
Lower semicontinuity and relaxation of signed functionals with

linear growth in the context of A-quasiconvexity
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Abstract

A lower semicontinuity and relaxation result with respect to weak-∗ convergence of measures
is derived for functionals of the form

µ ∈M(Ω;Rd)→
∫

Ω

f(µa(x)) dx+

∫
Ω

f∞
(
dµs

d|µs| (x)

)
d|µs|(x),

where admissible sequences {µn} are such that {Aµn} converges to zero strongly in W−1,q
loc (Ω)

and A is a partial differential operator with constant rank. The integrand f has linear growth
and L∞-bounds from below are not assumed.

1 Introduction

In this work we start by deriving a lower semicontinuity result with respect to weak-∗ convergence of
A-free measures for the functional

F(µ) =

∫
Ω

f(µa) dx+

∫
Ω

f∞
(
dµs

d|µs|

)
d|µs|, µ ∈M(Ω;Rd), (1.1)

where Ω is an open bounded subset of RN , M(Ω;Rd) stands for the set of finite Rd-valued Radon
measures over Ω, µ = µaLN + µs is the Radon-Nikodým decomposition of µ with respect to the
Lebesgue measure LN . Here and in what follows, the integrand f : Rd → R is assumed to be A-
quasiconvex (see Section 2 for other notations and preliminary definitions), where A is a linear first
order partial differential operator of the form

A :=

N∑
i=1

A(i) ∂

∂xi
, A(i) ∈MM×d(R), M ∈ N, (1.2)

that we assume throughout to satisfy Murat’s condition of constant rank (see Murat [15] and Fonseca
& Müller [10]) i.e., there exists c ∈ N such that

rank

(
N∑
i=1

A(i)ξi

)
= c for all ξ = (ξ1, ..., ξN ) ∈ SN−1.

In addition we assume f to be Lipschitz continuous and we remark that this condition implies f to
satisfy a linear growth condition at infinity of the type

|f(v)| ≤ K(1 + |v|) (1.3)

for all v ∈ Rd and for some K > 0. As usual (see Remark 3.1) we denote by f∞ the recession function
of f , which for our problem is defined as

f∞(ξ) := lim sup
t→∞

f(tξ)

t
. (1.4)
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As already proved by Fonseca & Müller [10] A-quasiconvexity with respect to the last variable
turns out to be a necessary and sufficient condition for the lower semicontinuity of

(u, v)→
∫

Ω

f(x, u(x), v(x)) dx

for positive normal integrands f with linear growth among sequences (un, vn) such that un → u in
measure, vn ⇀v in L1 and Avn = 0. In Fonseca, Leoni & Müller [9] this result was partially extended

by considering weak-∗ convergence in the sense of measures (in the variable v). Precisely the authors
considered a funtional of the form

v →
∫

Ω

f(x, v(x)) dx

and, in particular, it was proved that∫
Ω

f (x, µa(x)) dx ≤ lim
n→∞

∫
Ω

f(x, vn(x)) dx (1.5)

for any sequence vn ⊂ L1(Ω;Rd) ∩ kerA and such that vn ⇀µ in the sense of measures, under the

assumptions that f is a Borel measurable positive function with linear growth, Lipschitz continuous
and A-quasiconvex in the last variable, and satisfying an appropriate continuity condition on the first
variable (see Theorem 1.4 in [9]). Note that in (1.5) the term µs has not been considered.

Here we extend this last result for a larger class of integrands where L∞-bounds from below are
not assumed and to functionals taking into account the singular part of the limit measure µ. Namely,
we prove the following theorem.

Theorem 1.1. Let Ω ⊂ RN be a bounded open set and let f : Rd → R be A-quasiconvex and
Lipschitz continuous. Let {µn} ⊂ M(Ω;Rd) be such that µn

∗
⇀ µ ∈M(Ω;Rd), Aµn ∈W−1,q

loc (Ω;RM ),

1 < q < N
N−1 , Aµn

W−1,q
loc (Ω;RM )
−→ 0 and |µn|

∗
⇀ Λ ∈M(Ω) with Λ(∂Ω) = 0. Then

F(µ) ≤ lim inf
n→∞

F(µn) (1.6)

where F is the functional in (1.1) with f∞ defined by (1.4).

Note that lower semicontinuity may fail if Λ(∂Ω) 6= 0 (see Example 3.3).

The proof of Theorem 1.1 is reduced to the case of sequences of C∞-functions by a regularization
argument and an upper semicontinuous result based on Reshetnyak Continuity Theorem (see Section
3 and Proposition 3.2). To show Proposition 3.2 with a regular sequence of functions {un} we start,
following ideas of Kristensen & Rindler [13], by estimating from below the limit of the sequence
of local energies λn(A) :=

∫
A
f(un) dx. Contrary to the case for positive integrands, this step is

essential to write the limit energy of λn, λ, exclusively in terms of µ. The result then follows from
pointwise estimates on the Radon-Nikodým Derivatives of λ obtained by the usual blow-up argument
(introduced in Fonseca & Müller [11]). The main difficulty here arises in the treatment of the singular
part dλ

d|µs| since we do not know how to characterize the blow-up limit. This difficulty is overcomed

by an appropriate average process that allows us to get the estimate for this singular part.

The motivation for this work relies on a characterization of Young measures generated by uniformly
bounded and A-free sequences of measures through the duality with an appropriate set of functions
with linear growth (work in progress).

In the particular case where µ = Du for u ∈ BV (i.e. A = curl) Theorem 1.1 has been derived
by Kristensen & Rindler [13]. In this context the notion of A-quasiconvexity reduces to that of
quasiconvexity (which implies Lipchitz continuity).
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The second objective of the present paper is to give a relaxation result for the functional (1.1) in
the context of A-quasiconvexity. Namely, in the next theorem we show that the functional G defined
by

G(µ) := inf

{
lim inf
n→∞

F(µn) : µn
∗
⇀ µ, Aµn ∈W−1,q

loc (Ω;RM ), Aµn
W−1,q

loc (Ω;RM )
−→ 0,

|µn|
∗
⇀ Λ with Λ(∂Ω) = 0

}
.

admits an integral representation.

Theorem 1.2. Let Ω ⊂ RN be a bounded open set and let f : Rd → R be Lipschitz continuous. Then
for µ ∈M(Ω̄;Rd) ∩ kerA such that |µ|(∂Ω) = 0 we have that

G(µ) =

∫
Ω

QAf(µa(x)) dx+

∫
Ω

(
QAf

)∞( dµs
d|µs|

)
d|µs|.

where QAf denotes the quasiconvex envelope of f and
(
QAf

)∞
denotes its recession function.

In the proof of Theorem 1.2 the lower bound is a immediate consequence of Theorem 1.1, while
the upper bound is based on a regularization procedure together with an approximation by piecewise
constant functions, that follows naturally from the definition of A-quasiconvexity.

We finish this introduction by referring to Braides, Fonseca & Leoni [6] for other relaxation results
in the context of A-quasiconvexity (for p > 1) and to Kristensen & Rindler [13] for relaxation for
signed functionals in the context of gradients (i.e, as mentioned before µ = Du for some u ∈ BV ).

The overall plan of this work in the ensuing sections will be as follows: Section 2 collects the main
definitions and auxiliary results used in the proof of Theorem 1.1 that can be found in Section 3. In
Section 4 we present the proof of Theorem 1.2.

