—N(xO) > f(u*(wo)) for LN -a.e. g € N (3.13)
and
A dp® >
—(x0) > ™ x for |p®|-a.e. xo € QA 3.14
o) = 1 (1)) for a2 (3.14)
Proof of (3.13). Let xy be such that

A C MQ(z0:0

M—N(wo) = (%lir(lJ w < oo (3.15)

12



d|p® . |tl(Q(xo;9)

dlﬁN| (20) = lim % dz =0, (3.16)
im k(@) - (o) dz =0, (3.17)
6—0 Q(030)

lim |[AY(z) — A%(zg)| dz =0, (3.18)
0=0JQ(x0:0)

dA® A (Q(xo;0))

dﬁN(l‘o):gl—I)I(l)aiNo)dl‘:O. (3.19)

Recall that all the above properties are satisfied for LN-a.e. zg € Q. Let 6, — 0 be such that
A(0Q(z0;0)) = 0. Then by (3.15), (3.3), (3.5), and a change of variables

Dy = g AMQ0id)

dCN ( k—o0 5N

= lim fuy,) dx
ko JQ(x0,61)

- I / Flun(z0 + 51y)) dy. (3.20)
s Q
We claim that for all p € Co(Q;R?)

tim [ o + Gy)ply) dy = 1 (o) / o(y) dy. (3.21)
mJQ Q

Indeed, let ¢ € Co(Q;R?). Then by a change of variables and since u,, — p € M(Q;R?) we get that

n—o0 /o n—00 Ok

Tr — X
Q(z0,0%) k

Hence, decomposing p = u®LY + p*, by (3.16) and (3.17) and a change of variables

lim [ wun(2o+0ky)@(y)dy = lim Un () @ (z — a:0> dy
Q(z0,0r)

lm [ wp(zo +0ky)p(y)dy = lim ® <$ g xo) u(x) dx
b JQ F JQo.60) k
= p(xo) /Q e(y) dy

which concludes the proof of (3.21). We remark that by a similar argument, using (3.18) and (3.19)
it also holds that

tim /Q funl(20 + 649) 0(y) dy = A% (o) /Q () dy. (3.22)

13



By a diagonalization argument from (3.21), (3.22), the fact that Au,, — 0 in ngcl’q(Q; RM) and (3.20)

we can find a subsequence n = nj such that by letting

Wi (Y) = tn, (xo + 0ry), Yy E€Q,

we have that

Wi, —\Ma(fﬂo)ﬁNy
lwe| = A®(zo) LY,

W_lngde')

Awk O
k—o0
and
dA I / Fwr(y)) d
acn (wo) = lim | f(wi(y)) dy,
from where inequality (3.13) follows by Lemma 2.15.
Proof of (3.14). Let z¢ € supp |u®| be such that
d\? dA\ . /\(Q(l’(); (5))
——(zg) = =—— (o) = lim ————"— < 0
T R T & A TE)
and
dp* 1 (Q(@o; 0))
zp) = lim ———%- <
a1 ) =3 Qo)

Recall that these properties are satisfied for |u®|-a.e. zo € Q. Let t k—> oo be such that
—> 00

b

o A1 o f(“‘?d%(xo))

k—o0 ty

and choose Jj, . 0 such that A(0Q(zo;dx)) = 0 and
e el

|11 (Q(o, 1))
o

(see Appendix A for a detailed description of this step). Then by (3.27) and (3.3),

ty =

dN® dA

m(%) = m(%)

o MQ(zo, 0k))
koo |11*| (Q(z0, 1))

o An (Q(x0, 0k))

ko |2 |(Q (o, 6r))

— lim fQ(mO’gk) f(un(2)) dx

ko || (Q(z0, 6k))
— lim = /fun ro + 5ky)) dy

knk,

14

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



Letting

1)
Wi, (y) = (x0t+ kv) fory € Q
k
and
t
k
it follows that
d\® 1
—_— lim — thWE n d
) = g | fat) dy
= lim [ fe(wen(y))dy. (3.31)
k,n Q

Note that each fj inherits the A-quasiconvexity property of f. Let us denote by Wy, the extension
Q-periodic to all of RN of wy, ,,. For each k,n,m € N let us define

