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Abstract. The relation between quasiconvexity and k-quasiconvexity, k ≥ 2, is

investigated. It is shown that every smooth strictly k-quasiconvex integrand with

p-growth at infinity, p > 1, is the restriction to k-th order symmetric tensors of

a quasiconvex function with the same growth. When the smoothness condition is

dropped, it is possible to prove an approximation result. As a consequence, lower

semicontinuity results for k-th order variational problems are deduced as corollaries

of well-known first order theorems. This generalizes a previous work by Dal Maso,

Fonseca, Leoni and Morini, in which the case k = 2 was treated.
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1. Introduction

We consider higher order variational problems, in which the energy functional has the expression

u 7−→

∫

Ω

f(x, u,∇u, . . . ,∇ku) dx, (1.1)

where Ω ⊂ RN is open and bounded, N, k ≥ 2 are integer, and f is a scalar function satisfying
suitable growth conditions. Although our treatment can be extended to the vectorial case, to
keep the formulation as simple as possible we will treat the case of scalar functions u : Ω → R.
Functionals of this type appear in the study of elastic materials of grade k (see [23]), in the
theory of second order structured deformations (see [21]), in the Blake-Zisserman model for image
segmentation in computer vision (see [5]), in gradient theories of phase transitions within elasticity
regimes (see [7], [15], [20]), and in the description of equilibria of micromagnetic materials (see
[9], [6], [20], [22]). In order to study lower semicontinuity of functionals of this type, Meyers
introduced in [18] the notion of k-quasiconvexity (see also [3] and [13]), extending the definition
of quasiconvexity given by Morrey in [19].

Let Ek ⊂

k times︷ ︸︸ ︷
R

N × . . .× R
N = RNk

be the set of k-th order tensors of RN that are symmetric with
respect to all permutations of indices. In particular, E2 coincides with the set of the symmetric
N ×N matrices. A function f ∈ L1

loc(Ek) is said to be k-quasiconvex if
∫

Q

[
f(A+ ∇kφ) − f(A)

]
dx ≥ 0

for every A ∈ Ek and every φ ∈ Ck
c (Q), where Q = (0, 1)N is the open unit cube in RN , and

Ck
c (Q) is the set of functions of class Ck with compact support in Q. We recall that a function

F ∈ L1
loc(R

Nk

) is said to be 1-quasiconvex (or simply quasiconvex) if
∫

Q

[F (A+ ∇ϕ) − F (A)] dx ≥ 0

for every A ∈ RNk

and every ϕ ∈ C1
c (Q; RNk−1

). In [18], the author proved that k-quasiconvexity
is a necessary and sufficient condition for sequential lower semicontinuity of (1.1) with respect
to weak convergence in the Sobolev space W k,p(Ω), under appropriate p-growth and continuity
conditions on the integrand f . This result has been later extended to the case where f is a
Carathéodory integrand by Fusco (see [13]) and by Guidorzi and Poggiolini (see [14]), for p = 1
and p > 1 respectively.
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The aim of this paper is to investigate the relation between k-quasiconvexity and quasiconvexity.
When k = 2 this problem has been studied by Dal Maso, Fonseca, Leoni and Morini. In [8],
they prove that every strictly 2-quasiconvex function (see condition (a) below) of class C1, whose
gradient is locally Lipschitz continuous, is the restriction to symmetric matrices of a 1-quasiconvex
function. We extend here this result to the case k > 2.

Theorem 1.1. Let k ∈ N, k ≥ 2. Let f ∈ C1(Ek), and let 1 < p < ∞, µ ≥ 0, L > 0, ν > 0.
Assume that

(a) (strict k-quasiconvexity)
∫

Q

[
f(A+ ∇kφ) − f(A)

]
dx ≥ ν

∫

Q

(
µ2 + |A|2 + |∇kφ|2

) p−2

2 |∇kφ|2dx

for every A ∈ Ek and every φ ∈ Ck
c (Q);

(b) (Lipschitz condition for gradients)

|∇f(A+B) −∇f(A)| ≤ L
(
µ2 + |A|2 + |B|2

) p−2

2 |B| (1.2)

for every A,B ∈ Ek.

Then there exists a 1−quasiconvex function F : RNk

→ R such that

F (A) = f(A) ∀A ∈ Ek, (1.3)

|F (A)| ≤ cf (1 + |A|p) ∀A ∈ R
Nk

, (1.4)

for a suitable constant cf depending on f .

Notice that the above conditions (a) and (b) together imply L ≥ ν (see Proposition 2.8). When
p ≥ 2, we also give an explicit expression for the function F (see formula (3.9)). The proof of
Theorem 1.1 (see Section 3) is obtained by iterating k − 1 times a refined version of [8, Theorem
1] (see Lemma 3.1 for the case 1 < p < 2 and Lemma 3.2 for the case p ≥ 2).

It is not clear whether Theorem 1.1 still holds true by weakening condition (1.2). However, if we
substitute (1.2) with the milder (see Proposition 2.9) condition (1.5), we obtain an approximation
result for the function f . More precisely, we show that a strictly k-quasiconvex function with
p-growth at infinity can be obtained as pointwise limit of a sequence of 1-quasiconvex functions
with the same growth (see [8, Theorem 2] for the case k = 2).

Theorem 1.2. Let k ∈ N, k ≥ 2. Let 1 < p <∞, µ ≥ 0, ν > 0, M > 0, and let f : Ek → R be a
measurable function such that

(a) (strict k-quasiconvexity)
∫

Q

[
f(A+ ∇kφ) − f(A)

]
dx ≥ ν

∫

Q

(
µ2 + |A|2 + |∇kφ|2

) p−2

2 |∇kφ|2dx

for every A ∈ Ek and every φ ∈ Ck
c (Q);

(b) (p-growth condition)

|f(A)| ≤M(1 + |A|p) (1.5)

for every A ∈ Ek.

Then there exists an increasing sequence {Fi}i∈N of 1−quasiconvex functions Fi : RNk

→ R, such
that

lim
i→+∞

Fi(A) = f(A) ∀A ∈ Ek, (1.6)

|Fi(A)| ≤Mi(1 + |A|p) ∀A ∈ R
Nk

, ∀ i ∈ N, (1.7)

where {Mi}i∈N is a sequence of positive constants depending only on i and on the constants
p, µ, ν,M , but not on the specific function f .
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To show this, we use the property that every k-quasiconvex function with p-growth is locally
Lipschitz. We give here a proof of this fact (see Proposition 2.7), that was already known in
the cases k = 1 (see [17]) and k = 2 (see [14]). Thanks to Theorem 1.2, the study of lower
semicontinuity of (1.1) reduces to a first order problem. Thus, when f is a k-quasiconvex normal
integrand (see assumption (a) below) we can prove the following result (see [8, Theorem 3] for the
case k = 2). Here we use the notation

E1 := R
N , E[k−1] := R × E1 × ...× Ek−1,

and
SBH(k)(Ω) := {u ∈W k−1,1(Ω) : ∇k−1u ∈ SBV (Ω;Ek−1)}.