2 Preliminary results

In this section we recall the main results used in our analysis. We start by fixing some notations.

2.1 General Notations

Throughout the text we will use the following notations:

- Ω ⊂ RN , N ≥ 1, will denote an open bounded set;

- LN and HN−1 denote, respectively, the N -dimensional Lebesgue measure and the (N − 1)-
dimensional Hausdorff measure in RN ;

- SN−1 stands for the unit sphere in RN ;

- Q denotes the open unit cube centered at the origin with one side orthogonal to eN , where eN
denotes the N th-element of the canonical basis of RN ;

- Q(x, δ) denotes the open cube centered at x with side length δ > 0 and with one side orthogonal
to eN ;

- B stands for the unit open ball centered at the origin;

- B(x, δ) denotes the ball centered at x with radius δ > 0;

- MM×d(R) stand for the set of M × d real matrices;
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- C∞per(Q;Rd) is the space of all Q-periodic functions in C∞(RN ;Rd);

- Lqper(Q;Rd) is the space of all Q-periodic functions in Lqloc(RN ;Rd);

- D′(Ω;RM ) denotes the space of distributions in Ω with values in RM .

- C represents a generic positive constant, which may vary from expression to expression;

- lim
n,m

:= lim
n→∞

lim
m→∞

.

2.2 Measure Theory

In this section we recall some notations and well known results in Measure Theory (see e.g Ambrosio,
Fusco & Pallara [5], Evans & Gariepy [12] and Fonseca & Leoni [8], as well as the bibliography therein).

Let X be a locally compact metric space and let Cc(X;Rd), d ≥ 1, denote the set of continuous
functions with compact support on X. We denote by C0(X;Rd) the completion of Cc(X;Rd) with
respect to the supremum norm. Let B(X) be the Borel σ-algebra of X. By the Riesz-Representation
Theorem the dual of the Banach space C0(X;Rd), denoted by M(X;Rd), is the space of finite Rd-
valued Radon measures µ : B(X)→ Rd under the pairing

< µ,ϕ >:=

∫
X

ϕdµ ≡
d∑
i=1

∫
X

ϕi dµi

where ϕ = (ϕ1, ..., ϕd) and µ = (µ1, ..., µd). The space M(X;Rd) will be endowed with the weak∗-
topology deriving from this duality. In particular a sequence {µn} ⊂ M(X;Rd) is said to weak∗-

converge to µ ∈M(X;Rd) (indicated by µn
?
⇀ µ) if for all ϕ ∈ C0(X;Rd)

lim
n→∞

∫
X

ϕdµn =

∫
X

ϕdµ.

If d = 1 we write by simplicity M(X) and we denote by M+(X) its subset of positive measures.

Given µ ∈M(X;Rd) let |µ| denote its total variation and let supp µ denote its support.

The following result can be found in Fonseca & Leoni [8, Corollary 1.204].

Proposition 2.1. Let µn ∈ M(X) such that µn
∗
⇀µ in M(X) and |µn|

∗
⇀ν in M(X). If A ⊂ X

is open, Ā compact and ν(∂A) = 0 then

µn(A)→ µ(A).

We recall that a measure µ is said to be absolutely continuous with respect to a positive measure ν,
written µ << ν, if for every E ∈ B(X) the following implication holds:

ν(E) = 0 ⇒ µ(E) = 0.

Two positive measures µ and ν are said to be mutually singular, written µ ⊥ ν, if there exists E ∈ B(X)
such that ν(E) = 0 and µ(X \E) = 0. For general vector-valued measures µ and ν we say that µ ⊥ ν
if |µ| ⊥ |ν|.

Theorem 2.2 (Lebesgue-Radon-Nikodým Theorem). Let µ ∈M+(X) and ν ∈M(X;Rd). Then

(i) there exists two Rd-valued measures νa and νs such that

ν = νa + νs (2.1)

with νa << µ and νs ⊥ µ. Moreover, the decomposition (2.1) is unique, that is, if ν = ν̄a + ν̄s
for some measures ν̄a, ν̄s, with ν̄a << µ and ν̄s ⊥ µ, then νa = ν̄a and νs = ν̄s;

4



(ii) there is a µ-measurable function u ∈ L1(Ω;Rd) such that

νa(E) =

∫
E

u dµ

for every E ∈ B(Ω). The function u is unique up to a set of µ measure zero.

The decomposition ν = νa + νs is called the Lebesgue decomposition of ν with respect to µ (see
[8, Theorem 1.115]) and the function u is called the Radon-Nikodým derivative of ν with respect to µ,
denoted by u = dν/dµ (see [8, Theorem 1.101]).

The next result is a strong form of Besicovitch derivation Theorem due to Ambrosio and Dal Maso
[4] (see also [5, Theorem 2.22 and Theorem 5.52] or [8, Theorem 1.155]).

Theorem 2.3. Let µ ∈ M+(Ω) and ν ∈ M(Ω;Rd). Then there exists a Borel set N ⊂ Ω with
µ(N) = 0 such that for every x ∈ (supp µ)\N

dν

dµ
(x) =

dνa
dµ

(x) = lim
ε→0

ν
(
(x+ εD) ∩ Ω

)
µ
(
(x+ εD) ∩ Ω

) ∈ R

and
dνs
dµ

(x) = lim
ε→0

νs
(
(x+ εD) ∩ Ω

)
µ
(
(x+ εD) ∩ Ω

) = 0,

where D is any bounded, convex, open set D containing the origin (the exceptional set N is independent
of the choice of D).

In the sequel we denote by W−1,q(Ω;Rd) the dual space of W 1,q′

0 (Ω;Rd) where q′, the conjugate
exponent of q, is given by the relation 1

q + 1
q′ = 1. We finish this part by recalling that M(Ω;Rd) is

compactly imbeded in W−1,q(Ω;Rd), 1 < q < N
N−1 , since W 1,q′

0 (Ω;Rd) ⊂⊂ C0(Ω) for q′ > N .

2.3 A corollary of Reshetnyak’s Theorem

The objective of this part is to present a corollary of Reshetnyak Continuity Theorem useful for our
main result in Section 3.

Definition 2.4. (The space E(Ω;Rd)) Let E(Ω;Rd) denote the space of continuous functions f :
Ω× Rd → R such that the mapping

(x, ξ)→ (1− |ξ|)f
(
x,

ξ

1− |ξ|

)
, x ∈ Ω, ξ ∈ B, (2.2)

can be extended to a continuous function to the closure Ω×B.

The recession function of an element f of E(Ω;Rd) is the continuous extension of (2.2) to the
boundary of Ω×B. Namely we have the following definition.

Definition 2.5. (Recession function) Let f be a function in E(Ω;Rd). Then recession function of f
is defined by

f∞(x, ξ) = lim
x
′
→ x

ξ
′
→ ξ

t → ∞

f(x
′
, tξ
′
)

t
. (2.3)

for all (x, ξ) ∈ Ω×B.
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The next lemma is an approximation result by functions in E(Ω;Rd) and is due to Alibert and
Bouchitté ([3, Lemma 2.3]).

Lemma 2.6. Let f : Ω× Rd → R be a lower semicontinuous function such that

f(x, ξ) ≥ −C(1 + |ξ|).

