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Abstract

We study integral functionals constrained to divergence-free vector fields
in I” on a thin domain, under standard p-growth and coercivity assump-
tions, 1 < p < co. We prove that as the thickness of the domain goes to
zero, the Gamma-limit with respect to weak convergence in LP is always
given by the associated functional with convexified energy density wherever
it is finite. Remarkably, this happens despite the fact that relaxation of
nonconvex functionals subject to the limiting constraint can give rise to a
nonlocal functional as illustrated in an example.
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1 Introduction

This article is devoted to the study the “effective” value per unit volume of func-
tionals constrained to solenoidal (i.e., divergence-free) vector fields defined on a
thin domain w x (0, ¢), in the limit as the thickness € goes to zero. We assume
that on a domain with finite thickness, our functional (which we call the “energy”,
although its meaning might be different from a physical point of view) is given
by a integral of the form

1/ .
- gy, v(y)) dy ifv e,
G:(v) == < € Jux(0,) (v v(w)

+ o0 if v € LP(w x (0,); RY) \ V.



where N > 3, w is a bounded domain in R¥™1 y = (v/,yy) € w x (0,¢), g :
wx RY — R is a given energy density, and G, is finite only in the class of
solenoidal vector fields on w x (0,¢) in L? for some 1 < p < oo, i.e.,

V. :={veLl(wx(0,e);R% |dive=0}.

Here and throughout the rest of this article, differential constraints as for v above
are understood in the sense of distributions, in particular, dive = 0 for a v €
LP(w x (0,¢); R®) means that [ v Vedy = 0 for all test functions ¢ €
C®(w x (0,¢e)) (smooth functions with compact support, scalar-valued). Using
rescaled variables given by z = (2/,zy) = (¢, e 'yny) and u(x) = v(a/,cxy), Ge
is transformed into a functional defined on a fixed domain:

{fﬂ (z,u(z)) de, ifuel, withQ:=wx(0,1),

Fe(u) oo if w € LP(Q;RY) \ U,

where f(x,-) = g(2/,-) for x = (2/,2y) € RV x R,
U. .= {ue LP(GR?)| diveu =0}

and
div. v = div' v/ + é(‘)NuN = (Zg;f@auo‘) + %8NUN

foru = (v/,u™) = (u!,...,u’). Asthis does not further complicate our approach,

we allow f to explicitly depend on xx as well below. We assume that
f:QxRY = R is a Carathéodory function® (f:0)
satisfying the following structural conditions:
(growth) | f(z,p)| < Cpl” + C, (£:1)

1
(coercivity) f(x,pu) > - P = C, (f:2)

with constants C' > 0 and 1 < p < oo, for every u € RY and a.e. x € Q.

Using the notion of I'-convergence introduced by DE GIORGI [10, 9], the effective
energy of in the limit ¢ — 07 is expressed by the I'-limit of F.. with respect to
weak convergence in LP. For an introduction to the theory of I'-convergence, the
reader is referred to [8] and [4]. We use the notation

[(L,.) — liminf F.(u) := inf { lim inf F,(u. | u. — u weakly in L},

e—07t

(L

weak

) — limsup F.(u) := inf { lim sup F_(u. ’ u, — u weakly in Lp}.

e—0t

i e. measurable in its first and continuous in its second variable



Below, we omit the topology indicated in brackets as throughout this paper, this
is always the weak topology in LP. We say that [' — lim F. exists if I' — liminf F
and I' — lim sup F. coincide, in which case this quantity is denoted by I' — lim F.
In particular, the use of the weak topology in L” causes a process of relaxation
in the limit, roughly speaking because energetically favorable microstructures of
a characteristic size converging to zero as € — 0 are allowed along the sequences
generating the effective (macroscopic) limiting energy.

The corresponding problem of dimension reduction for functionals depending
on gradients instead of divergence-free fields was investigated by LE DRET and
RaouLr [18, 19, 20| and stimulated a great deal of further research, including
the study of different scalings, partially with energy densities that are realistic
from the point of view of hyperelasticity (see [15] and the references therein), as
well as extensions to non-flat limiting surfaces |23, 22].

Recently, dimension reduction problems for Ginzburg-Landau-type functionals,
involving a magnetic potential which is divergence-free as a choice of gauge, were
studied in [6] and [1]. In both cases, the relevant parts of the energy density
(apart from compact perturbations) are convex and thus no relaxation occurs
during the limit process, avoiding the main difficulty of our problem. Relaxation
and homogenization of functionals constrained to solenoidal matrix fields were
treated in [29] and [2] (for related results and some physical background also see
[16] and [27]), as well as in [14], [5] and [12] for a more general constraint of the
form Au = 0. In this context, A is a linear differential operator assumed to satisfy
MURAT’s condition of constant rank [26]|, and apart from the examples in [31],
[24] and [21], very little is known if this condition is violated. In our framework,
div,. satisfies the condition of constant rank for each ¢, but the associated limiting
operator divy (divgu := dyu® for u : Q — RY) does not. From the point of view
of the theory for A-free fields developed in [14, 5|, this means that important
bounds for the projection operator onto div.-free fields and its complementary
projection are not uniform in € and projecting tends to create large errors as
e — 0% (cf. Remark 2.8). Hence, we can (and do) use the projection only along
sequences that are asymptotically div.-free in a very strong sense (cf. Lemma 2.9).

As we shall see, the divergence-free dimension reduction problem with nonconvex
energy density exhibits some intriguing features that do not occur in the gradient
case. In particular, it turns out that dimension reduction and direct relaxation
in the limit setting do not yield the same result in general. While the former
simply leads to convexification by our main theorem stated below, the latter
may give rise to a nonlocal functional as illustrated by the example discussed in
Proposition 3.3.