Uk,n,m(y) = wk,n(my)v AS Q, (3'32)
and note that by changing variables and the properties of {u, }
1 -
/ [k nm| dz = —N/ | Wk | dz = / | W, | dz < C. (3.33)
Q m= Jm@Q Q
We claim that
. 1(Q(zo, 0k))
Vk,n,m — ozkﬁN, ap = ——— 3.34
mos W (@Cr0.,) 334
and
1 M
Avpnm | &ED (3.35)
n—oo
To prove (3.34) let us write for each m € N
N
m
Q Al
j=1
Given ¢ € Cy(Q;R?)
/ Ok n,m () ( = Z/ Vknm () (y) dy
Q j=1 ;+%
mN mN
=30 [ ten @) 6w el S otas) [ thamlo) - (35D
7j=1 m, j=1 QJ+R

By changing variables and using (3.30)
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, v :mN p(a;) .
Zw(aj)/ g Uk (¥) dy ZmNIMSI(Q(wo,&c)) /Q(zo,ak) ")

=1 it j=1

On the other hand by (3.33)

Z/ Uknm () (0(y) = plaj)) dy| < Cey(m)

where
gp(m) = max max_ |p(y) — ¢(az)l-
J yEaj-‘r%

Note that e,(m) — 0. Thus, passing to the limit in (3.37) and using Proposition 2.1 we have that

m— oo

lim ka,n,m(y)w(y) dy = o /Q (y) dy

which concludes the proof of (3.34). To prove (3.35) let ¢ € C2°(Q;RM). Then, by decomposing @
as in (3.36) it follows that

n,m; = - A(l)/ nmaga__
(AVEnm, ©) 2_: ka, S
m mV 5
= - 2 (i) IVkyn,m
- ZZA / v vknmwﬁZZA /H@ S
=1 j=1 m =1 j=1 I T m

where v = (v1, ..., vn) is the normal vector to Q. Let U,iml’m,a,inym € W—14(Q; RM) be given by

< k n, mvgp ZZA( / Ve,nm®PlVi

=1 j=1 m
and

mN

al (4) 8’Ulc,n,m
Tham ) =334 I
i=1 @G v

3

for ¢ € Wol’q,(Q;RM). If we prove that

oM
o E g, (3.38)

which implies that

Wb RI\/])
ol ey

k,n,m n—00

and, in addition, we show that

1 M
ot S g (3.39)
n—oo

then (3.35) will follow.
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Let us see that (3.38) holds. Note that for all ¢ € Cp(Q; RM)

mN
bl < O ([ otmnl ) ellm = o ([l -
=1 \Ja+ 52 0Q

= () el 20
|15(Q(o, Ok, 9Q(x0,01) " L psoo

where in last step we have used the condition A(Q(Q(xo, %)) = 0 and the fact that |u,| = A in M(Q).
WTH(QUag8k)RY) o

n—oo

In a similar way (3.39) follows by changing variables and using the hypothesis that Au,,

Therefore gathering all these steps together, by (3.31), (3.32), a change of variables, (3.34), (3.35) and

Lemma 2.15, applied t0 vk nm € L. (Q; RM), we conclude that

N
= 1'
@) = i, [ )

limkinf fr(ag).

v

Since fi is Lipschitz (with the same Lipschitz constant than f) and oy . dc‘l%:‘(a:o) (see (3.28))
—00
using (3.29) we have that

f@Wﬁ‘“D=fW(Wﬁ<“)

limkinf fr(ag) > hin i d|p®] *

from where (3.14) holds.
Step 3. We finally prove inequality (3.2). Let us denote by Aj, the singular part of A* with respect to
|w#]. Since A%, is mutually singular with respect to |u| + LV then by (3.6)

N(B) = —co(LN(B) + |ul(B)) = 0

for all Borel sets B C supp A, that is
AL > 0. (3.40)

Now by the fact that A(0€2) = 0 and by (3.40), (3.13) and (3.14) we get that

liminf F(u,) = lminf F(u,;Q)
n—oo n—oo
= hnrggf An ()
> AQ)

dX dX®
— d +/ d|lp’] + A5 (Q

a o0 dﬂs S
[ swra+ [ 1 <Wﬂ>ﬂuL

\%

3.1 Proof of Theorem 1.1

Given {u,} C M(Q;R%) such that g, — p, || — A (with A(OQ) = 0) and Au,, € ngcl’q(Q;]RM),

W*l,q(Q;RJM)
—

Apn ¢ 0, and using a regularization procedure (see Proposition 2.17), we can find a sequence
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of regular functions vy, ,, € C*°(RY;R%) such that

Vi = finy (Vmon)(R) = () (Q) and Avy, , — Ap,, in W D(Q; RM)
as m — o0o. Thus, by Corollary 2.8, we have that

lim sup F (vpm,n) < F(fin)-

m—r oo

By an appropriate diagonalization procedure we can find a sequence u,, := vy,  such that
1

Up = gy |up| = A and Au, — 0 in W2 9(Q;RM). Then by Proposition 3.2

F(p) <liminf F(u,) < liminf F(py,).

n— oo n— oo

The next example shows that the conclusion of Theorem 1.1 may not hold if the boundary condition
A(0€2) = 0 is dropped.