Theorem 1.3. Let k ∈ N, k ≥ 2. Let Ω ⊂ RN be a bounded open set and let

f : Ω × E[k−1] × Ek → [0,+∞)

be a measurable function such that:

(a) f(x, ·, ·) is lower semicontinuous on E[k−1] × Ek for LN -a.e. x ∈ Ω;

(b) f(x,v, ·) is k-quasiconvex on Ek for LN -a.e. x ∈ Ω and every v ∈ E[k−1];
(c) there exist a locally bounded function a : Ω×E[k−1] → [0,+∞) and a constant p > 1 such

that
0 ≤ f(x,v, A) ≤ a(x,v)(1 + |A|p)

for LN -a.e. x ∈ Ω and every (v, A) ∈ E[k−1] × Ek.

Then ∫

Ω

f(x, u,∇u, . . . ,∇ku) dx ≤ lim inf
j→+∞

∫

Ω

f(x, uj ,∇uj, . . . ,∇
kuj) dx

for every u ∈ SBH(k)(Ω) and any sequence {uj} ⊂ SBH(k)(Ω) converging to u in W k−1,1(Ω) and
such that

sup
j

(
‖∇kuj‖Lp(Ω) +

∫

S(∇k−1uj)

θ(|[∇k−1uj ]|) dH
N−1

)
< +∞,

where θ : [0,+∞) → [0,+∞) is a concave, nondecreasing function such that

lim
t→0+

θ(t)

t
= +∞,

∇ku is the density of the absolutely continuous part of D
(
∇k−1u

)
with respect to the N -dimensional

Lebesgue measure, and [∇k−1uj] denotes the jump of ∇k−1uj on the jump set S(∇k−1uj).

This extends to the k-th order setting a lower semicontinuity property of 1-quasiconvex functions
in SBV (Ω; Rd) due to Ambrosio (see [2]) and later generalized by Kristensen (see [16]), and a
lower semicontinuity theorem for 2-quasiconvex integrands in SBH(Ω; Rd) proven by Dal Maso,
Fonseca, Leoni and Morini (see [8]). As a corollary, we recover [14, Theorem 7.1].

Corollary 1.4. Let Ω, f , k and p be as in Theorem 1.3. Then∫

Ω

f(x, u,∇u, . . . ,∇ku) dx ≤ lim inf
j→∞

∫

Ω

f(x, uj ,∇uj, . . . ,∇
kuj) dx

for every u ∈W k,p(Ω) and any sequence {uj} ⊂W k,p(Ω) weakly converging to u in W k,p(Ω).

We remark that in [14] Guidorzi and Poggiolini require the function f to be locally Lipschitz
continuous with respect to the last variable. As already mentioned, we do not need this hypothesis,
since we prove here that this is a direct consequence of k-quasiconvexity and p-growth.

Finally, we mention that it remains still an open problem to prove the analogue of Theorem 1.3
for the case p = 1, even when k = 2, unless very special functions f are considered (see [11]). This
will probably require new and original ideas. Indeed, we think that for p = 1 the fundamental
Korn-type inequalities (see Lemma 2.13 and Lemma 2.14) used in the proofs of Theorem 1.1 and
Theorem 1.2 fail, although we do not have any explicit counterexample.

The plan of the paper is as follows. In Section 2 we give the setting of the problem. Section
3 contains the proof of Theorem 1.1, while Theorem 1.2 and Theorem 1.3 are proved in Section
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4. Finally, some auxiliary results that are extensively used in the paper can be found in the
Appendix.

2. Setting

Throughout the paper N and k are fixed integer numbers, with N, k ≥ 2. For this reason, we will
often omit to indicate the explicit dependence on N and k. Also, Ω ⊂ RN is an open bounded
set, and Q = (0, 1)N denotes the open unit cube of RN . Since N and k are fixed,

Definition 2.1. Let A ∈ RNk

. We say that A is a k-th order tensor in RN .

The components of a tensor A ∈ RNk

will be denoted with the symbols

Ai1...ik
i1, . . . , ik = 1, . . . , N.

Moreover, the scalar product of two tensors A,B ∈ RNk

is given by

A · B :=

N∑

i1,...,ik=1

Ai1...ik
Bi1...ik

.

Accordingly, the norm of a k-th order tensor A ∈ RNk

is

|A| :=




N∑

i1,...,ik=1

|Ai1...ik
|2




1
2

.

Let now s ∈ {1, . . . , k − 1} be fixed. For any ζ ∈ Cs(Q; RNk−s

), we can regard the s-th order
gradient ∇sζ of ζ as a k-th order tensor in RN , by setting

(∇sζ)i1...ik
:=

∂sζi1...ik−s

∂xik−s+1
. . . ∂xik

i1, . . . , ik = 1 . . . , N.

Notice also that ∇sζ is symmetric with respect to every permutation of the last s indices. To take
account of this property, we introduce some additional notation.

Definition 2.2. Let A ∈ RNk

be a k-th order tensor in RN , and let j, r ∈ {1, . . . , k}. The

(j, r)-transpose of A is the element AT j
r of RNk

such that (assuming, for instance, j ≤ r)

(AT j
r )i1i2...ik

= Ai1i2...ij−1irij+1...ir−1ij ir+1...ik
i1, . . . , ik = 1, . . . , N.

We then set

ENk−s

k := {A ∈ R
Nk

: A = AT r
j for every r, j = k − s+ 1, . . . , k}.

In particular, we will make the identification ENk−1

k = RNk

. In this way, for every ζ ∈ Cs(Q; RNk−s

)
we have

∇sζ ∈ ENk−s

k .

To include the case s = k, we define

E1
k := {A ∈ R

Nk

: A = AT r
j for every r, j = 1, . . . , k}.

Very often we will simply write Ek instead of E1
k. Hence, we have that

∇kφ ∈ Ek

for every φ ∈ Ck(Q), using the notation

(∇kφ)i1...ik
:=

∂kφ

∂xi1 . . . ∂xik

i1, . . . , ik = 1 . . . , N.

We are now going to define the symmetric part of an element of ENk−s

k .



K-QUASICONVEXITY REDUCES TO QUASICONVEXITY 5

Definition 2.3. The symmetrization operator Ss+1 : ENk−s

k → ENk−s−1

k is defined by

Ss+1A :=
1

s+ 1

k∑

r=k−s

AT k−s
r =

A+AT
k−s

k−s+1 + · · · +AT
k−s

k

s+ 1
for every A ∈ ENk−s

k .

We will say that Ss+1A is the symmetric part of A.

The subscript s+1 denotes the fact that the tensor Ss+1A is symmetric in the last s+1 entries.