Unless indicated otherwise, we assume throughout that

N >2, wc RY¥!isopen and bounded, Q :=w x (0,1) and 1< p < oc.



Theorem 1.1. Suppose that (£:0)—(f:2) are satisfied. Then I' —lim._,o+ F. (with
respect to weak convergence in LP) exists, and it has the representation

. P (u) = () deif w € U,
I — 11H1F5<U> - { +00 @ qu c Lg(Q7RN> \uo,

where for each x, f**(x,-) denotes the convex envelope of f(x,-) and

Uy = {ueLp(Q;RN)’ oyul =0 in Q}

It is fairly easy to see that both I' — limsup F.(u) and I" — liminf F(u) are fi-
nite if and only if u € Uy (Lemma 2.2 and Lemma 2.3), and the lower bound
for I' — liminf F.(u) is of course a simple consequence of the weak lower semi-
continuity of convex functionals (Proposition 2.6). However, the upper bound,
' — limsup F.(u) < F**(u) for u € Uy, is far more difficult than in the gradi-
ent case. The main issue here is that a priori, we do not know whether or not
I' — limsup F. is a local integral functional. The usual trick for a proof of this
property, based on “localizing” a sequence u. that weakly converges to zero by
multiplying it with suitable smooth cut-off functions with the desired support,
does not work in our setting, at least not in direction of the last variable, because
the distance of the modified sequence to the set of div.-free fields in LP may be
of an order approaching 1/e which is an error too large to handle. Indeed, our
proof of the upper bound in Section 4 (culminating in Proposition 4.9) does not
use this kind of truncation in direction xy, instead relying on a rather explicit
construction of suitable sequences with small support in direction of xy which
are asymptotically div.-free in the sense that their distance to U. with respect
to the norm of LP goes to zero as ¢ — 07 (by Lemma 2.9). A prototype of this
construction for a simple example is presented in Proposition 3.5.

2 Preliminary observations

We first observe that both I' —lim sup F;(u) and I — lim inf F, (u) are finite if and
only if u € Uy. The following simple density result turns out to be useful.

Lemma 2.1. With respect to the strong topology in LP(S5;RYN), Uy N C>(; RY)
18 dense 1n Uy.

Proof. Let u € Uy, and extend v = (u',...,u") to a function in L (Q;RY)
such that v/ = 0on R¥\ Qfor j=1,...,N — 1, v =0 on RV \ (w x R) and
uN(2', zx) is still constant in xy for a.e. 2/ € w. Mollifying in the usual way yields

a sequence (uy)ren in C(RY; RY) N Uy with ug, — u strongly in LP(Q;RY). O



Lemma 2.2. Let v, be a bounded sequence in LP(Q2) with v, — vo weakly in
LP(Q2), and suppose that Oyv, — 0 in the sense of distributions. Then v., is
constant in xy. In particular, if (u:) C U. and u. — u weakly in LP, then
u € Z/[().

Proof. For every ¢ € C3°(w) and every n € C§°((0,1)), we have

n—oo

= lim// (2’ en) (2 )0 (xy) doydx’
w J(0,1)
:// Voo (', 2N ) p(2 )N (2 N) dyda.
w J(0,1)

In particular, since ¢ was arbitrary, we get
/ Voo (2!, 2N )N (x ) doy = 0 for ae. 2’ € w and every n € C5°((0,1)),
(0,1)

which in turn implies that v (2, ) is constant in xy. O

Lemma 2.3. For every u € Uy, there exists a sequence (u.) C U. such that
u. —u — 0 in LP(Q; RY).

Remark 2.4. Using Lebesgue’s theorem, (f:0) and (f:1), we get that lim F.(u.) =
Jo f(@,u) dz < oo, and thus I' — lim sup F.(u) < oo for every u € Uj.

Proof of Lemma 2.3. Step 1: Assume in addition that u € C1(Q; RY).
For j =1,...,N — 1 define v := v/, and let

TN
uN (2 wy) =N (@ 2N — 5/ div' u(a’, t) dt,
0

where div' v = yu' +. ..+ Oy_1uN"'. We thus have that div.u. = 0 and u. — u
strongly in L”, whence v. := u. has the asserted properties.

Step 2: The general case.

By Lemma 2.1, there exists a sequence (ux) C CY(:;RYN) Ny with u, — u
strongly in LP(Q; RY) as k — oco. For each k and each ¢, we define uy . € U as in
the first step, using wy instead of u. Now choose (k(¢)).~o with k() — oo slow
enough such that ¢ H“k(e)Hol(ﬁ;RN) — 0 as € — 0. As a consequence, U, := Up(e)
converges to u strongly in LP, and it satisfies div. u. = 0 by construction. ]

To prove the lower bound T — lim inf F.(u) > F**(u) for u € Uy, we first recall the
well known characterization of weak lower semicontinuity of convex functionals:



Theorem 2.5 (see [17] or [13], e.g.). Suppose that [ satisfies (£:0). Then the
functional J : LP(Q,RY) — [0,00], J(u) := [, f(z,u)dz, is lower semicontin-
uous with respect to weak convergence in LP if and only if f(x,-) is convex for
a.e. v € (L

As an immediate consequence, we have

Proposition 2.6 (lower bound). Suppose that the assumptions of Theorem 1.1
hold. Then for every u € Uy,

I' — liminf F.(u) > F**(u).

For the upper bound, we have to construct a suitable sequence (u.) C U. such
that u. — win L? and F.(u.) — F**(u), starting from a given u € Uy. The main
problem here is the constraint div. u. = 0. In particular, we rely on a projection
onto div.-free fields, which is based on the following special case of the projection
used in [14].