Then, there exists an nondecreasing sequence {fk} ⊂ E(Ω;Rd) such that

supkfk(x, ξ) = f(x, ξ) and supkf
∞
k (x, ξ) = hf (x, ξ)

where

hf (x, ξ) := lim inf
x
′
→ x

ξ
′
→ ξ

t → ∞

f(x
′
, tξ
′
)

t
.

The version of Reshetnyak’s Continuity Theorem we present here can be found in [13, Theorem 5]

Theorem 2.7. (Reshetnyak’s Continuity Theorem) Let f ∈ E(Ω;Rd) and let µ, µn ∈ M(Ω;Rd) be

such that µn
∗
⇀µ in M(Ω;Rd) and 〈µn〉(Ω)→ 〈µ〉(Ω), where

〈ν〉 :=
√

1 + |νa|2LN + |νs|, ν = νaLN + νs ∈M(Ω;Rd).

Then

lim
n→∞

F̃(µn) = F̃(µ)

where

F̃(ν) :=

∫
Ω

f(x, νa(x)) dx+

∫
Ω

f∞
(
x,

dνs

d|νs|
(x)

)
d|νs|, ν ∈M(Ω;Rd). (2.4)

As a corollary of Lemma 2.6 and Theorem 2.7 we derive an upper semicontinuity result useful in
the proof of our main result Theorem 1.1.

Corollary 2.8. Let f : Ω× Rd → R be a continuous function such that

|f(x, ξ)| ≤ C(1 + |ξ|), for all x ∈ Ω, all ξ ∈ Rd, and some C > 0.

Let µ, µn ∈M(Ω;Rd) be such that µn
∗
⇀µ in M(Ω;Rd) and 〈µn〉(Ω)→ 〈µ〉(Ω). Then

F̃(µ) ≥ lim sup
n→∞

F̃(µn) (2.5)

where F̃ is the functional defined in (2.4) and where the recession function of f is defined as follows

f∞(x, ξ) := lim sup
x
′
→ x

ξ
′
→ ξ

t → ∞

f(x
′
, tξ
′
)

t
.

Proof. By Lemma 2.6 we can find a nondecreasing sequence of continuous functions fh ∈ E(Ω;Rd),
h ∈ N, such that for all (x, ξ) ∈ Ω× Rd

sup
h∈N

fh(x, ξ) = −f(x, ξ) and sup
h∈N

f∞h (x, ξ) = h−f (x, ξ) = −f∞(x, ξ).
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For each h ∈ N we have that

lim sup
n→∞

F̃(µn) = − lim inf
n→∞

{−F̃(µn)}

≤ − lim
n→∞

[∫
Ω

fh(x, µan(x)) dx+

∫
Ω

f∞h

(
x,

dµsn
d|µsn|

(x)

)
d|µsn|

]
= −

[∫
Ω

fh(x, µa(x)) dx+

∫
Ω

f∞h

(
x,

dµs

d|µs|
(x)

)
d|µs|

]
(2.6)

by Theorem 2.7. Taking the infimum over h in (2.6), inequality (2.5) follows by the Monotone
Convergence Theorem.

2.4 A-quasiconvexity

We recall here the notion of A-quasiconvexity introduced by Dacorogna [7] and further devoloped by
Fonseca & Müller [10], as well as some of its main properties.

Let A : D′(Ω;Rd)→ D′(Ω;RM ) be the first order linear differential operator defined in (1.2).

Definition 2.9. (A-quasiconvex function) A locally bounded Borel function f : Rd → R is said to be
A-quasiconvex if

f(v) ≤
∫
Q

f(v + w(x)) dx

for all v ∈ Rd and for all w ∈ C∞per(Q;Rd) such that Aw = 0 in RN with
∫
Q
w(x) dx = 0.

Remark 2.10. If f has q-growth, i.e. |f(v)| ≤ C(1 + |v|q) for all v ∈ Rd, then the space of test
functions C∞per(Q;Rd) in Definition 2.9 can be replaced by Lqper(Q,Rd) (see Remark 3.3.2 in [10]).

Definition 2.11. (A-quasiconvex envelope) Let f : Rd → R be a continuous function. We define the
A-quasiconvex envelope of f , QAf : Rd → R ∪ {−∞}, as

QAf(v) := inf

{∫
Q

f(v + w(x)) dx : w ∈ C∞per(Q;Rd) such that Aw = 0 in RN and

∫
Q

w(x) dx = 0

}
.

Remark 2.12. Let f : Rd → R be a continuous function.

i) If f has linear growth at infinity and QAf(0) > −∞ then QAf(v) is finite for all v ∈ Rd. In
addition QAf has also linear growth at infinity.

ii) If f is Lipschitz continuous then QAf is also Lipschitz continuous.

The next lemma is an adapted version of Lemma 4 in Kristensen & Rindler [13] for A-quasiconvex
envelopes.

Lemma 2.13. Let f : Rd → R be a continuous function with linear growth at infinity such that
QAf(0) > −∞. Given γ > 0 define fγ(v) := f(v) + γ|v| for v ∈ Rd. Then QAfγ(v) ↓ QAf(v) and
(QAfγ)∞(v) ↓ (QAf)∞(v) pointwise in v as γ → 0.

The following proposition can be found in [10, Lemma 2.14].

Proposition 2.14. Given q > 1, there exists a linear bounded operator P : Lqper(Q;Rd)→ Lqper(Q;Rd)
such that A(Pu) = 0. Moreover we have the following estimate

||u− Pu||Lq ≤ C‖Au‖W−1,q

for every u ∈ Lqper(Q;Rd) with
∫
Q
u = 0.
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The following lower semicontinuity result is used in the proof of Theorem 1.1.

Lemma 2.15. Let f : Rd → R be a A-quasiconvex and Lipschitz continuous function. Let a ∈ Rd
and {un} ⊂ Lqper(Q;Rd) be a sequence such that un

∗
⇀ aLN in M(Q;Rd) and |un|

∗
⇀ Λ in M+(Q),

with Λ(∂Q) = 0, and Aun → 0 in W−1,q(Q;RM ) for some 1 < q < N
N−1 . Then

lim inf
n→∞

∫
Q

f(un) dx ≥ f(a).

Proof. Choose ϕm ∈ C∞c (Q; [0, 1]) satisfying the condition ϕm = 1 on Q
(
0; 1− 1

m

)
and define

{wm,n} ⊂ Lqper(Q;Rd) by wm,n = ϕm(un − a). Writting

A(wm,n) = (Aϕm) (un − a) + ϕmAun
we can conclude that

lim
n→+∞

∫
Q

wm,n(x) dx = 0 and A(wm,n)
W−1,q(Q;RM )−→

n→∞
0 (2.7)

since un
∗
⇀ a inM(Q;Rd) implies that un → a in W−1,q(Q;RM ). Define now the sequence {zm,n} ⊂

Lqper(Q;Rd) by

zm,n := P
(
wm,n −

∫
Q

wm,n dx

)
.