Definition 2.4. Accordingly, we define the antisymmetric part of a tensor A ∈ ENk−s

k as the

tensor As+1A ∈ ENk−s

k given by

As+1A := A− Ss+1A =
sA− (AT

k−s

k−s+1 + · · · +AT
k−s

k )

s+ 1
.

We will use the notation

As+1E
Nk−s

k := {As+1A : A ∈ ENk−s

k } ⊂ ENk−s

k .

Next proposition generalizes the well-known fact that symmetric and antisymmetric matrices
define orthogonal spaces. For the convenience of the reader, the proof is in the Appendix.

Proposition 2.5. There holds

A ·B = 0 for every A ∈ ENk−s−1

k and for every B ∈ As+1E
Nk−s

k .

We give now the definition of (higher order) quasiconvexity.

Definition 2.6. Let j ∈ {1, . . . , k}. A function f ∈ L1
loc(E

Nk−j

k ) is said to be j-quasiconvex if
∫

Q

[
f(A+ ∇jφ) − f(A)

]
dx ≥ 0

for every A ∈ ENk−j

k and for every φ ∈ Cj
c (Q; RNk−j

).

It is very well-known that every convex function is locally Lipschitz. This property still holds true
for j-quasiconvex functions with p-growth. We give here a proof of this fact, that is in general
explicitly stated only for the case j = 2 (see [14]).

Proposition 2.7. Let j ∈ {2, . . . , k}, and let f ∈ L1
loc(E

Nk−j

k ) be j-quasiconvex. Assume, in
addition, that

|f(A)| ≤M(1 + |A|p) for every A ∈ ENk−j

k , (2.1)

for some M > 0 and 1 < p <∞. Then, there exists a constant L = L(N,M, k, j, p) > 0 such that

|f(A+B) − f(A)| ≤ L
(
1 + |A|p−1 + |B|p−1

)
|B| for every A,B ∈ ENk−j

k .

Proof. Let us set

X := {b⊗

j times︷ ︸︸ ︷
w ⊗ . . .⊗ w : b ∈ R

Nk−j

, w ∈ S
N−1} ⊂ ENk−j

k , m = m(N, k, j) := dimENk−j

k .

Here, for every b ∈ RNk−j

and w ∈ SN−1 the symbol b⊗ w ⊗ . . .⊗ w denotes the element of RNk

such that

(b⊗ w ⊗ . . .⊗ w)i1...,ik
= bi1...ik−j

wik−j+1
. . . wik

, i1, . . . , ik = 1 . . . , N.

It can be proven that the orthogonal complement of X in ENk−j

k is zero, so that

spanX = ENk−j

k .
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Let now {ω1, . . . , ωm} ⊂ X be a (not necessarily orthonormal) basis for ENk−j

k , with |ωi| = 1 for
i = 1, . . . ,m, and let c1, . . . , cm ∈ R be such that B =

∑m

i=1 ciωi. We have

|f(A+B) − f(A)| =
∣∣∣f

(
A+

m∑

i=1

ciωi

)
− f(A)

∣∣∣ ≤
∣∣∣f

(
A+

m∑

i=1

ciωi

)
− f

(
A+

m−1∑

i=1

ciωi

)∣∣∣

+
∣∣∣f

(
A+

m−1∑

i=1

ciωi

)
− f

(
A+

m−2∑

i=1

ciωi

)∣∣∣ + · · · + |f(A+ c1ω1) − f(A)|.

It will be enough to prove that there exists C = C(N,M, k, j, p) such that for every l = 1, . . . ,m

∣∣∣f
(
clωl +A+

l−1∑

i=0

ciωi

)
− f

(
A+

l−1∑

i=0

ciωi

)∣∣∣ ≤ C
(
1 + |A|p−1 + |B|p−1

)
|B|, (2.2)

where we set c0 := 0 and ω0 := 0. Then, the conclusion will follow by defining L := mC.

Thanks to [12, Proposition 3.4 and Example 3.10 (d)], for every R ∈ ENk−j

k and every ω ∈ X
the function

t→ f(t ω +R)

is convex in R . Hence, defining G(t) := f
(
t clωl +A+

∑l−1
i=0 ciωi

)
and using (2.1), for every t ≥ 1

we have

∣∣∣f
(
clωl +A+

l−1∑

i=0

ciωi

)
− f

(
A+

l−1∑

i=0

ciωi

)∣∣∣ = G(1) −G(0) ≤
G(t) −G(0)

t

=
f
(
t clωl +A+

∑l−1
i=0 ciωi

)
− f

(
A+

∑l−1
i=0 ciωi

)

t

≤
M

t

(
2 +

∣∣∣t clωl +A+

l−1∑

i=0

ciωi

∣∣∣
p

+
∣∣∣A+

l−1∑

i=0

ciωi

∣∣∣
p)

≤
M

t

(
2 + 2p−1tp|cl|

p + (2p−1 + 1)
∣∣∣A+

l−1∑

i=0

ciωi

∣∣∣
p)

≤
M

t

(
2 + 2p−1tp‖B‖p + 2p−1(2p−1 + 1)|A|p + 2p−1(2p−1 + 1)m

p

2 ‖B‖p
)
,

where we set

‖B‖ :=
( m∑

i=0

c2i

) 1
2

.

Let us now choose

t =

(
|A|p−1 + ‖B‖p−1

) 1
p−1

‖B‖
≥ 1.

Noticing that

tp−1‖B‖p = (|A|p−1 + ‖B‖p−1)‖B‖,
|A|p

t
≤ |A|p−1‖B‖,

‖B‖p

t
≤ ‖B‖p,

and using the fact that ‖ · ‖ and | · | are equivalent norms, we obtain (2.2). �

Next proposition shows that conditions (a) and (b) of Theorem 1.1 necessarily imply L ≥ ν.

Proposition 2.8. Let f ∈ C1(Ek) satisfy conditions (a) and (b) of Theorem 1.1 for some con-
stants µ ≥ 0, L, ν > 0 and 1 < p <∞. Then L ≥ ν.

Proof. Let A ∈ Ek, φ ∈ Ck
c (Q), and let x ∈ Q. By the Mean Value Theorem,

f(A+ ∇kφ(x)) − f(A) = [∇f(A+ t∇kφ(x)) −∇f(A)] · ∇kφ(x) + ∇f(A) · ∇kφ(x),
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for some t ∈ [0, 1]. Integrating last equality, since φ ∈ Ck
c (Q), we get

∫

Q

[f(A+ ∇kφ(x)) − f(A)] dx =

∫

Q

[∇f(A+ t∇kφ(x)) −∇f(A)] · ∇kφ(x) dx.

Hence, using property (b)
∫

Q

[
f(A+ ∇kφ(x)) − f(A)

]
dx ≤ L

∫

Q

(
µ2 + |A|2 + t2 |∇kφ(x)|2

) p−2

2 t |∇kφ(x)|2dx

≤ L

∫

Q

(
µ2 + |A|2 + |∇kφ(x)|2

) p−2

2 |∇kφ(x)|2dx,

since the function t 7→
(
µ2 + |A|2 + t2 |∇kφ|2

) p−2

2 t |∇kφ|2 is increasing. Comparing last relation
and condition (a) we conclude that L ≥ ν. �

We prove now that condition (1.2) is stronger than (1.5).