Lemma 2.7. Let 1 < p < oo and let Q C RN be an open cube. For every e > 0,
there exists a linear operator P. : LP(Q;RY) — LP(Q;RYN) with the following
properties:

(i) div. Pou = 0 on RY for every u € LP(Q;RY), where P.u is extended Q-
periodically.

(ii) Pow =w for every w € LP(Q;RN) such that div.w =0 on RN, where w is
identified with its Q-periodic extension to RY .

(i) | Peull pogmny < Cellull ooy for every uw € LP(Q;RY), with a constant
C. > 0 independent of u.

() [|(I = Pe)ull pogupny < Cell dive ullw-10(q) for every u € LP(Q; RN), with a
constant C. > 0 independent of u.

Here, on a given domain W =1 denotes the dual space of Wol’p, withp' = p/(p—1).

Proof. For ¢ = (¢,&Y) e RN\ {0}, (¢, 2¢) € R™Y has full rank independent of
& # 0, which means that for fixed ¢, div. satisfies Murat’s condition of constant
rank ([26]). Hence, Lemma 2.14 in [14] applies with A :=div. and T=P.. O

Remark 2.8. If p = 2 (avoiding the use of general Fourier multiplier theorems),
it is easy to see from the proof of Lemma 2.14 in [14] that (iii) and (iv) actually
hold with a constants independent of . However, we do not exploit this fact,
and in any case, the factor % hidden in the div. on the right hand side of (iv) is
still a major obstacle even if the constant in (iv) does not blow up as e — 0.
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For technical reasons, it is important for us to be able to work with sequences
which are not div.-free but can be projected to div.-free sequences with an error
that is negligible in the limit ¢ — 0*. The following application of Lemma 2.7
gives a useful sufficient criterion for sequences with this property.

Lemma 2.9. Let Q C RY be open and bounded, let 1 < p < oo and let &, — 0F.
Then there exists a sequence o, — 07 such that the following holds: For every
sequence (u,) C LP(;RN) with u,, — 0 in LP and

e, sy 10 2 oy < 2.1)
() ( )

where u!, = (ul,... ull™1), there exists a sequence (v,) C LP(2;RY) such that

n? n

div., v, =0 in Q and u, — v, — 0 in LP(Q;RY).

Proof. For every k € N choose a function ¢, € C°(€; [0, 1]) such that p(x) =1
for every x € Q with dist (z;0Q) > % Moreover, choose a cube () containing {2
and a sequence 7,, — 07 such that C. 7, — 0 with the constants of Lemma 2.7

(iv) (which also depend on @)). We define

Op = H%(@H%w(n) T and T 1= Pgotn

with a sequence of integers j(n) — oo (fast enough) such that w, — 4, — 0 in
LP(Q;RY). Since

dive, (oktn) = @i dive, un + Viy, - (uy, Zuy)),

£

we have that
1% () -1 < el ey (8%, s+ (1 202 1)
Hence, (2.1) implies that
Co 18-, Tally 10y = Co 18, Tnlly 100y < Conin = 0

as n — oo. The sequence v, := Ppi, € LP(Q;RY), restricted to €2, now has the
desired properties by Lemma 2.7. O

Applying Lemma 2.9 is not easy because o, might converge to zero extremely
fast. Nevertheless, it turns out to be possible for certain sequences constructed
below, first in Proposition 3.5 for a simple example and then in Proposition 4.3
as the first step in proof of the upper bound.



3 An example and a related relaxation problem

When studying the dimension reduction problem for functionals depending on
gradients (instead of divergence-free functions), one usually relies on a character-
ization of the associated relaxed functional in the limit setting, both as a lower
semicontinuity result for the lower bound and as a first step in the construction
of a sequence for the upper bound. In our framework, the associated relaxed
functional in the limit setting corresponds to the functional Fy introduced below.
Although Fj does not play a role in the proof our main result, we briefly discuss
it here to point out the somewhat surprising fact that Fy does not always give
the right limiting model for the divergence-free dimension reduction problem and
may even be nonlocal, in sharp contrast to the gradient case. In addition, the
crucial idea for the proof of the upper bound in our main result is developed in
Proposition 3.5 for a simple model problem.

In the following, we consider the functional

fQ flz,u)de  if u € Uy,

By definition, the relaxed functional associated to F is given by the lower semi-
continuous hull of F with respect to weak convergence in LP. For u € LP({;RY),
it can be expressed by

Fy(u) :==T —lim F(u) = inf {lim inf F(uy,) | u, — u weakly in Lp} (3.1)

Here, note that since £ does not depend on n, I' — liminf F =T — limsup F.
Moreover, Uy is weakly closed in LP, whence Fy(u) is finite if and only if u € Up.

Proposition 3.1 (partial representation of Fp). Let f : w x RN — [0, 00) (iden-
tified with f : Q x RY — R constant in xy) satisfy (£:0)— (£:2). Then for every
u € LP(w;RY) (identified with u € LP(Q;RY) with all components independent
of n ), we have Fy(u) = F**(u), the convegified functional.

Proof. Since f > f** and F** is weakly lower semicontinuous in LP(Q;RY), it
is clear that Fy(u) > F**(u). On the other hand, for any u € LP(Q; RY) which is
constant in z, we have

Fy(u) = inf {lim inf F(u,)

u, — u weakly in LP(;RY), Oyul =0 € R}
< inf {lim inf F(u,)

mf{hmlnf/f 2 u,) d’

/f**xuda:—/f**xu

u, — u weakly in LP(Q; RY), Oyu, =0 € ]RN}

— o weakly in LP(w; RN)}



where we used that [ f**(2’,v)da2’ is the weakly lower semicontinuous hull of
v [ f(a',v)da in LP. O

Example 3.2. Let p =6, let N =2, let f: R? — R be the three-well potential
given by

F) =l =GP =Gl =Gl
with ¢ 1= (07 _1)7 G2 = (170)7 G3:= (07 1)7

and consider the function uy € Uy given by

[ (0,0) ifzye (0
ug (1, 22) = { (1,0) ifay € (L,1).