Example 3.3. Let @ = (0,1), u, = X(0,1) and p, = Du, = d1. We have that u, A6y and
curl g, = 0. Let f(v) = —v, v € R. We note that f*° = f. Then

lim inf F(p,) = hmlnf/ feea = f*1)=-1< F(6) =0.

1
n—oo n—oo n

In this case A(9€) = dp(9Q) # 0.

4 Relaxation

In this section we prove Theorem 1.2, that is, we give an integral representation of the relaxation
of the functional (1.1) with respect the class of sequences {1,} € M(Q;R%) such that u, — p in

W9 (QRM)

M(GRY), A, € Wi DI RM), Ap, Moe 7GR 0 and |t = A in M(Q) with A(9Q) =0
Proof of Theorem 1.2. Set

i [ Quttur@) do+ [ Qur= () duel

From the lower semicontinuity Theorem 1.1 the lower bound G > H follows immediately. We show
now the upper bound, that is, given p € M(Q;R?) NkerA such that |u](0) = 0 we have to see that
G(u) < H(u). For this purpose let v > 0 and define

£y () == f(v) +7|v], v € RL

It is then enough to show that

60 < [ Q) dov [ Qxp(55) due (1.1)

and to let v — 0 (see Lemma 2.13).

Proof of (4 1). By Lemma 2.17 let {u,} C C®(RN;R%) such that u, — p, (u,)(Q) — (u)(Q) and

sRM
Auy, Wice! ( )0 By Corollary 2.8 and Remark 2.12 we have

imsup [ Qatston) < [ Qa0+ [ @a (). )
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We now decompose

JIn

i=1

where Q. = z; +1r;Q (i = 1,..., J,,) are open and disjoint cubes and £, is disjoint from any @; ,, and
such that
Q, C{zeQ: dist(z,00) < 1/n}. (4.3)

Using the fact that the class of piecewise constant functions is (strongly) dense in L'(€2;R?), let v,
be a piecewise constant function such that

(4.4)

S|

|t — vnllL1 (@) <

and v, = ¢ » on Q; , for some ¢; ,, € R?. For each i, n, by Definition 2.9, we can find Win € ngr(Q; Rd)
with Aw; , = 0 and fQ w; n(z) dzz = 0 such that

/ f’Y(Ci,n + wi,n) dzr < Q.Af'y(Ci,n) + l (4.5)
Q n

Note that there exist a constant K, such that

|win(x)] < Ky, forallz e Q, i=1,...,J,.

Let ¢, € C°(Q;R), ¢n(x) € [0,1], z € Q, such that ¢, =1 on Q (0,7,) with 7, — 1, as n — oo,
and such that

Ka|Ql(1 — V) < = (4.6)

3=

For each x € Q set

un(x) + én (%) Wi p (m (%)) ifeeQin
Upom (X) 1=
Up () ifr e,

We claim that

/Q o] < C. (4.7)

Since {u,} is bounded in L' and ||¢, ||z~ < 1 to see (4.7) it is enough to prove that

Jn
3o e (n (5] o=
i=1 Y Qi @

i,n

By a change of variables

i,m

i (m ()] dw=§r? | bt (45)

We now use (4.5) to bound (4.8). Indeed by Remark 2.12

Jn g,
> rl Qb =3 /Q QuirsC [0+ ha <
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so that

Jn
ZTzN/ Sy (Cin +wi ) do < C. (4.9)
i=1 Q
On the other hand
Jn In
SR [ et e 2 Yo QS )
i=1 Q =l
J’Vl,
- > [ Quiw)ds
i=1 Qi.n
> =0 [ (14 fual)do
Q
> -C

that together with (4.9) implies that

JIn
ZTZN/ |Cin + wip| dz < C.
i=1 Q@

Therefore
Tn In In
Zrﬁ/‘wi,7l($)|d$ < Zer/‘Ci,n"’wi,ﬂdx_"zriv/‘Civn(x”dx
i—1 Q i=1 Q =1 @
< 4+ / v dz
Q
< C.