Proposition 2.9. Let j ∈ {2, . . . , k}, let L > 0, µ ≥ 0, 1 < p < ∞, and let f ∈ C1(ENk−j

k ) be
such that

|∇f(A+B) −∇f(A)| ≤ L
(
µ2 + |A|2 + |B|2

) p−2

2 |B| (2.3)

for every A,B ∈ ENk−j

k . Then, there exists a positive constant cf , depending on f , such that

|f(A)| ≤ cf (1 + |A|p) ∀A ∈ ENk−j

k .

Proof. Let C ∈ ENk−j

k \ {0} be fixed. Then, by the Mean Value Theorem for every A ∈ ENk−j

k we
have

f(A) = f(C) + [∇f(C + t(A− C)) −∇f(C)] · (A− C) + ∇f(C) · (A− C),

for some t ∈ [0, 1]. Thanks to (2.3)

|f(A)| ≤ |f(C)| + L
(
µ2 + |C|2 + t2|A− C|2

) p−2

2 t|A− C|2 + |∇f(C)||A − C|

≤ |f(C)| + L
(
µ2 + |C|2 + |A− C|2

) p−2

2 |A− C|2 + |∇f(C)||A− C|, (2.4)

since the function t 7→
(
µ2 + |C|2 + t2|A− C|2

) p−2

2 t|A − C|2 is increasing. Concerning the last
term, using Young’s inequality we have

|∇f(C)||A − C| ≤
|∇f(C)|p

′

p′
+

|A− C|p

p
≤

|∇f(C)|p
′

p′
+

2p−1

p
( |A|p + |C|p ) , (2.5)

where p′ = p
p−1 . Since the function r 7→

(
µ2 + |C|2 + r

) p−2

2 r is increasing in R, using inequality

|A− C|2 ≤ 2|A|2 + 2|C|2,

we have
(
µ2 + |C|2 + |A− C|2

) p−2

2 |A− C|2 ≤ 2
(
µ2 + 3|C|2 + 2|A|2

) p−2

2
(
|A|2 + |C|2

)

≤ 2 max{1, |C|2}
(
µ2 + 3|C|2 + 2|A|2

) p−2

2
(
1 + |A|2

)

≤ 2K
p−2

2 max{1, |C|2}
(
1 + |A|2

) p

2 ,

where

K =

{
min{µ2 + 3|C|2, 2} if 1 < p < 2,

max{µ2 + 3|C|2, 2} if p ≥ 2.

Thus, since (
1 + |A|2

) p
2 ≤ Cp (1 + |A|p) ,

for some positive constant Cp depending only on p, we have

L
(
µ2 + |C|2 + |A− C|2

) p−2

2 |A− C|2 ≤ 2LCpK
p−2

2 max{1, |C|2} (1 + |A|p) . (2.6)

Combining (2.4), (2.5) and (2.6) the conclusion follows. �
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We now state some important results concerning periodic functions.

Definition 2.10. A function w : RN → RNk−s

is said to be Q-periodic if w(x + ei) = w(x) for
a.e. x ∈ RN and every i = 1, . . . , N , where {e1, . . . , eN} is the canonical basis of RN .

Let d, r ∈ N. We will denote with C∞
per(R

N ; Rd) the space ofQ-periodic functions of C∞(RN ; Rd).

Moreover, we will use the notation Cr
c (Q; Rd) for the space of functions of class Cr from Q to Rd

with compact support in Q. Next lemma will be extensively used in the paper.

Lemma 2.11 (Helmholtz Decomposition). For every ϕ ∈ C∞
per(Q; RNk−s

) there exist two func-

tions φ ∈ C∞
per(Q; RNk−s−1

) and ψ ∈ C∞
per(Q;RNk−s

) such that

ϕi1...ik−s
= (∇φ)i1...ik−s

+ ψi1...ik−s
, for i1, . . . , ik−s = 1, . . . , N,

with
N∑

ib=1

∂ψi1...ib−1ibib+1...ik−s

∂xib

= 0 for every b ∈ {1, . . . , k − s}. (2.7)

Proof. By applying the usual Helmholtz Decomposition Lemma (see [8, Lemma 1]) to each com-
ponent ϕi1...ik−s

of the function ϕ, the lemma follows. �

Before stating next lemma, we need the following definition.

Definition 2.12. The s-divergence is the operator s-div : Cs(Q; RNk

) → C(Q; RNk−s

) defined by

(s-div ξ)i1...ik−s
:=

N∑

ik−s+1,...,ik=1

∂sξi1i2...ik

∂xik−s+1
. . . ∂xik

i1, . . . , ik−s = 1, . . . , N,

for every ξ ∈ Cs(Q; RNk

). The definition is analogous when ξ is a Sobolev function.

We are now ready to state a fundamental Korn-type estimate.

Lemma 2.13. For every p > 1 there exists a constant γ = γ(N, p, s) ≥ 1 such that
∫

Q

|∇sψ|pdx ≤ γ

∫

Q

|As+1∇
sψ|pdx

for every Q-periodic function ψ : RN → RNk−s

of class C∞ satisfying condition (2.7).

Proof. Notice that, for every r = k − s+ 1, . . . , k, we have

N∑

ir=1

∂

∂xir

[
(∇sψ)T k−s

r

]
i1i2...ik

=
N∑

ir=1

∂

∂xir

[
∂sψi1...ik−s−1ir

∂xik−s+1
. . . ∂xir−1

∂xik−s
∂xir+1

. . . ∂xik

]

=
∂s

∂xik−s+1
. . . ∂xir−1

∂xik−s
∂xir+1

. . . ∂xik

[
N∑

ir=1

∂ψi1...ik−s−1ir

∂xir

]
= 0.

Thus,

(s+ 1) [s-div (As+1∇
sψ)]i1...ik−s

=

N∑

ik−s+1,...,ik=1

∂s

∂xik−s+1
. . . ∂xik

[
s∇sψ −

(
(∇sψ)

T
k−s

k−s+1 + · · · + (∇sψ)
T

k−s

k

)]
i1i2...ik

= s

N∑

ik−s+1,...,ik=1

∂s

∂xik−s+1
. . . ∂xik

(∇sψ)i1i2...ik

= s

N∑

ik−s+1,...,ik=1

∂s

∂xik−s+1
. . . ∂xik

[
∂sψi1...ik−s

∂xik−s+1
. . . ∂xik

]
= s∆sψi1...ik−s

,
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where with ∆s we denoted the s-th power of the Laplace operator. Hence,

∆sψi1...ik−s
=
s+ 1

s
[s-div (As+1∇

sψ)]i1...ik−s
i1, . . . , ik−s = 1, . . . , N.