Proposition 3.3 (Possible nonlocal character of Fy). In the situation of Eram-
ple 3.2, we have that

~ % (0,1)] -
Fo(ug) > 0= TFO((QO)) +

jw x (3, 1)
TF()((LO))-

In particular, Fy(u) cannot be written in the form Jo V(u) dz with some function
vV R? > R, and F[)(UO) > F**(Uo)

Remark 3.4. As recently discovered in [7], the lower semicontinuous hull with
respect to strong convergence in L? of certain integral functionals of the form
u fQ f(u, Vu)dx can also be nonlocal, if there is a lack of coercivity with
respect, to the gradient variable.

Proof of Proposition 3.3. Since f** = 0 on the closed triangle formed by (1, (o
and (s, Fy((0,0)) = Fp((1,0)) = 0 by Proposition 3.1. To prove that Fy(ug) > 0,
we proceed indirectly. Suppose that ﬁo(uo) = 0. By a standard diagonalization
argument, we may choose a sequence u,, € Uy with u, — ug weakly in L°(Q, R?)
such that Fy(ug) = lim F(u,). By passing to a subsequence (not relabeled), we
may assume that u, generates a Young measure v,, which for a.e. x € () is a
probability measure on R?, and by the fundamental theorem for Young measures
(see [3], [25] or [13], e.g.), also exploiting that f > 0, we get that

0 = Fy(ug) = lim /Q Flun)dz > /Q RGIGTE

Since f vanishes only on {(y, (2, (3}, this implies that v, is supported in {(y, (2, (3}
for a.e. x, i.e.,

Uy = 2321 oF (x)5gj, (3.2)



where 0, denotes the Dirac mass concentrated at the point z in R%. Moreover,
since [p, £ dvy(§) = ug(x) and v, is a probability measure for a.e. z, the coeffi-
cients o;j(x) € [0, 1] are determined by the linear system

3 3
> i1 03(@)¢ = uo(x) and 377 05(x) = 1.
One easily checks that the unique solution of this system is given by

o1(z) =1, oa2(x) =0, o3(z) =5 ifas <3 (ie, up(z) = (0,0)),

o1(z) =0, oa(x) =1, o3(x) =0 if 25 >3 (i.e., up(z) = (1,0)). (3:3)

In addition, the marginal of v, on the second coordinate axis,
v2(A) = v, (w x A) for A C (0,1) Borel-measurable,

is the Young measure generated by u? and thus independent of z,. However,
this contradicts (3.2) and (3.3), because the latter imply that v? = oy(2)d_; +
09(2)d0 +03(x)d1, and the coefficients are not constant in z5 (only piecewise). [

The dimension reduction problem is different because the constraint div, u. = 0
is actually genuinely less restrictive than dyulY = 0:

Proposition 3.5. In the situation of Example 3.2, for every given pair of se-
quences €, — 07 and o,, — 0T, there exists a bounded sequence (u,) C L=(2;RY)
such that u, — 0 wn LP,

/ﬂ Flun + ug) d — /Q F*(uo) d = 0, (3.4)

and

/
1uN

HdiVEn U’HHW*LP(Q) + H (un7 en n ) wal,p(Q;RN) S On (35)

for every n. In particular, u, can be projected onto U., with an error that goes to
zero strongly in LP by Lemma 2.9, and since dive, ug = div'uy = 0, this entails
that T' — liminf F. (ug) <0 < Fy(ug).

Proof. For each n fix a function ¢, € C((0,1);[0,1]) such that ¢, = 1 on
len, 1 —&,], and for k € N let

G=(0,1) if0<t< o,
G=(0,-1) if 5= <t <7,

wnlt) = (w0, w3 (0) = {

extended periodically to a function wy : R — R? with period % Note that

wi = 3G+ 56 = (0,0) weakly in L"(T;R?) (3.6)
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for any bounded open set T' C R. We define vy, € LP(2;R?) by

gon(Q:vg)wk(ixl) if0 <z < %,
0 if L <a <1

Vo (21, T2) = {

Observe that although vy, is not continuous, its jumps do not contribute to
div., v, (as a distribution), and thus the latter is actually a function with

dive, vgn (21, 22) = s—gbn(Qa:g)wi(ixl).
In particular, as k — oo for fixed n, div., vy, — 0 weakly in LP(Q2) as a conse-
quence of (3.6), and thus div., vy, — 0 strongly in W~1?(Q), by compact em-
bedding. Analogously, we get that vg, —up — 0 in in W1P(Q; RY) as k — oo.
Hence, we may choose k = k(n) with k(n) — oo as n — oo fast enough such that
(3.5) holds for u, := vk(n),. Again using (3.6), it is not difficult to check that
u, — 0 weakly in LP, and (3.4) holds as well. O

Remark 3.6. The choice of the dimension N = 2 is not crucial for Example 3.2,
it is just the simplest possible case. In fact, a completely analogous argument
can be used for suitable potentials f with N + 1 wells in RY for any N > 2.

4 The upper bound

In this section, we provide the remaining part of the proof of Theorem 1.1, namely
the upper bound

[' — limsup F.(u) < F*™(u) for u € Uy,

by constructing a suitable recovery sequence. In particular, we need some results
from convex analysis:

Lemma 4.1 (Carathéodory’s theorem, see 30|, e.g.). Let g : RNV — [0,00) be
continuous. Then for every & € RY and every 6 > 0, there exists an m €
{0,...,N} and & € RY, 0, € (0,1], j = 0,...,m, such that 0 =1,¢&=
> i€,

g7 () < Xh0i9(&) < g(E) +9,
and the vectors §; — &, j = 1,...,m, are linearly independent. Here, g** denotes
the convexr envelope of g.