Then, by Lipschitz continuity, A-quasiconvexity (see Remark 2.10) and Proposition 2.14 we have that∫
Q

f(un) dx =

∫
Q

f(un − a+ a) dx

≥
∫
Q

f(wm,n + a) dx− L
∫
Q

|1− ϕm‖un − a| dx

≥
∫
Q

f

(
wm,n −

∫
Q

wm,n + a

)
dx− L

∫
Q

|1− ϕm‖un − a| dx

−L
∣∣∣ ∫
Q

wm,n dx
∣∣∣

≥
∫
Q

f(zm,n + a)− L
∫
Q

|1− ϕm‖un − a| dx− L
∣∣∣ ∫
Q

wm,n dx
∣∣∣

−L
∫
Q

∣∣∣∣wm,n − ∫
Q

wm,n dx− zm,n
∣∣∣∣ dx

≥ f(a)− L
∫
Q

|1− ϕm‖un − a| dx− L
∣∣∣ ∫
Q

wm,n dx
∣∣∣

−CL‖Awm,n‖W−1,q .

Taking first the limit as n→∞ and using the definition of wm,n and (2.7), we have

lim inf
n→∞

∫
Q

f(un) dx ≥ f(a)− LΛ

(
Q\Q

(
0, 1− 1

m

))

−L|a|

(
1−

(
1− 1

m

)N)
.
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The result now follows letting m→∞ since by hypothesis Λ(∂Q) = 0.

Remark 2.16. Lemma 2.15 can also be applied to any cube P ⊂ RN .

2.5 Regularization of measures

The aim of this part is to recall the definition of the regularization of a measure by means of its
convolution with a standard mollifier as well as to gather its main properties.

Let ρ ∈ C∞c
(
RN
)

with supp ρ ⊂ B and
∫
RN ρ (x) dx = 1. For every ε > 0 let us define the mollifier

ρε (x) :=
1

εN
ρ
(x
ε

)
, x ∈ RN . (2.8)

Note that supp ρε ⊂ B (0, ε). Given µ ∈ M
(
Ω;Rd

)
we may think µ as an element of M

(
RN ;Rd

)
with support contained in Ω. We define uε : RN → Rd by

uε (x) := (µ ∗ ρε) (x) =

∫
RN

ρε (x− y) dµ (y) , x ∈ RN (2.9)

and for every Borel set E ⊂ Ω we denote

Bε(E) := {x ∈ RN : dist (x,E) < ε}.

Proposition 2.17. Let µ ∈ M
(
Ω;Rd

)
and uε be given as in (2.9). Then the following statements

hold:

(i) The function uε ∈ C∞
(
RN ;Rd

)
and suppuε ⊂ Bε(Ω). Moreover Dα(µ ∗ ρε) = Dαµ ∗ ρε for

α ∈ NN and the inequality ∫
E

|µ ∗ ρε|(x) dx ≤ |µ|(Bε(E)) (2.10)

holds whenever E ⊂ Ω is a Borel set.

(ii) The measures µε := uεLN and |µε| weak*- converge in RN to µ and |µ|, respectively, as ε→ 0.

(iii) If |µ|(∂Ω) = 0 then 〈µε〉(Ω)→ 〈µ〉(Ω) as ε→ 0.

(iv) If Aµ ∈W−1,q
loc (Ω;RM ), 1 ≤ q <∞, then Aun

W−1,q
loc (Ω;RM )
−→
n→∞

Aµ.

Proof. The assertions (i)-(ii) follow Theorem 2.2 in Ambrosio & Fusco & Pallara [5].

Proof of (iii). Let µ̂ := (µ,LN ). As µ̂ ∗ ρε
∗
⇀ µ̂, we have

lim inf |µ̂ ∗ ρε|(Ω) ≥ |µ̂|(Ω).

On the other hand as |µ̂ ∗ ρε|
∗
⇀ |µ̂| and |µ|(∂Ω) = 0 we have that

lim sup |µ̂ ∗ ρε|(Ω) ≤ lim sup |µ̂ ∗ ρε|(Ω) ≤ |µ̂|(Ω) = |µ̂|(Ω).

Now the result follows from the equalities 〈µε〉(Ω) = |µ̂ ∗ ρε|(Ω) and 〈µ〉(Ω) = |µ̂|(Ω).

Proof of (iv). We have that Aun = Aµ ∗ ρεn . Given U ⊂⊂ Ω let us see that

Aun
W−1,q(U ;RM )−→

n→∞
Aµ.

Let V with U ⊂⊂ V ⊂⊂ Ω. As Aµ ∈ W−1,q(V ;RM ), there exist Ti ∈ Lq(V ;RM ), i = 0, ..., N , such
that

Aµ = T0 +

N∑
i=1

∂Ti
∂xi

9



(see Adams [1]). Given ϕ ∈ C∞c (U ;RM )

〈Aun −Aµ, ϕ〉 =

〈
ρεn ∗

(
T0 +

N∑
i=1

∂Ti
∂xi

)
−
(
T0 +

N∑
i=1

∂Ti
∂xi

)
, ϕ

〉

= 〈ρεn ∗ T0 − T0, ϕ〉 −
N∑
i=1

〈
ρεn ∗ Ti − Ti,

∂ϕ

∂xi

〉
and consequently, by Hölder inequality

| 〈Aun −Aµ, ϕ〉 | ≤
N∑
i=0

‖ρεn ∗ Ti − Ti‖Lq(U ;RM )‖ϕ‖W 1,q
′
(U ;RM )

. (2.11)

By density (2.11) holds for any ϕ ∈W 1,q
′

0 (U ;RM ) and then as

N∑
i=0

‖ρεn ∗ Ti − Ti‖Lq(U ;RM ) −→
n→∞

0

we conclude that Aun
W−1,q(U ;RM )−→

n→∞
Aµ.

3 Lower semicontinuity theorem

The aim of this section is to prove Theorem 1.1. Namely, given {µn} ⊂ M(Ω;Rd) such that µn
∗
⇀ µ

in M(Ω;Rd), Aµn ∈ W−1,q
loc (Ω;RM ), Aµn

W−1,q
loc (Ω;RM )
−→ 0 and |µn|

∗
⇀ Λ in M(Ω) with Λ(∂Ω) = 0,

then

F(µ) ≤ lim inf
n→∞

F(µn) (3.1)

where F is the functional defined in (1.1), that is

F(ν) =

∫
Ω

f(νa(x)) dx+

∫
Ω

f∞
(
dνs

d|νs|
(x)

)
d|νs|, ν ∈M(Ω;Rd),

with f : Rd → R a A-quasiconvex and Lipschitz continuous function with recession function f∞ given
by (1.4).

Remark 3.1. The definition of recession function given in (1.4) is the usual one when integrands
are assumed to be quasiconvex. It has the advantage to imply f∞ to be quasiconvex whenever f is
quasiconvex (see Kristensen & Rindler [13]). We note that by a similar argument this last property
also holds in the case of A-quasiconvex integrands. If we were in the framework of quasiconvexity our
measures would be derivatives of BV-functions, i.e, ν = Du for some u ∈ L1, and their singular part
νs would be rank-one (see Alberti [2]). As quasiconvex functions are convex in rank-one directions,
the limsup in definition (1.4) would be in fact a limit in these directions and thus

F(ν) = F−(ν) :=

∫
Ω

f(νa(x)) dx+

∫
Ω

f∞
(
dνs

d|νs|
(x)

)
d|νs|

with

f∞(ξ) = lim inf
t→∞

f(tξ)

t

10



(see Müller [14] for an example of quasiconvex function where f∞ 6= f∞).