The conclusion follows applying [1, Theorem 10.5 and following remark]. �

We will also need the following generalization of Lemma 2.13.

Lemma 2.14. For every p > 1 there exists a constant τ = τ(N, p, s) ≥ 1 such that
∫

Q

(
µ2 + |∇sψ|2

) p−2

2

|∇sψ|2dx ≤ τ

∫

Q

(
µ2 + |As+1∇

sψ|2
) p−2

2

|As+1∇
sψ|2dx

for every constant µ ≥ 0 and every Q-periodic function ψ : RN → RNk−s

of class C∞ satisfying
condition (2.7).

Proof. The proof simply follows by adapting the proof of [8, Lemma 11] and using Lemma 2.13. �

We conclude this section giving some definitions of higher order BV spaces. We set

BH(k)(Ω) : = {u ∈ W k−1,1(Ω) : Dku is a finite Radon measure }

= {u ∈ W k−1,1(Ω) : ∇k−1u ∈ BV (Ω;Ek−1)},

where Dku stands for the k-th order distributional gradient of u, and

SBH(k)(Ω) : = {u ∈ BH(k)(Ω) : ∇k−1u ∈ SBV (Ω;Ek−1)}

= {u ∈W k−1,1(Ω) : ∇k−1u ∈ SBV (Ω;Ek−1)} ⊂ BH(k)(Ω).

3. Proof of Theorem 1.1

To prove Theorem 1.1 we will first show that, for every j = 2, . . . , k, every strictly j-quasiconvex
function of class C1 can be extended to a strictly (j−1)-quasiconvex function, provided we require
the gradient to be Lipschitz continuous. In the case 1 < p < 2, that we present below, we actually
have to consider a “perturbed” strict j-quasiconvexity.

Lemma 3.1. Let j ∈ {2, . . . , k}, 1 < p < 2, µ ≥ 0, and let M (j), ν(j), and ε be positive constants.

Let f (j) ∈ C1(ENk−j

k ) satisfy the following conditions:

(a) (strict j-quasiconvexity up to a perturbation)
∫

Q

[
f (j)(A+ ∇jφ) − f (j)(A)

]
dx ≥ −εh(j)(A)

+ ν(j)

∫

Q

(
µ2 + |A|2 + |∇jφ|2

) p−2

2 |∇jφ|2dx

for every A ∈ ENk−j

k and every φ ∈ Cj
c (Q; RNk−j

), where h(j) : ENk−j

k → [0,+∞);
(b) (Lipschitz condition for gradients)

|∇f (j)(A+B) −∇f (j)(A)| ≤M (j)
(
µ2 + |A|2 + |B|2

) p−2

2 |B|

for every A,B ∈ ENk−j

k .

Then there exists a function F (j) ∈ C1(ENk−j+1

k ), and a positive constant L(j) = L(j)(p, µ,M (j), ν(j), j),
such that

(a’) (strict (j − 1)-quasiconvexity up to a perturbation)

∫

Q

[
F (j)(A+ ∇j−1ϕ) − F (j)(A)

]
dx ≥

ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

− ε
(
µ2 + |AjA|

2
) p−2

2

|AjA|
2 − ε h(j)(SjA)

for every A ∈ ENk−j+1

k and every ϕ ∈ Cj−1
c (Q; RNk−j+1

);
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(b’) (Lipschitz condition for gradients)

|∇F (j)(A+B) −∇F (j)(A)| ≤ L(j)
(
µ2 + |A|2 + |B|2

) p−2

2 |B|

for every A,B ∈ ENk−j+1

k ;

(c) (F (j) extends f (j))

F (j)(A) = f (j)(A) ∀A ∈ ENk−j

k .

Proof. Let β > 0 be a constant to be chosen at the end of the proof and define F (j) : ENk−j+1

k → R

as

F (j)(A) := f (j)(SjA) + β

[(
µ2 + |AjA|

2
) p

2

− µp

]
= f (j)(SjA) + β [g(AjA) − µp] ,

where g is given by relation (5.2) with X = ENk−j+1

k .
Relation (c) is clearly satisfied. Let us show that condition (a’) holds true for a good choice of

β. Let ϕ ∈ C∞
per(Q; RNk−j+1

). By Lemma 2.11 we can write

ϕ = ∇φ+ ψ,

where ψ ∈ C∞
per(Q;RNk−j+1

) satisfies condition (2.7) with s = j − 1, and φ ∈ C∞
per(Q; RNk−j

). By
differentiating j − 1 times the previous relation we get

∇j−1ϕ = ∇jφ+ ∇j−1ψ,

with ∇j−1ϕ,∇j−1ψ ∈ C∞
per(Q;ENk−j+1

k ), and ∇jφ ∈ C∞
per(Q;ENk−j

k ). We have
∫

Q

[
F (j)(A+ ∇j−1ϕ) − F (j)(A)

]
dx

=

∫

Q

[
f (j)(SjA+ ∇jφ+ Sj∇

j−1ψ) − f (j)(SjA+ ∇jφ)
]
dx

+

∫

Q

[
f (j)(SjA+ ∇jφ) − f (j)(SjA)

]
dx

+ β

∫

Q

[g(AjA+ Aj∇
j−1ψ) − g(AjA)]dx

=: I1 + I2 + I3.

Notice that ∇f (j)(SjA) ∈ ENk−j

k . Then, thanks to Proposition 2.5 and using the fact that ψ is
Q-periodic ∫

Q

∇f (j)(SjA) · Sj∇
j−1ψ dx =

∫

Q

∇f (j)(SjA) · ∇j−1ψ dx = 0.

Hence

I1 =

∫

Q

[
f (j)(SjA+ ∇jφ+ Sj∇

j−1ψ) − f (j)(SjA+ ∇jφ) −∇f (j)(SjA) · Sj∇
j−1ψ

]
dx.

Applying Lemma 5.6 with ε = ν(j)/2 there exists a positive constant c1 = c1(ν
(j), p,M (j)) > 0

such that

I1 ≥ −
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

− c1

∫

Q

(
µ2 + |Sj∇

j−1ψ|2
) p−2

2

|Sj∇
j−1ψ|2 dx

≥ −
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

− τ c1

∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx,
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where τ = τ(N, p, j − 1) is given by Lemma 2.14. The perturbed strict j-quasiconvexity of f (j)

gives

I2 ≥ ν(j)

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx− εh(j)(SjA),

so that

I1 + I2 ≥
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx− εh(j)(SjA)

− τ c1

∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx.