Lemma 4.2. Suppose that the assumptions of Lemma 4.1 hold. If, in addition,
there exist constants p > 1 and C' > 0 such that

1
E\u\p—ng(u) <Cluff+C for every p € RM, (4.1)

11



then the assertion of Lemma 4.1 stays true even for 6 = 0, and in this case,
&1 < K(El+1) forj=0,...,m, (4.2)

where K is a constant that only depends on p and C'.

Proof. With some background in convex analysis, this is not hard to prove, and
we just sketch some details: It is well known that the convex envelope of g can
be represented as

g (&) =sup { A(¢)| A: RY - R affine and A < g}, { € RY.

If g is (lower semi-)continuous and has superlinear growth, the supremum is
attained at a suitable affine function A, (see [13], e.g.), and A, always touches g
from below at suitable points &; as in Lemma 4.1 with § = 0. In addition, as a
consequence of (4.1), we have that

1
c P — C < Ag(u) < ClulP 4+ C for every p € co{¢;}

(the convex hull of the points ;, j = 0,...,m). Clearly, the existence of an affine
function satisfying the latter implies that co{¢;} is bounded for fixed &, and it is
not difficult to obtain more precise estimates that yield (4.2). O

The following result is the crucial step towards the upper bound for I'—lim sup F;
in the general case.

Proposition 4.3. Let N > 2, let 1 < p < oo, let I C (0,1) be an open interval

and let €, — 0%. Then for every sequence 1, — 0T and every pair of points
1, ¢ € RY and numbers y1,72 € (0,1) such that (¥ # ¢3', G + 726 = 0 and
Y1+ Yo = 1, there exists a sequence (v,) C L=®(RY;RY) such that

[onl e < max{|Ci], [Cal}, (4.3)
[dive,, UnHW—LP(Q) + H (U;u ivr]zv) HW—I,p(Q;RN) < Ty (4.4)
for every n € N,

v, =0 in LY (RY;RY) asn — oo,

4.5
supp(v,) C RN x Uzez(anz + énl[‘f”]), (45)
where 1) := {t € I'| dist (t;0I) > €}, and
{v, = Y NU| — v |U||I] for every measurable set U C RY (4.6)
n—oo

and 7 =1,2.
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Remark 4.4. The assumption (¥ # (I is actually obsolete. The case of equality
is only excluded above because it is much simpler and will be treated separately
in Proposition 4.6 below.

Proof of Proposition 4.3. For each n € N fix a function ¢, € C>*(R; [0, 1])
such that ¢, = 1 on 1%+ and ¢, = 0 on R\ I and define

Un € C®(R;[0,1]), ¥n =) @nl-+2).

2€Z

Furthermore, for k& € N let

0 G oif0<t<my,
w =
: (2 if—72%<t§0>

extended periodically to a function wy : R — RY with period % Note that

wy — 711G + 72l =0 weakly in LT (R;RY). (4.7)
With a fixed unit vector (i3 € RY perpendicular to {; — (s, we define vy, €
L®(RN; RY) by

ko) = (G, o) -G

Observe that although = +— wy ((éx’, éxN) -({3) is not continuous, it is div,, -free
(as a distribution), and thus div,, v, is actually a function with

div., vpn(z) = 5;2¢n(§x1\/)w£{(($x', é:pN) (i)
In particular, as k — oo for fixed n, div., vy, — 0 weakly in LP(Q2) due to
(4.7), and thus div., vy, — 0 strongly in W~*(Q), by compact embedding.
Analogously, we get that vy, — 0 in in W=1P(Q; RY) as k — oco. Hence, we may
choose k = k(n) with k(n) — oo as n — oo fast enough such that (4.4) holds for
Up 1= Uk(n)n, and (4.3), (4.5) and (4.6) hold by construction. O

Carathéodory’s theorem requires convex combination of up to N + 1 points, but
Proposition 4.3 only admits two points. The following elementary lemma allows
us to handle general convex combinations by breaking them into suitable pairs
of two. Essentially, it states that if £ = > ;0;€; 1s a convex combination with
¢ € H, where H is an affine hyperplane, then £ can be rewritten as a convex
combination of points &; € H, such that each &; is a convex combination of two
of the original points, i.e., &; = B;;&; + Bjié:
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Lemma 4.5. Let m < N and let § € RY, 0, € (0,1] for j =0,...,m such that
Z;‘n:() 0; = 1 and the vectors §; —&o, j = 1,...,m, are linearly independent. Then
there exists numbers a;; € [0,1], 1,7 € {0,...,m}, such that

mJ
a;; = oy, oy = 0 whenever 3;; =0, Z ZO@]’ =1, (4.8)
j=0 =0
0; = Z%’jﬁz’j, (4.9)
i=0
and
1 m
§= 5 Z i (B35 + Bii&) = Z aij (Bi&; + Biiki) + Z ;5558 (4.10)
i,j=0 i<j J
where NN
oo (N —¢N) <0,
Bij = 1 z'fz'zjand&j-v:gv,
0 else.

Here, note that B;; € [0,1] and By + Bji = 1 if (£ — fN)(ij - &) <o.