In the A-quasiconvex framework we do not know if the singular part of an element ν ∈M(Ω;Rd),
νs, belongs to the directions along which an A-quasiconvex function is convex, i.e, the caracteristic
cone (see Fonseca and Muller [10]). If in (1.4) we would have used liminf instead, which is more natural
for lower semicontinuity results (see also Rindler [16]), we would have just able to prove the lower

semicontinuity of F for sequences of L1-functions, i.e., the case where µn = un ⊂ L1 and unLN
?
⇀ µ

with µ ∈M(Ω;Rd).

As it will be proven in Subsection 3.1 inequality (3.1) is a consequence of the following proposition.

Proposition 3.2. Let Ω ⊂ RN be a bounded open set and let f : Rd → R be A-quasiconvex and
Lipschitz continuous. Let un ∈ C∞(RN ;Rd) be such that |un|

∗
⇀ Λ in M(Ω), with Λ(∂Ω) = 0. Then

if
un

∗
⇀ µ in M(Ω;Rd) and Aun → 0 in W−1,q

loc (Ω;RM )

for some 1 < q < N
N−1 , we have that

F(µ) ≤ lim inf
n→∞

F(unLN ). (3.2)

Proof. To show (3.2) we assume w.l.o.g. that lim inf
n→∞

F(unLN ) = lim
n→∞

F(unLN ). In addition we may

assume that lim
n→∞

F(unLN ) <∞, otherwise there is nothing to prove.

Given a Borel subset A of Ω we define

F(ν;A) =

∫
A

f(νa(x)) dx+

∫
A

f∞
(
dνs

d|νs|
(x)

)
d|νs|, ν ∈M(Ω;Rd),

and for any n ∈ N we set

λn(A) := F(unLN ;A) =

∫
A

f(un(x)) dx.

Since {λn} is a sequence of bounded Radon measures there exist λ ∈M(Ω;Rd) and ν ∈M+(Ω) such
that (up to a subsequence still denoted by {λn})

λn
∗
⇀ λ (3.3)

and

|λn|
M+(Ω)
⇀

n→∞
ν. (3.4)

We remark that by the growth conditions on f (see (1.3)) it follows that

ν ≤ LN + Λ. (3.5)

Step 1. Our first goal is to show that

λ Ω ≥ −c0(LN Ω + |µ|) (3.6)

for some positive constant c0 depending just on the integrand f .

Proof of (3.6). By the inner regular property of Radon measures it suffices to prove (3.6) for every
closed cube P ⊂ Ω. Fixed such a closed cube P ⊂ Ω, let us see that

λ(P ) ≥ −c0(LN + |µ|)(P ). (3.7)

11



For r > 1 let Pr denote the open concentric cube of side length r times that of P . Notice that since
Ω is open PR ⊂ Ω for some R > 1.

As Λ is a positive Radon measure the set

{r ∈ (1, R) : Λ(∂Pr) > 0}

is at most countable. Therefore we can fix an r ∈ (1, R) arbitrarily close to 1 such that

Λ(∂Pr) = 0 (3.8)

and consequently, since |µ| ≤ Λ,

|µ|(∂Pr) = 0. (3.9)

Let εn > 0, εn −→
n→∞

0, and define

vn(x) := µ ∗ ρεn(x), x ∈ RN ,

where ρεn is as in (2.8). Then by Proposition 2.17

vn
∗
⇀

n→∞
µ (3.10)

|vn|
∗
⇀

n→∞
|µ| (3.11)

and since Aµ = 0 we get that

Avn
W−1,q

loc (Ω;Rd)
−→
n→∞

0. (3.12)

By (3.3), the fact that ν(∂Pr) = 0 (from (3.5) and (3.8)), the Lipschitz continuity of f , (3.11),
Lemma 2.15 (see also Remark 2.16), and (3.9) we have that

λ(Pr) = lim
n→∞

∫
Pr

f(un) dx

≥ lim inf
n→∞

∫
Pr

f(un − vn) dx− L lim
n→∞

∫
Pr

|vn| dx

≥ f(0)|Pr| − L|µ|(Pr).

Therefore inequality (3.7) follows by letting r → 1 with c0 = max{|f(0)|, L}.

Step 2. In this part we prove that

dλ

dLN
(x0) ≥ f (µa(x0)) for LN -a.e. x0 ∈ Ω (3.13)

and

dλ

d|µs|
(x0) ≥ f∞

(
dµs

d|µs|
(x0)

)
for |µs|-a.e. x0 ∈ Ω. (3.14)

Proof of (3.13). Let x0 be such that

dλ

dLN
(x0) = lim

δ→0

λ (Q(x0; δ))

δN
<∞ (3.15)
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d|µs|
dLN

(x0) = lim
δ→0

|µs|(Q(x0; δ))

δN
dx = 0, (3.16)

lim
δ→0
−
∫
Q(x0;δ)

|µa(x)− µa(x0)| dx = 0, (3.17)

lim
δ→0
−
∫
Q(x0;δ)

|Λa(x)− Λa(x0)| dx = 0, (3.18)

dΛs

dLN
(x0) = lim

δ→0

Λs(Q(x0; δ))

δN
dx = 0. (3.19)

Recall that all the above properties are satisfied for LN -a.e. x0 ∈ Ω. Let δk → 0 be such that
Λ(∂Q(x0; δk)) = 0. Then by (3.15), (3.3), (3.5), and a change of variables

dλ

dLN
(x0) = lim

k→∞

λ (Q(x0; δk))

δNk

= lim
k,n

λn (Q(x0; δk))

δNk

= lim
k,n
−
∫
Q(x0,δk)

f(un) dx

= lim
k,n

∫
Q

f(un(x0 + δky)) dy. (3.20)

We claim that for all ϕ ∈ C0(Q;Rd)

lim
k,n

∫
Q

un(x0 + δky)ϕ(y) dy = µa(x0)

∫
Q

ϕ(y) dy. (3.21)

Indeed, let ϕ ∈ C0(Q;Rd). Then by a change of variables and since un
∗
⇀ µ ∈M(Ω;Rd) we get that

lim
n→∞

∫
Q

un(x0 + δky)ϕ(y) dy = lim
n→∞

−
∫
Q(x0,δk)

un(x)ϕ

(
x− x0

δk

)
dy

= −
∫
Q(x0,δk)

ϕ

(
x− x0

δk

)
dµ.

Hence, decomposing µ = µaLN + µs, by (3.16) and (3.17) and a change of variables

lim
k,n

∫
Q

un(x0 + δky)ϕ(y) dy = lim
k
−
∫
Q(x0,δk)

ϕ

(
x− x0

δk

)
µa(x) dx

= µa(x0)

∫
Q

ϕ(y) dy

which concludes the proof of (3.21). We remark that by a similar argument, using (3.18) and (3.19)
it also holds that

lim
k,n

∫
Q

|un|(x0 + δky)ϕ(y) dy = Λa(x0)

∫
Q

ϕ(y) dy. (3.22)

13



By a diagonalization argument from (3.21), (3.22), the fact that Aun → 0 in W−1,q
loc (Ω;RM ) and (3.20)

we can find a subsequence n = nk such that by letting

wk(y) := unk(x0 + δky), y ∈ Q,

we have that
wk

∗
⇀µa(x0)LN , (3.23)

|wk|
∗
⇀Λa(x0)LN , (3.24)

Awk
W−1,q(Q;Rd)−→

k→∞
0 (3.25)

and

dλ

dLN
(x0) = lim

k→∞

∫
Q

f(wk(y)) dy, (3.26)

from where inequality (3.13) follows by Lemma 2.15.