We apply now Lemma 5.3 to the first integral of the last expression with µ̃2 = µ2 + |SjA|
2,

x = ∇jφ, and y = ∇j−1ψ. Recalling that ∇jφ+ ∇j−1ψ = ∇j−1ϕ we get

I1 + I2 ≥
ν(j)

4

∫

Q

(
µ2 + |SjA|

2 + |∇j−1ϕ|2
) p−2

2

|∇j−1ϕ|2 dx− εh(j)(SjA)

−
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇j−1ψ|2
) p−2

2

|∇j−1ψ|2 dx

− τ c1

∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx. (3.1)

Using the fact that 1 < p < 2 and Lemma 2.14

−
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇j−1ψ|2
) p−2

2

|∇j−1ψ|2 dx

≥ −
ν(j)

2

∫

Q

(
µ2 + |∇j−1ψ|2

) p−2

2

|∇j−1ψ|2 dx

≥ −
τ ν(j)

2

∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx. (3.2)

Hence, collecting (3.1) and (3.2)

I1 + I2 ≥
ν(j)

4

∫

Q

(
µ2 + |SjA|

2 + |∇j−1ϕ|2
) p−2

2

|∇j−1ϕ|2 dx− εh(j)(SjA)

− τ

(
c1 +

ν(j)

2

) ∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx

≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx− εh(j)(SjA)

− τ

(
c1 +

ν(j)

2

) ∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx,

where we used once again the fact that 1 < p < 2. Since ∇g(AjA) ∈ AjE
Nk−j+1

k and ψ is
Q-periodic,

∫

Q

∇ g(AjA) · Aj∇
j−1ψ dx =

∫

Q

∇ g(AjA) · ∇j−1ψ dx = 0,

so that

I3 = β

∫

Q

[
g(AjA+ Aj∇

j−1ψ) − g(AjA) −∇ g(AjA) · Aj∇
j−1ψ

]
dx.
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Let 0 < δ < 1 to be chosen at the end of the proof. Thanks to Lemma 5.1

I3 ≥ βθp

∫

Q

(
µ2 + |AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx

≥ βθpδ
2−p

2

∫

Q

(
µ2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx

− βθpδ
(
µ2 + |AjA|

2
) p−2

2

|AjA|
2,

where in the second inequality we used Lemma 5.3 with X = ENk−j+1

k , µ̃ = µ, x = AjA and

y = Aj∇
j−1ψ. Choosing β = β(j) > 0 and δ = δ(j) ∈ (0, 1) such that

β(j)θp(δ
(j))

2−p

2 ≥ τ

(
c1 +

ν(j)

2

)
, β(j)θpδ

(j) ≤ ε,

we obtain

I1 + I2 + I3 ≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

− εh(j)(SjA) − ε
(
µ2 + |AjA|

2
) p−2

2

|AjA|
2,

so that (a’) holds. To check condition (b’), we observe that the function g satisfies the hypotheses

of Lemma 5.5. Then, for every A,B ∈ ENk−j+1

k

|∇g(A+B) −∇g(A)| ≤ Cp

(
µ2 + |A|2 + |B|2

) p−2

2 |B|,

where Cp is a positive constant depending only on p. Using last relation, (b), and the fact that

β(j) depends on ν(j), τ and c1, we conclude that (b’) holds for some positive constant L(j) =
L(j)(p, µ,M (j), ν(j), j).

�

We pass now to the case p ≥ 2.

Lemma 3.2. Let j ∈ {2, . . . , k}, p ≥ 2, µ ≥ 0, M (j) > 0, ν(j) > 0, and let θp and Θp be given by

Lemma 5.1. Let f (j) ∈ C1(ENk−j

k ) satisfy the following conditions:

(a) (strict j-quasiconvexity)

∫

Q

[
f (j)(A+ ∇jφ) − f (j)(A)

]
dx ≥ ν(j)

∫

Q

(
µ2 + |A|2 + |∇jφ|2

) p−2

2 |∇jφ|2dx

for every A ∈ ENk−j

k and every φ ∈ Cj
c (Q; RNk−j

);
(b) (Lipschitz condition for gradients)

|∇f (j)(A+B) −∇f (j)(A)| ≤M (j)
(
µ2 + |A|2 + |B|2

) p−2

2 |B|

for every A,B ∈ ENk−j

k .

Then there exists a function F (j) ∈ C1(ENk−j+1

k ), and a positive constant L(j) = L(j)(p, µ,M (j), ν(j), j),
such that

(a’) (strict (j − 1)-quasiconvexity)

∫

Q

[
F (j)(A+ ∇j−1ϕ) − F (j)(A)

]
dx ≥ ν(j) θp

4 Θp

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

for every A ∈ ENk−j+1

k and every ϕ ∈ Cj−1
c (Q; RNk−j+1

);



K-QUASICONVEXITY REDUCES TO QUASICONVEXITY 13

(b’) (Lipschitz condition for gradients)

|∇F (j)(A+B) −∇F (j)(A)| ≤ L(j)
(
µ2 + |A|2 + |B|2

) p−2

2 |B|

for every A,B ∈ ENk−j+1

k ;

(c) (F (j) extends f (j))

F (j)(A) = f (j)(A) ∀A ∈ ENk−j

k .

Proof. Let λ ∈ (0, ν(j)/Θp] and β > 0 be two constants to be determined at the end of the proof.

We define F (j) : ENk−j+1

k → R as

F (j)(A) := f (j)(SjA) − λ
(
µ2 + |SjA|

2
) p

2

+ λ
(
µ2 + |SjA|

2 + β2|AjA|
2
) p

2

.

Let g and gβ be defined by (5.2) and (5.3) respectively, with X = ENk−j

k and Y = AjE
Nk−j+1

k .

Setting for every B ∈ ENk−j

k

f
(j)
λ (B) := f (j)(B) − λg(B),

we have

F (j)(A) = f
(j)
λ (SjA) + λgβ(SjA , AjA).

Condition (c) is clear from the definition of F (j). In order to check (a’), let ϕ ∈ C∞
per(Q; RNk−j+1

).
By repeating the argument of the previous proof, we can write

∇j−1ϕ = ∇jφ+ ∇j−1ψ,

with ∇j−1ϕ,∇j−1ψ ∈ C∞
per(Q;ENk−j+1

k ), and ∇jφ ∈ C∞
per(Q;ENk−j

k ), where ψ ∈ C∞
per(Q;RNk−j+1

)
satisfies condition (2.7) with s = j − 1. Hence,

∫

Q

[
F (j)(A+ ∇j−1ϕ) − F (j)(A)

]
dx

=

∫

Q

[
f

(j)
λ (SjA+ Sj∇

j−1ϕ) − f
(j)
λ (SjA+ Sj∇

j−1ϕ− Sj∇
j−1ψ)

]
dx

+

∫

Q

[
f

(j)
λ (SjA+ ∇jφ) − f

(j)
λ (SjA)

]
dx

+ λ

∫

Q

[
gβ(SjA+ Sj∇

j−1ϕ , AjA+ Aj∇
j−1ϕ) − gβ(SjA , AjA)

]
dx

=: I1 + I2 + I3.