Proof. Let H:={y e RN | y¥ =N}, Since £ € S:=co{& | j=0,...,m}NH
(where co A denotes the convex hull of a set A), which is a convex polyhedral
set, & can be written as a convex combination of the extreme points of S. Such
an extreme point is either given by &; for some j such that & = &V, or it is the
intersection of H with a line segment of the form co{¢;,;}, for indices i, j such
that & and ¢ lie on opposite sides of H (i.e., (§¥ —&V)(€) —&Y) < 0). Note
that co{¢;, &} N H = {§;;&; + B;:&} in this case. Hence, there exist a;; € [0, 1]
such that a;; = aj;, o = 0 if B;; = 0, Zigj a;; = 1 and (4.10) holds. Moreover,
since ay; = i, we have that

1 & (S
£ = 5 Z Oéij(ﬁijgj + 6]152) = Z (Zaijﬁ”)gj.
i,j=0 =0 =0

This is another way of expressing £ as a convex combination of the points ¢;.
Since §; — &, j = 1,..., N, are linearly independent, the coefficients of the
convex combination are uniquely determined, and comparison yields (4.9). O]

Combining multiple instances of Proposition 4.3 with Lemma 4.5, we obtain

Proposition 4.6. Let N > 2, let 1 < p < oo, let J C (0,1) be an open interval
and let €, — 07. Moreover, letm < N, let £; € RN and 6; € (0,1], j=0,...,m,

be such that
Zjﬁjéj — O, Zj Hj == 1,
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and the vectors §; — &, j = 1,...,m, are linearly independent. Then for every
sequence o, — 0T, there exist sequences (yy,), (2,) C L=(RY;RY) such that

[Ynl oo < max; €] and |[2n]| oo < max; ], (4.11)
OnyY =div'y, =0 on R", (4.12)
[dive, ZnHW*LP(Q) + H (27/17 izév) wal,P(Q;RN) < On (4.13)

for every n € N,

Yn =0, 2, =0 in LP(wx J;RY) as e — 070,

N-1 (4.14)
supp(y,) Usupp(z,) C RY ™ x K,, for a compact set K,, C J

and

Hyn + 20 =& NU| . 0;|U|, for every measurable U C RN™! x J (4.15)
E—
and every j € {0,...,m}.

Proof. Let a;; and f3;; be as in Lemma 4.5, and divide the unit interval (0, 1) into
pairwise disjoint open subintervals I;;, 0 < ¢ < j < m (some possibly empty),
such that |I;;| = a;j. For € > 0 let

Tii(e) == RN x U(sk +elyj), §ij = { ?jl& s i ; i i’

keZ

For i < j, we define bounded sequence (Y;j.1)n, (2ijn)n C L°(RY; RY) as follows:
Yijm ‘= XTij(an)f_z'j,

where x1,(,) denotes the characteristic function of the set Tj;(e,). For every j,
we set zj;, := 0. For i < j, let z;;, be the sequence obtained in Proposition 4.3,

applied with I := I;j, 7, := WM%%, G=&— gij» G =& —&j, 1 == Gji
and v, := B;; = 1 — Bj;. In particular, Proposition 4.3 gives that

{zijm = & = &5} NU| — Bii|1y| U] = Bjici; U],

X (4.16)
[{zijn =& — &3 NU| — Bi |15 [U] = Bijau; U],

for every measurable U C R, and

supp(zij.) € RV x Urkez (5nk: + enli[;"]) with a compact Ii[j-”] cl; (417)

for every i < j (for i = j, (4.16) and (4.17) are trivial). In addition,

/ 1 N
(Zz‘j,m a”z’j,n)

L 7EnTn (4.18)

1dive, 2ijnllw 1) + ‘ ‘wlm(n;w) = G

15



for every n and every ¢ < j. Now let

J

Z]:z”n:r and gn(x)::iZywn:v for z € RY.

i=0 j=0 i=0

I

<
Il
o

Note that at any given z, at most one term contributes in each of the double
sums above; more precisely, 2, = z;;, and g, = y;;,, on T;;(e,). Moreover,

Yn —

e—0t

NE
Mu.

|I5] &5 = ZO‘@J Bii&; + Bji&i) + ZO‘JJBJJfJ =

1<j

.

Il
o

Il
o

weakly in LP(Q; RY), and
ONiY =div' g, =0 on RY

since g, (-, 2 ) is constant for every zy € R and g = &Y = 0 a.e.. By (4.18), we
obtain that

s )
H legn ZnHW71p + H( 7/17 i HW Lp(Q;RY) (4 19)
< Z] 021 Om(gn + 1)0n = En;lan < On
for n € N. By (4.16), we get that
i+ 20 = &3 00— (111 + Y Byasy) U] = 6 U] (4.20)

i#]

for every j and every measurable U C R", where the latter equality is due to
(4.9) combined with the fact that ’IE"] = ay; = Bjja;;. Finally, define

Zn = XRN-1xK,*n and Yn = XRN-1x K, Un
where

K,:= |J (eak+2,00,1)) and Z,(J) = {k € Z| e,k +,[0,1] C J}.

keZn(J)

Clearly, (4.11), (4.14) and (4.15) are satisfied, the latter as a consequence of
(4.20). In addition,

zn =0 and ¢y =&Y =0 in a vicinity of RV ™' x 0K,

the former by (4.17). Consequently, dyyY = OngY = 0 and div' ¢/, = div' g/, = 0

on RY, and (4.19) implies (4.13). O
The next result essentially yields the upper bound in the piecewise constant case.
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Proposition 4.7. Let fu be a function satisfying (£:0)—(f:2) and let uy € Up.
Moreover, let J, C (0,1) be a finite number of pairwise disjoint open intervals
covering (0,1) up to a set of measure zero, let wy, C w be a finite number of open,
pairwise disjoint sets covering w up to a set of measure zero, and suppose that

for each (h, k) and each p € RY,
ugy and fu(-, 1) are constant on Qp i, where Qp i = wp, X Ji.