Note that as fQ w; n(x) dr = 0 then by Riemman-Lebesgue we have that

Wi (m ( - m)) SO (4.10)
i m—00

Wil (QR™M)

and so Avy, o, — 0.

n7

Using (4.7) by a diagonalization process we can obtain a sequence {v, ,,, } such that v, ,, — u and
Wl (RM)
—

Avnm,
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Let ¥y, := vp,m, then by the Lipschitz continuity of f (and hence of f,) and (4.4) we get that

J” — . J— .
/Qf’Y('Dn) dx < ;/Ln f’y (Un +¢n <x Tizz> Wi, m <mn (‘T Tixl>>) dx

C nl) d
+ /Qn(1+u |) dx
In — C
;/“l f’Y (Ci,n + Wi <mn (‘r sz>)> dx + n
Jn T —
ey ], (e (5))

+c/ (1 + [unl) de.
Qp

IN

Therefore by changing variables and using the periodicity of w; ,

I C
J e < 3o [ Gt i) dos

In
N _ .
+C3 /Q (1= 6u () |win(may)] dy+C / () d

Next, by (4.5) and the Lipschitz continuity of @ 4 f, we have that
Jn c
[ B@)de < 3 QG+

i=1

In
N p— .
RO /Q (1= 60(0) (o) dy+C [ () do

C
< /QQ.Af'y(vn)dl'_/Q” Q.Af’y(un)dw—i_g
In
> /Q( 60 (0)) lwin ()| dy /Q< fun) da
<

C
[ Qasunyda
Q n
J’Vl
+C 3o [ (1= o) balma)l dy+ € [ (1) do
i=1 n
By (4.6) it follows that
Jn JIn
ZTzN /Q(l = on(y) [win(mny)| dy < Ky Zﬁ”@ \Q(0,7)| < K,|QI(1 =7, Y) <
i=1 i=1
which implies that

In
limsup S r¥ /Q (1~ 6u(y) [win(may)| dy =0.

n—oo i=1
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Given € > 0 choose ny € N such that LY (Q,) + A(,) < € for all n > ng. Then

limsup/ (14 |uy|) dz < e.
Qn

n—oo

Therefore from (4.11) and (4.2) we get that

A

hmmf/f,y < limsup/QAf,y(un)dque
n—oo n—00

| earun+ [ Qur™ ( S|) 3
< [ Qb+ [ Qur™ < ) 3

By letting € go to zero inequality (4.1) finally follows.

IN

Hence

A Appendix to the proof of (3.14)
With the notation used in the proof of inequality (3.14) (see (3.27) and (3.28)) let

for § > 0 such that Q(zo;0) C Q. Notice that the function § — |u®|(Q(z0;0)) is nondecreasing and
consequently it has right and left limit at every point. Thus, also the function g has right and left
limit at every point, and we have

9™ (80) < g™ (),
for every dp > 0, where g~ (dp) = lim ¢(d) and g™ (dp) = lim+ g(9)
0—d,

0—6y
Lemma A.1. For every t > inf{g} there evists § > 0 such that
g9(6) =t.

In addition g is continuous at .

Proof. As g(9) 555,00 we can find 6o > 0 such that
—
0 <oy = g(d) >t. (A1)

Define B
=sup{d : (A.1) holds}.

Thus - B
gt(0) <tand g=(5) >t

and we conclude that

Lemma A.2. Let A € MT(). Given a € R? there exists {si} with sy, 0 such that
—o0

£°(a) = lim f(sra) (A.2)

k—oo Sk

and A(0Q(xo; 1)) = 0 for {5} such that g(6x) = si.
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Proof. We start with a sequence {5;} (5 > inf{g}) verifying the condition (A.2). By Lemma A.l
we consider {0z} such that g(6;) = 5x. We may not have the condition A(OQ(xo;d1)) = 0. As g is
continuous at 0;, we can choose d; close enough to 5, such that A(0Q(zg;6,) = 0 and g(6x) = sy is
such that {s; — 3x} is bounded. As f is Lipschitz continuous (A.2) holds. Indeed, since {s; — 5} is
bounded

Sk Sk — Sk
— =1+ — 1.
Sk Sk k—o00

In addition as

— = +
Sk Sk Sk Sk

f(ska)  f(ska) _ f(ska) — f(5ka) | f(Ska) ( Sk)

and, by the Lipchitz continuity of f,

|f(5ka) — f(ska)l < Lal 5k —sel
Sk Sk k— o0
and {%}’Za)} is bounded, then
T ACTTO N N A CTED)
k—oo Sk k—oo Sk
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