Concerning the second integral, since by periodicity
∫

Q

∇g(SjA) · ∇jφdx = 0,

using condition (a) and Lemma 5.1 we have

I2 =

∫

Q

[
f(SjA+ ∇jφ) − f(SjA)

]
dx− λ

∫

Q

[
g(SjA+ ∇jφ) − g(SjA)

]
dx

=

∫

Q

[
f(SjA+ ∇jφ) − f(SjA)

]
dx− λ

∫

Q

[
g(SjA+ ∇jφ) − g(SjA) + ∇g(SjA) · ∇jφ

]
dx

≥
(
ν(j) − λΘp

)∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2 |∇jφ|2dx ≥ 0. (3.3)

Let us pass to the first integral. Noticing that ∇f
(j)
λ (SjA) ∈ ENk−j

k , thanks to Proposition 2.5
and using the fact that ψ is Q-periodic,

∫

Q

∇f
(j)
λ (SjA) · Sj∇

j−1ψ dx =

∫

Q

∇f
(j)
λ (SjA) · ∇j−1ψ dx = 0.
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Hence,

I1 = −

∫

Q

[
f

(j)
λ (SjA+ Sj∇

j−1ϕ− Sj∇
j−1ψ) − f

(j)
λ (SjA+ Sj∇

j−1ϕ)

−∇f
(j)
λ (SjA) · Sj∇

j−1ψ
]
dx.

As observed in the previous proof the function g satisfies condition (5.6), and so by Lemma 5.5

condition (b) still holds for the function fλ for a suitable constant M̃ = M̃(p,M (j), λ) in place of
M (j). Thus, applying Lemma 5.6 with ε = λθp/2, there exists a positive constant σ = σ(p,M (j), λ)
such that

I1 ≥ −
λθp

2

∫

Q

(
µ2 + |SjA|

2 + |Sj∇
j−1ϕ|2

) p−2

2

|Sj∇
j−1ϕ|2 dx

− σ
(
µ2 + |SjA|

2
) p−2

2

∫

Q

|Sj∇
j−1ψ|2 dx− σ

∫

Q

|Sj∇
j−1ψ|p dx.

Thanks to Lemma 2.13 and using (3.3) we get

I1 + I2 ≥ −
λθp

2

∫

Q

(
µ2 + |SjA|

2 + |Sj∇
j−1ϕ|2

) p−2

2

|Sj∇
j−1ϕ|2 dx (3.4)

− σ γ(N, 2, j − 1)
(
µ2 + |SjA|

2
) p−2

2

∫

Q

|Aj∇
j−1ψ|2 dx− σ γ(N, p, j − 1)

∫

Q

|Aj∇
j−1ψ|p dx.

Since ϕ is Q-periodic,

0 =

∫

Q

∇ gβ(SjA , AjA) · ∇j−1ϕdx

=

∫

Q

[
∇x gβ(SjA , AjA) · Sj∇

j−1ϕ+ ∇y gβ(SjA , AjA) · Aj∇
j−1ϕ

]
dx,

so that

I3 = λ

∫

Q

[
gβ(SjA+ Sj∇

j−1ϕ,AjA+ Aj∇
j−1ϕ) − gβ(SjA , AjA)

− ∇x gβ(SjA , AjA) · Sj∇
j−1ϕ−∇y gβ(SjA , AjA) · Aj∇

j−1ϕ
]
dx. (3.5)

We are now going to split I3 into two terms. We will use the first term to compensate the sum
I1 + I2, and the remaining one to get the strict (j − 1)-quasiconvexity. Relation (5.5) of Lemma
5.2 gives

I3
2

≥
λθp

2

∫

Q

(
µ2 + |SjA|

2 + |Sj∇
j−1ϕ|2

) p−2

2

|Sj∇
j−1ϕ|2 dx

+
λθpβ

2

4

(
µ2 + |SjA|

2
) p−2

2

∫

Q

|Aj∇
j−1ψ|2 dx +

λθpβ
p

4

∫

Q

|Aj∇
j−1ψ|p dx. (3.6)

If we choose β = β(j) > 0 so large that

λθp(β
(j))2

4
≥ σγ(N, 2, j − 1) and

λθp(β
(j))p

4
≥ σγ(N, p, j − 1),

using relations (3.4) and (3.6), we have

I1 + I2 + I3 ≥
I3
2
.
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Let us estimate the last term. Without any loss of generality we can assume β(j) ≥ 1. Then,
recalling (3.5) and using inequality (5.4) of Lemma 5.2

∫

Q

[
F (j)(A+ ∇j−1ϕ) − F (j)(A)

]
dx = I1 + I2 + I3

≥
λθp

2

∫

Q

(
µ2 + |SjA|

2 + |Sj∇
j−1ϕ|2 + (β(j))2|AjA|

2 + (β(j))2|Aj∇
j−1ϕ|2

) p−2

2

(
|Sj∇

j−1ϕ|2 + (β(j))2|Aj∇
j−1ϕ|2

)
dx

≥
λθp

2

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

= ν(j) θp

4 Θp

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx,

where we chose

λ =
ν(j)

2 Θp

.

One can show that F (j) satisfies condition (b’) as it was done in the proof of Lemma 3.1. �

We can now pass to the proof of Theorem 1.1.

Proof of Theorem 1.1.

Step 1. Case 1 < p < 2. To simplify the notation, for every B ∈ RNk

we set

P(B) :=
(
µ2 + |B|2

) p−2

2

|B|2, G(B) :=

[(
µ2 + |B|2

) p

2

− µp

]
.

Let ε > 0 be fixed. We start the proof by applying Lemma 3.1 with j = k, ν(k) = ν, h(k) ≡ 0 and

f (k)(A) = f(A), for every A ∈ Ek.

Then, we apply again k − 2 times Lemma 3.1 with j = k − 1, k − 2, . . . , 2 respectively, with

ν(j) =
ν

4k−j
,

and

f (j)(A) = F (j+1)(A), for every A ∈ ENk−j

k ,

while the functions h(j) : ENk−j

k → [0,+∞) will be chosen as

h(k−1)(A) = P(AkA), h(j)(A) = P(Aj+1A) +

k∑

r=j+2

P(ArSr−1 . . .Sj+1A) j = k− 2, . . . , 2.

In this way after the last step, corresponding to j = 2, we obtain a function F (2) : RNk

→ R given
by

F (2)(A) := f(SkSk−1 . . .S2) + β(2)G(A2A) +

k∑

r=3

β(r)G(ArSr−1 . . .S2A). (3.7)

Here, for every j = 2, . . . , k, the constant β(j) is given by the proof of Lemma 3.1 with the
correspondent index j. F (2) has the following properties:

(a’) (strict 1-quasiconvexity up to a perturbation)

∫

Q

[
F (2)(A+ ∇ϕ) − F (2)(A)

]
dx ≥ −εP(A2A) − εh(2)(S2A)

+
ν

4k−1

∫

Q

(
µ2 + |A|2 + |∇ϕ|2

) p−2

2

|∇ϕ|2 dx
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for every A ∈ RNk

and every ϕ ∈ C1
c (Q; RNk−1

);
(b’) (Lipschitz condition for the gradient)

|∇F (2)(A+B) −∇F (2)(A)| ≤ L
(
µ2 + |A|2 + |B|2

) p−2

2 |B|,

for every A,B ∈ RNk

, with L = L(p, µ,M, ν);
(c) (F (2) extends f)

F (2)(A) = f(A) ∀A ∈ Ek.