Then for every pair of sequences €, — 07 and 7,, — 07, there exist two sequences
(vn), (w,) C L®(RY) such that v, — 0 and w, — 0 in LP(Q;RY),

v (@) < K (Jug(z)|+1) and |wa(z)] < K (|ug(z)|+1) for a.e. z € Q, (4.21)

where K is a constant that only depends on the constants in (f:1) and (f:2),
div., v, =0 on RY, (4.22)
[dive, Wally-15) + | (wh, iwﬁ) HW*LP(Q;RN) < T (4.23)
for every n € N, and
lim / oz, u+v, +w,)de = / [y (z,u)dz, (4.24)

where for every x, fi*(x,-) denotes the conver envelope of fy(z,).

Proof. Step 1: We first show the assertion with (4.22) replaced by the condition
Onvl =0 on RY and ||div/v) || gy < (€0) 72 (4.25)

Clearly, it is enough to define v,, and w, on each @ and prove the asserted
properties with )y 5 instead of 2, as long as the restriction of v,, and w,, to any
one (), has compact support in this set. Hence, we consider h and k to be fixed
below.

Let (0,,) C (0,00) be a sequence with o,, — 07 (fast enough, as specified later),
and define

up g = uy(z) and gup(p) = fu(r, u+upy) for z € Qpp and p € RY.

By Lemma 4.1 and Lemma 4.2, 0 € RY can be written as a convex combination
0= ZT:U ;&; such that {; — &, j = 1,...,m, are linearly independent and

> im0 fa(@, & +ug () = 3700;9n0(&5) = 957(0) = [ (2, ug(x)),  (4.26)
for every x € Qp . Moreover, as a consequence of (4.2),

max; |§] < K (|ups| + 1), (4.27)
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with a constant K only depending on the constants in (f:1) and (f:2). Proposi-
tion 4.6 applied with J = J yields two sequences (y,), (2,) C L>=(RY;RY) such
that 1, — 0 and 2, — 0 in L?

loc»

yn(2)] < K(|upsl +1) and |2,(2)] < K(|ung| +1) forz € RY,  (4.28)

Oy =div'y, =0 on RY, (4.29)
”diVEn ZVIHW*LP(Q) + || (21/17 izé\[) HW—l,p(Q;RN) < On, (430>
Y, and z, vanish in a vicinity of RV ~! x 9.J, (depending on n), (4.31)
and .
lim In(Yn + 2n) dz = |Qpi| Z 0;9n.(&5), (4.32)

—
0 J Qnok =0

the latter due to (4.15) and Lebesgue’s theorem. Together with (4.26), (4.32)
yields that
lim Gnse(Yn + 2n) dx = / 9" (0) dx. (4.33)
0 S Qn Qh,k

To obtain functions with compact support in @, we have to cut off y, and
zn near (Owp) X Ji. For this purpose choose a sequence of functions 7, €
C2°(wp; [0,1]) in such a way that

1 1
N 1 pointwise and ||V, < (6n) 2—F———
L K( |Uh7k| + 1)

Below, we identify 7, with a function in C°°(RY) that is constant in xy. In
particular, we have that

(1 =1y, = 0 and (1 —mn,)z, — 0 pointwise a.e. on Q. (4.34)

We define
Up i= Mn¥Yn and w, :=np2,
By construction, these functions have compact support in Qp, %, v, — 0in L” and

w, — 0 in LP, and (4.28) entails (4.21). In addition, we have (4.25), its second
part since by (4.29), div' v, = (V'n,) - ¢/, = (V1) - y» and thus

iV 05 [l e < NVl oo [[Ynll 1o < (E0) 72
By Lebesgue’s theorem, (4.33) and (4.34) yield (4.24) for Q) instead of 2.
Finally,

dive, (nzn) = (V') - 2, + nndive, 2y,
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whence

[|dive, (nnzn)Hw—l,p(thk) + H ((%Zn)', gin(nnzn)N) Hw—l,p(thk;RN)

< HnﬂHWZOO(RN) ( |dive, Znuw—lm(ﬂ) + H (Z;w ézév) HW—LP(Q;RN))

< Hnn||w2,oo(RN) Onp

by (4.30). With oy, := 7, (|| |ly2.00) ', this gives (4.23) for Q. instead of Q.

Step 2: We still have to modify v, to obtain (4.22) instead of (4.25), while
maintaining the other asserted properties. For x € RY let

Up(x) = vy (2) — gn/ div' ) (2, t) dt
0

for x = (2/,zn) € Q, with v, as in the first step. Since dyv, = 0, we have
div. 9, = 0 on © by construction, and due to the second part of (4.25),

- 1
[on = Unl[poe < (€n)? = 0.

As a consequence of the latter, (4.21), (4.23) and (4.24) also hold for o, instead
of v, (in case of (4.21) with a slightly larger constant). O

The proof of the upper bound in the general framework relies on approximation
and the following well-known property of Carathéodory functions.

Proposition 4.8 (Scorza-Dragoni, e.g. see [11]). Let Q@ C RY be open and
bounded and let f : Q x RY — R be a Carathéodory function. Then for ev-
ery 6 > 0, there exists a compact set Q C Q such that |Q\ Q| < & and f is
continuous on 0 x RV,

Proposition 4.9 (upper bound). Assume (£:0)—(f:2), let u € Uy and let e, — 0.
Then for every 6 > 0, there exists a sequence (u,) C U., such that u, — u in

LP(Q;RY), and

lim [ f(z,u,)dx < / 7 (r,u)dx + 6. (4.35)
Remark 4.10. Since (f:2) yields a bound on ||u,||;, independent of J, a diagonal-
ization argument similar to the one in the third step of the proof below shows
that the assertion of Prioposition 4.9 stays true even for § = 0.