Proof of (3.14). Let x0 ∈ supp |µs| be such that

dλs

d|µs|
(x0) =

dλ

d|µs|
(x0) = lim

δ→0

λ(Q(x0; δ))

|µs|(Q(x0; δ))
<∞ (3.27)

and

dµs

d|µs|
(x0) = lim

δ→0

µs(Q(x0; δ))

|µs|(Q(x0; δ))
<∞. (3.28)

Recall that these properties are satisfied for |µs|-a.e. x0 ∈ Ω. Let tk −→
k→∞

∞ be such that

f∞
(
dµs

d|µ|s
(x0)

)
= lim
k→∞

f
(
tk

dµs

d|µ|s (x0)
)

tk
, (3.29)

and choose δk −→
k→∞

0 such that Λ(∂Q(x0; δk)) = 0 and

tk =
|µs|

(
Q(x0, δk)

)
δNk

(3.30)

(see Appendix A for a detailed description of this step). Then by (3.27) and (3.3),

dλs

d|µs|
(x0) =

dλ

d|µs|
(x0)

= lim
k→∞

λ
(
Q(x0, δk)

)
|µs|

(
Q(x0, δk)

)
= lim

k,n

λn
(
Q(x0, δk)

)
|µs|

(
Q(x0, δk)

)
= lim

k,n

∫
Q(x0,δk)

f(un(x)) dx

|µs|
(
Q(x0, δk)

)
= lim

k,n

1

tk

∫
Q

f(un(x0 + δky)) dy.
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Letting

wk,n(y) :=
un(x0 + δky)

tk
for y ∈ Q

and

fk(y) :=
f(tky)

tk
for y ∈ Q

it follows that

dλs

d|µs|
(x0) = lim

k,n

1

tk

∫
Q

f(tkwk,n(y)) dy

= lim
k,n

∫
Q

fk(wk,n(y)) dy. (3.31)

Note that each fk inherits the A-quasiconvexity property of f . Let us denote by w̃k,n the extension
Q-periodic to all of RN of wk,n. For each k, n,m ∈ N let us define

vk,n,m(y) := w̃k,n(my), y ∈ Q, (3.32)

and note that by changing variables and the properties of {un}∫
Q

|vk,n,m| dx =
1

mN

∫
mQ

|w̃k,n| dx =

∫
Q

|wk,n| dx ≤ C. (3.33)

We claim that

vk,n,m
∗
⇀

m,n→∞
αkLN , αk :=

µ(Q(x0, δk))

|µs|(Q(x0, δk))
(3.34)

and

Avk,n,m
W−1,q(Q;RM )−→

n→∞
0. (3.35)

To prove (3.34) let us write for each m ∈ N

Q =

mN⋃
j=1

(
aj +

Q

m

)
, aj ∈

ZN

m
. (3.36)

Given ϕ ∈ C0(Q;Rd)

∫
Q

vk,n,m(y)ϕ(y) dy =

mN∑
j=1

∫
aj+

Q
m

vk,n,m(y)ϕ(y) dy

=

mN∑
j=1

∫
aj+

Q
m

vk,n,m(y) (ϕ(y)− ϕ(aj)) dy +

mN∑
j=1

ϕ(aj)

∫
aj+

Q
m

vk,n,m(y) dy. (3.37)

By changing variables and using (3.30)
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mN∑
j=1

ϕ(aj)

∫
aj+

Q
m

vk,n,m(y) dy =

mN∑
j=1

ϕ(aj)

mN |µs|(Q(x0, δk))

∫
Q(x0,δk)

un(y) dy.

On the other hand by (3.33)∣∣∣∣∣∣
mN∑
j=1

∫
aj+

Q
m

vk,n,m(y) (ϕ(y)− ϕ(aj)) dy

∣∣∣∣∣∣ ≤ Cεϕ(m)

where
εϕ(m) = max

j
max

y∈aj+Q
m

|ϕ(y)− ϕ(aj)|.

Note that εϕ(m) −→
m→∞

0. Thus, passing to the limit in (3.37) and using Proposition 2.1 we have that

lim
m,n

∫
Q

vk,n,m(y)ϕ(y) dy = αk

∫
Q

ϕ(y) dy

which concludes the proof of (3.34). To prove (3.35) let ϕ ∈ C∞c (Q;RM ). Then, by decomposing Q
as in (3.36) it follows that

〈Avk,n,m, ϕ〉 = −
N∑
i=1

A(i)

∫
Q

vk,n,m
∂ϕ

∂xi

= −
N∑
i=1

mN∑
j=1

A(i)

∫
aj+

∂Q
m

vk,n,mϕνi +

N∑
i=1

mN∑
j=1

A(i)

∫
aj+

Q
m

∂vk,n,m
∂xi

ϕ

where ν = (ν1, ..., νN ) is the normal vector to ∂Q. Let σ1
k,n,m, σ

2
k,n,m ∈W−1,q(Q;RM ) be given by

〈σ1
k,n,m, ϕ〉 = −

N∑
i=1

mN∑
j=1

A(i)

∫
aj+

∂Q
m

vk,n,mϕνi

and

〈σ2
k,n,m, ϕ〉 =

N∑
i=1

mN∑
j=1

A(i)

∫
aj+

Q
m

∂vk,n,m
∂xi

ϕ

for ϕ ∈W 1,q′

0 (Q;RM ). If we prove that

σ1
k,n,m

M(Q;RM )
⇀

n→∞
0, (3.38)

which implies that

σ1
k,n,m

W−1,q(Q;RM )−→
n→∞

0,

and, in addition, we show that

σ2
k,n,m

W−1,q(Q;RM )−→
n→∞

0, (3.39)

then (3.35) will follow.
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Let us see that (3.38) holds. Note that for all ϕ ∈ C0(Q;RM )

|〈σ1
k,n,m, ϕ〉| ≤ C

mN∑
j=1

(∫
aj+

∂Q
m

|vk,n,m|

)
‖ϕ‖L∞ = Cm

(∫
∂Q

|wk,n|
)
‖ϕ‖L∞

=
Cmδk

|µs|(Q(x0, δk)

(∫
∂Q(x0,δk)

|un|

)
‖ϕ‖L∞ −→

n→∞
0,

where in last step we have used the condition Λ(∂(Q(x0, δk)) = 0 and the fact that |un|
∗
⇀ Λ inM(Ω).

In a similar way (3.39) follows by changing variables and using the hypothesis thatAun
W−1,q(Q(x0,δk);RM )−→

n→∞
0.

Therefore gathering all these steps together, by (3.31), (3.32), a change of variables, (3.34), (3.35) and
Lemma 2.15, applied to vk,n,m ∈ Lqper(Q;RM ), we conclude that

dλs

d|µs|
(x0) = lim

k,m,n

∫
Q

fk(vk,n,m(y)) dy

≥ lim inf
k

fk(αk).

Since fk is Lipschitz (with the same Lipschitz constant than f) and αk −→
k→∞

dµs

d|µs| (x0) (see (3.28))

using (3.29) we have that

lim inf
k

fk(αk) ≥ lim
k

f
(
tk

dµs

d|µs| (x0)
)

tk
= f∞

(
dµs

d|µs|
(x0)

)
from where (3.14) holds.

Step 3. We finally prove inequality (3.2). Let us denote by λsµ the singular part of λs with respect to

|µs|. Since λsµ is mutually singular with respect to |µ|+ LN then by (3.6)

λsµ(B) ≥ −c0(LN (B) + |µ|(B)) = 0

for all Borel sets B ⊂ supp λsµ, that is
λsµ ≥ 0. (3.40)

Now by the fact that Λ(∂Ω) = 0 and by (3.40), (3.13) and (3.14) we get that

lim inf
n→∞

F(un) = lim inf
n→∞

F(un; Ω)

= lim inf
n→∞

λn(Ω)

≥ λ(Ω)

=

∫
Ω

dλ

dLN
dx+

∫
Ω

dλs

d|µs|
d|µs|+ λsµ(Ω)

≥
∫

Ω

f(µa) dx+

∫
Ω

f∞
(
dµs

d|µs|

)
d|µs|.

3.1 Proof of Theorem 1.1

Given {µn} ⊂ M(Ω;Rd) such that µn
∗
⇀ µ, |µn|

∗
⇀ Λ (with Λ(∂Ω) = 0) and Aµn ∈ W−1,q

loc (Ω;RM ),

Aµn
W−1,q

loc (Ω;RM )
−→ 0, and using a regularization procedure (see Proposition 2.17), we can find a sequence
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of regular functions vm,n ∈ C∞(RN ;Rd) such that

vm,n
∗
⇀ µn, 〈vm,n〉(Ω)→ 〈µn〉(Ω) and Avm,n → Aµn in W−1,q

loc (Ω;RM )

as m→∞. Thus, by Corollary 2.8, we have that

lim sup
m→∞

F(vm,n) ≤ F(µn).

By an appropriate diagonalization procedure we can find a sequence un := vmn,n such that

F(un) ≤ F(µn) +
1

n
,

un
∗
⇀ µ, |un|

∗
⇀ Λ and Aun → 0 in W−1,q

loc (Ω;RM ). Then by Proposition 3.2

F(µ) ≤ lim inf
n→∞

F(un) ≤ lim inf
n→∞

F(µn).

The next example shows that the conclusion of Theorem 1.1 may not hold if the boundary condition
Λ(∂Ω) = 0 is dropped.

Example 3.3. Let Ω = (0, 1), un = χ(0, 1n ) and µn := Dun = δ 1
n

. We have that µn
∗
⇀δ0 and

curlµn = 0. Let f(v) = −v, v ∈ R. We note that f∞ = f . Then

lim inf
n→∞

F(µn) = lim inf
n→∞

∫ 1

0

f∞(1) dδ 1
n

= f∞(1) = −1 < F(δ0) = 0.

In this case Λ(∂Ω) = δ0(∂Ω) 6= 0.

4 Relaxation

In this section we prove Theorem 1.2, that is, we give an integral representation of the relaxation
of the functional (1.1) with respect the class of sequences {µn} ⊂ M(Ω;Rd) such that µn

∗
⇀ µ in

M(Ω;Rd), Aµn ∈W−1,q
loc (Ω;RM ), Aµn

W−1,q
loc (Ω;RM )
−→ 0 and |µn|

∗
⇀ Λ in M(Ω) with Λ(∂Ω) = 0.

Proof of Theorem 1.2. Set

H(µ) :=

∫
Ω

QAf(µa(x)) dx+

∫
Ω

QAf
∞
( dµs
d|µs|

)
d|µs|.

From the lower semicontinuity Theorem 1.1 the lower bound G ≥ H follows immediately. We show
now the upper bound, that is, given µ ∈M(Ω̄;Rd) ∩ kerA such that |µ|(∂Ω) = 0 we have to see that
G(µ) ≤ H(µ). For this purpose let γ > 0 and define

fγ(v) := f(v) + γ|v|, v ∈ Rd.

It is then enough to show that

G(µ) ≤
∫

Ω

QAfγ(µa) dx+

∫
Ω

Q∞A fγ

( dµs
d|µs|

)
d|µs| (4.1)

and to let γ → 0 (see Lemma 2.13).

Proof of (4.1). By Lemma 2.17 let {un} ⊂ C∞(RN ;Rd) such that un
∗
⇀ µ, 〈un〉(Ω) → 〈µ〉(Ω) and

Aun
W−1,q

loc (Ω;RM )
−→ 0. By Corollary 2.8 and Remark 2.12 we have

lim sup
n→∞

∫
Ω

QAfγ(un) ≤
∫

Ω

QAfγ(µa) +

∫
Ω

QAfγ
∞
(
dµs

d|µs|

)
. (4.2)
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We now decompose

Ω =

Jn⋃
i=1

Qi,n ∪ Ωn

where Qi,n = xi + riQ (i = 1, ..., Jn) are open and disjoint cubes and Ωn is disjoint from any Qi,n and
such that

Ωn ⊂ {x ∈ Ω : dist(x, ∂Ω) < 1/n}. (4.3)

Using the fact that the class of piecewise constant functions is (strongly) dense in L1(Ω;Rd), let vn
be a piecewise constant function such that

‖un − vn‖L1(Ω) ≤
1

n
(4.4)

and vn = ζi,n onQi,n for some ζi,n ∈ Rd. For each i, n, by Definition 2.9, we can find wi,n ∈ C∞per(Q;Rd)
with Awi,n = 0 and

∫
Q
wi,n(x) dx = 0 such that∫

Q

fγ(ζi,n + wi,n) dx < QAfγ(ζi,n) +
1

n
. (4.5)

Note that there exist a constant Kn such that

|wi,n(x)| ≤ Kn, for all x ∈ Q, i = 1, ..., Jn.

Let φn ∈ C∞c (Q;R), φn(x) ∈ [0, 1], x ∈ Q, such that φn = 1 on Q (0, τn) with τn → 1, as n → ∞,
and such that

Kn|Ω|(1− τnN ) ≤ 1

n
. (4.6)

For each x ∈ Ω set

vn,m(x) :=


un(x) + φn

(
x−xi
ri

)
wi,n

(
m
(
x−xi
ri

))
if x ∈ Qi,n

un(x) if x ∈ Ωn

We claim that ∫
Ω

|vn,m| ≤ C. (4.7)

Since {un} is bounded in L1 and ‖φn‖L∞ ≤ 1 to see (4.7) it is enough to prove that

Jn∑
i=1

∫
Qi,n

∣∣∣∣wi,n(m(x− xiri

))∣∣∣∣ dx ≤ C.
By a change of variables

Jn∑
i=1

∫
Qi,n

∣∣∣∣wi,n(m(x− xiri

))∣∣∣∣ dx =

Jn∑
i=1

rNi

∫
Q

|wi,n(y)| dy. (4.8)

We now use (4.5) to bound (4.8). Indeed by Remark 2.12

Jn∑
i=1

rNi QAfγ(ζi,n) =

Jn∑
i=1

∫
Qi,n

QAfγ(vn) dx ≤ C
∫

Ω

(1 + |vn|) dx ≤ C
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so that
Jn∑
i=1

rNi

∫
Q

fγ(ζi,n + wi,n) dx ≤ C. (4.9)

On the other hand

Jn∑
i=1

rNi

∫
Q

f(ζi,n + wi,n) dx ≥
Jn∑
i=1

rNi QAf(ζi,n)

=

Jn∑
i=1

∫
Qi,n

QAf(vn) dx

≥ −C
∫

Ω

(1 + |vn|) dx

≥ −C

that together with (4.9) implies that

Jn∑
i=1

rNi

∫
Q

|ζi,n + wi,n| dx ≤ C.