Proof of Proposition 4.9. Using a series of approximations, the assertion is
reduced to Proposition 4.6. Any expression of the form “A ~ B” below means

that A = B+e, with an error e whose modulus is controlled by a suitable fraction
of 4.
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Step 1: Assume that u € Uy is continuous in € and f is continuous on Q x RV,

for some compact Q C Q. We claim that in this case, there exists sequences
(up) C U., and (r,) C LP(Q;RY) such that u, — 0 and r, — 0 in LP,

lim [ f(z,u, —ry)de = lim [ f(z,u,)dz~ / (x,u) de (4.36)
0

n—oo Q n—oo

and
|un(z) — m(2)] < (2K + 1)(Ju(z)|+ 1) for a.e. x € Q, (4.37)

where K is the constant in (4.28) (which, unlike u, and r,, is independent of ).

For the proof, we divide 2 into sets of the form @Q)j; = wp X Ji and define
associated piecewise constant approximations of u and f as follows: Let uy =
(ul,...,u}) be given by

u;é(a;) := inf { min{v’ (z), 0} | x € Qui } + sup { max{u’(z), 0} ‘ T € Qurt,

for j = 1,..., N, whence uy is a piecewise constant function in U, such that
|uly| < |u?|. Moreover, for x € Qp let

Q N Qh,k if |Q N Qh,kz| > 0,

fu(z,) == f(zhr,-) with a fixed 5y € { Qo otherwise,

Note that zj ; can always be chosen in such a way that f, satisfies (f:1) and (£:2)
with the original constants. In the following, let

S := Br(0) c RN, with R := (2K + 1)(H1~LHL°°(Q;RN) +1),

where K is the constant in (4.28). If the mesh size (the maximal side length of
the boxes ()5, x) is small enough, we get that

max [u(2) — up(2)| ~ 0 and  max [fe,p) — fule,p)] 20 (438)

€N xe@, pnes

by the uniform continuity of u and f on compact sets. With the sequences v,
and w,, of Proposition 4.6, using (4.38), (4.21) and the uniform continuity of f
on €2 x S, we thus have that

/f(:c,u+vn+wn)da:%/f(a:,u#+vn+wn)d:z:%/f#(x,u#—irvn—l—wn)dx
0 0 0

uniformly in n. Similarly, (4.38) and the uniform continuity of f** on Q x S yield

that
/ **xudxw/f**:cu# dxm/f (x,ug)d
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Together with (4.24) (for fx and uy instead of f and w), this gives

lim [ f(z,u+ v, +w,)dr=~ / [ (x,u) (4.39)

n—oo Q

Finally, by Lemma 2.3 and Lemma 2.9 applied to u and w,, respectively, there
exists a sequence (r,) C LP(€;RY) such that r, — 0 in L? and div,, (u + w, +
rn) = 0 on Q. By Lebesgue’s theorem, (f:0) and (f:1), we have that

lim f(w U+ v, + wy)dr = lim f(x U+ v, + wy, + 1) d, (4.40)

n—oo n—oo

also using that u € LP is fixed and (v,), (wn) are bounded in L*>°. Combining
(4.39) and (4.40), we infer (4.36) for w, = u + v, + w, + r,, and (4.37) is a
consequence of (4.28) and the fact that |uy| < |u] a.e. in €.

Step 2: Assume that u € U is continuous in €.

As a consequence of Proposition 4.8, there exists a compact subset Q of Q such
that f is continuous on Q x RY, and |Q \ Q‘ is small enough such that

|1 de=o (4.41)
0\0
and
sup/ f(z,v(x))| dz = 0, (4.42)
veV JO\Q

where V := {v € LP(RY) ||v] < (2K + 1)(Ju| + 1) a.e. }. Here, note that the
set {f(-,v(-))] veV} C LYNQ) is equiintegrable by (f:1). With the sequences
(un) C U., and (r,) C LP(Q;RY) of Step 1, we thus have that

lim [ f(z,u, —1r,) = lim f T, Up) /f** x,u)

n—oo 0 n—oo

due to (4.36), (4.41), (4.37) and (4.42).

Step 3: The general case.

By Lemma 2.1, there exists a sequence (@iz) C Uy N C(;RY) with @, — u in
Lr(Q). Let (tgn) C U, and (Fg,) C LP(Q;RY) denote the sequences correspond-
ing to uy obtained in the previous step. By (4.37), g, — Tk is bounded in LP,
uniformly in k and n. Since the dual of LP(Q; RY) is separable, iy, — Trn — up,
in L” as n — oo, 4, — w in LP as k — oo, 74, — 0 in LP as n — oo, and

lim f:vukn /f**xuk /f**xu
n—00 k—o0

there exist diagonal sequences

U/n = ﬁk(n):n e Z/{En a’nd rn = fk(n)vn e LP<Q7RN)
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with k(n) — oo slow enough such that u, —r, — w in L?, r, — 0 in L?, and

lim [ f(x,u,)~ / [ (z,u). u
Remark 4.11. It is natural to ask whether our result also holds for functionals
on Div-free matrix fields (i.e., each column is divergence-free). The approach
presented here extends in a straightforward way to fields with values in RV for
M < N —1, but it does not work for M > N. Of course, for M > N, the matrices
can have rank N, and in general, it is no longer clear if Div-quasiconvexity (S-
quasiconvexity in the terminogy of [28], which implies convexity along directions
of rank < N — 1) implies convexity. We expect that in this case, the convex
envelope in Theorem 1.1 has to be replaced by a suitable variant of a quasiconvex
envelope. We hope to address this in a future work.
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