Therefore

Jn∑
i=1

rNi

∫
Q

|wi,n(x)| dx ≤
Jn∑
i=1

rNi

∫
Q

|ζi,n + wi,n| dx+

Jn∑
i=1

rNi

∫
Q

|ζi,n(x)| dx

≤ C +

∫
Ω

|vn| dx

≤ C.

Note that as
∫
Q
wi,n(x) dx = 0 then by Riemman-Lebesgue we have that

wi,n

(
m

(
· − xi
ri

))
∗
⇀

m→∞
0 (4.10)

and hence vn,m
∗
⇀ µ. In addition

wi,n

(
m

(
x− xi
ri

))
Axφn

(
x− xi
ri

)
∗
⇀

m→∞
0

and so Avn,m
W−1,q

loc (Ω;RM )
−→
n,m

0.

Using (4.7) by a diagonalization process we can obtain a sequence {vn,mn} such that vn,mn
∗
⇀ µ and

Avn,mn
W−1,q

loc (Ω;RM )
−→ 0.
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Let ṽn := vn,mn then by the Lipschitz continuity of f (and hence of fγ) and (4.4) we get that∫
Ω

fγ(ṽn) dx ≤
Jn∑
i=1

∫
Qi,n

fγ

(
un + φn

(
x− xi
ri

)
wi,n

(
mn

(
x− xi
ri

)))
dx

+C

∫
Ωn

(1 + |un|) dx

≤
Jn∑
i=1

∫
Qi,n

fγ

(
ζi,n + wi,n

(
mn

(
x− xi
ri

)))
dx+

C

n

+C

Jn∑
i=1

∫
Qi,n

(
1− φn

(
x− xi
ri

)) ∣∣∣∣wi,n(mn

(
x− xi
ri

))∣∣∣∣ dx
+C

∫
Ωn

(1 + |un|) dx.

Therefore by changing variables and using the periodicity of wi,n∫
Ω

fγ(ṽn) dx ≤
Jn∑
i=1

ri
N

∫
Q

fγ (ζi,n + wi,n(y)) dy +
C

n

+C

Jn∑
i=1

rNi

∫
Q

(
1− φn(y)

)
|wi,n(mny)| dy + C

∫
Ωn

(1 + |un|) dx

Next, by (4.5) and the Lipschitz continuity of QAfγ , we have that∫
Ω

fγ(ṽn) dx ≤
Jn∑
i=1

rNi QAfγ(ζi,n) +
C

n

+C

Jn∑
i=1

rNi

∫
Q

(
1− φn(y)

)
|wi,n(mny)| dy + C

∫
Ωn

(1 + |un|) dx

≤
∫

Ω

QAfγ(vn) dx−
∫

Ωn

QAfγ(un) dx+
C

n

+C

Jn∑
i=1

rNi

∫
Q

(
1− φn(y)

)
|wi,n(mny)| dy + C

∫
Ωn

(1 + |un|) dx

≤
∫

Ω

QAfγ(un) dx+
C

n

+C

Jn∑
i=1

rNi

∫
Q

(
1− φn(y)

)
|wi,n(mny)| dy + C

∫
Ωn

(1 + |un|) dx (4.11)

By (4.6) it follows that

Jn∑
i=1

rNi

∫
Q

(1− φn(y) |wi,n(mny)| dy ≤ Kn

Jn∑
i=1

rNi |Q \Q(0, τn)| ≤ Kn|Ω|(1− τnN ) ≤ 1

n

which implies that

lim sup
n→∞

Jn∑
i=1

rNi

∫
Q

(1− φn(y) |wi,n(mny)| dy = 0.
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Given ε > 0 choose n0 ∈ N such that LN (Ωn) + Λ(Ωn) < ε for all n ≥ n0. Then

lim sup
n→∞

∫
Ωn

(1 + |un|) dx < ε.

Therefore from (4.11) and (4.2) we get that

lim inf
n→∞

∫
Ω

fγ(ṽn) dx ≤ lim sup
n→∞

∫
Ω

QAfγ(un) dx+ ε

≤
∫

Ω

QAfγ(µa) +

∫
Ω

QAfγ
∞
(
dµs

d|µs|

)
+ ε.

Hence

G(µ) ≤
∫

Ω

QAfγ(µa) +

∫
Ω

QAfγ
∞
(
dµs

d|µs|

)
+ ε.

By letting ε go to zero inequality (4.1) finally follows.

A Appendix to the proof of (3.14)

With the notation used in the proof of inequality (3.14) (see (3.27) and (3.28)) let

g(δ) :=
|µs|(Q(x0; δ))

δN

for δ > 0 such that Q(x0; δ) ⊂ Ω. Notice that the function δ → |µs|(Q(x0; δ)) is nondecreasing and
consequently it has right and left limit at every point. Thus, also the function g has right and left
limit at every point, and we have

g−(δ0) ≤ g+(δ0),

for every δ0 > 0, where g−(δ0) = lim
δ→δ−0

g(δ) and g+(δ0) = lim
δ→δ+0

g(δ)

Lemma A.1. For every t > inf{g} there exists δ̄ > 0 such that

g(δ̄) = t.

In addition g is continuous at δ̄.

Proof. As g(δ) −→
δ→0
∞, we can find δ0 > 0 such that

δ < δ0 =⇒ g(δ) > t. (A.1)

Define
δ̄ = sup{δ : (A.1) holds}.

Thus
g+(δ̄) ≤ t and g−(δ̄) ≥ t

and we conclude that
g−(δ̄) = g+(δ̄) = g(δ̄) = t.

Lemma A.2. Let Λ ∈M+(Ω). Given a ∈ Rd there exists {sk} with sk −→
k→∞

∞ such that

f∞(a) = lim
k→∞

f(ska)

sk
(A.2)

and Λ(∂Q(x0; δk)) = 0 for {δk} such that g(δk) = sk.
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Proof. We start with a sequence {s̄k} (s̄k > inf{g}) verifying the condition (A.2). By Lemma A.1
we consider {δ̄k} such that g(δ̄k) = s̄k. We may not have the condition Λ(∂Q(x0; δ̄k)) = 0. As g is
continuous at δ̄k we can choose δk close enough to δ̄k such that Λ(∂Q(x0; δk) = 0 and g(δk) = sk is
such that {sk − s̄k} is bounded. As f is Lipschitz continuous (A.2) holds. Indeed, since {sk − s̄k} is
bounded

s̄k
sk

= 1 +
s̄k − sk
sk

−→
k→∞

1.

In addition as

f(ska)

sk
− f(s̄ka)

s̄k
=
f(ska)− f(s̄ka)

sk
+
f(s̄ka)

sk

(
1− sk

s̄k

)
,

and, by the Lipchitz continuity of f ,

|f(s̄ka)− f(ska)|
sk

≤ L|a| |s̄k − sk|
sk

−→
k→∞

0

and { f(s̄ka)
sk
} is bounded, then

lim
k→∞

f(ska)

sk
= lim
k→∞

f(s̄ka)

s̄k
.
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