Now, let us define

F (A) := inf

{∫

Q

F (2)(A+ ∇ϕ(x)) dx : ϕ ∈ C∞
per(Q; RNk−1

)

}

for every A ∈ R
Nk

. Property (a’) implies that for every A ∈ R
Nk

F (2)(A) − εP(A2A) − εh(2)(S2A) ≤ F (A) ≤ F (2)(A). (3.8)

Since for every A ∈ Ek

P(A2A) = h(2)(S2A) = 0,

from property (c) and relation (3.8) equality (1.3) follows. Let us check (1.4). Thanks to Propo-
sition 2.9, from condition (b’) we infer that there exists a positive constant c, depending on the
function F (2) and in turn on f , such that

|F (2)(A)| ≤ c (1 + |A|p) ∀A ∈ R
Nk

.

Recalling the definitions of the functions P and h(2), last relation and (3.8) give (1.4).

Step 2. Case p ≥ 2. Repeating the strategy used for the case 1 < p < 2, we first apply Lemma
3.2 with j = k, ν(k) = ν and

f (k)(A) = f(A), for every A ∈ Ek.

Then, we apply again k − 2 times Lemma 3.2 with j = k − 1, k − 2, . . . , 2 respectively, with

ν(j) = ν

(
θp

4Θp

)k−j+1

,

and

f (j)(A) = F (j+1)(A), for every A ∈ ENk−j

k .

Finally, when j = 2 we obtain a function F (2) : RNk

→ R given by

F (2)(A) = f(Sk . . .S2A) + L(2)(S2A , A2A) +

k∑

r=3

L(r)(SrSr−1 . . .S2A , ArSr−1 . . .S2A), (3.9)

where we set

L(r)(A,B) := −
ν(r)

2Θp

(
µ2 + |A|2

) p

2

+
ν(r)

2Θp

(
µ2 + |A|2 + (β(r))2|B|2

) p

2

, r = 2, . . . , k,

and for every j = 2, . . . , k, the constant β(j) is given by the proof of Lemma 3.2 with the corre-
spondent index j. The function F (2) just defined is such that

(a’) (strict 1-quasiconvexity)

∫

Q

[
F (2)(A+ ∇ϕ) − F (2)(A)

]
dx ≥

ν

4k

(
θp

Θp

)k ∫

Q

(
µ2 + |A|2 + |∇ϕ|2

) p−2

2

|∇ϕ|2 dx

for every A ∈ RNk

and every ϕ ∈ C1
c (Q; RNk−1

);
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(b’) (Lipschitz condition for the gradient)

|∇F (2)(A+B) −∇F (2)(A)| ≤ L
(
µ2 + |A|2 + |B|2

) p−2

2 |B|,

for every A,B ∈ RNk

, with L = L(p, µ,M, ν);
(c) (F (2) extends f)

F (2)(A) = f(A) ∀A ∈ Ek.

We claim that the proof is concluded by setting F := F (2). Indeed, condition (c) gives (1.3), while
(1.4) follows by applying Proposition 2.9 to F (2). �

4. Proof of Theorem 1.2

To prove the theorem, we first need two preliminary lemmas.

Lemma 4.1. Let j ∈ {2, . . . , k}, 1 < p < 2, µ ≥ 0, ν(j) > 0, and let {M
(j)
i }i∈N be a sequence

of positive constants. Let {f
(j)
i }i∈N be a sequence of functions f

(j)
i : ENk−j

k → R satisfying the
following conditions:

(a) (strict j-quasiconvexity up to a perturbation)
∫

Q

[
f

(j)
i (A+ ∇jφ) − f

(j)
i (A)

]
dx ≥ −h

(j)
i (A)

+ ν(j)

∫

Q

(
µ2 + |A|2 + |∇jφ|2

) p−2

2 |∇jφ|2dx

for every A ∈ ENk−j

k , for every φ ∈ Cj
c (Q; RNk−j

), and for every i ∈ N, where {h
(j)
i }i∈N

is a sequence of functions h
(j)
i : ENk−j

k → [0,+∞);
(b) (p-growth condition)

|f
(j)
i (A)| ≤M

(j)
i (1 + |A|p) ∀A ∈ ENk−j

k , ∀ i ∈ N.

Then there exists an increasing sequence {F
(j)
i }i∈N of functions F

(j)
i : ENk−j+1

k → R, and two

sequences {L
(j)
i }i∈N and {λ

(j)
i }i∈N of positive numbers, depending on ν(j),M

(j)
i , j, p, µ, such that

(a’) (strict (j − 1)-quasiconvexity up to a perturbation)

∫

Q

[
F

(j)
i (A+ ∇j−1ϕ) − F

(j)
i (A)

]
dx ≥

ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

−
1

i
−

1

i
|SjA|

p − λ
(j)
i |AjA|

p − h
(j)
i (SjA)

for every A ∈ ENk−j+1

k , for every ϕ ∈ Cj−1
c (Q; RNk−j+1

), and for every i ∈ N;
(b’) (p-growth condition)

|F
(j)
i (A)| ≤ L

(j)
i (1 + |A|p) ∀A ∈ ENk−j+1

k , ∀ i ∈ N;

(c) (F
(j)
i extends f

(j)
i )

F
(j)
i (A) = f

(j)
i (A) ∀A ∈ ENk−j

k , ∀ i ∈ N.

Proof. First we observe that, thanks to Proposition 2.7, there exists a positive constant L =

L(M
(j)
i , j, p) (we do not stress here the dependence on N and k), such that

|f
(j)
i (A+B) − f

(j)
i (A)| ≤ L

(
1 + |A|p−1 + |B|p−1

)
|B| (4.1)

for every A,B ∈ ENk−j

k . Let β > 0 be a constant to be chosen at the end of the proof. For every

A ∈ ENk−j+1

k , we define

F
(j)
i (A) := f

(j)
i (SjA) + β|AjA|

p. (4.2)
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Condition (c) is clearly satisfied. In order to show (a’), let us consider a function ϕ ∈ C∞
per(Q; RNk−j+1

).
We can write

∇j−1ϕ = ∇jφ+ ∇j−1ψ,

with ∇j−1ϕ,∇j−1ψ ∈ C∞
per(Q;ENk−j+1

k ), and ∇jφ ∈ C∞
per(Q;ENk−j

k ), where ψ ∈ C∞
per(Q;RNk−j+1

)
satisfies condition (2.7) with s = j − 1. Hence,

∫

Q

[
F

(j)
i (A+ ∇j−1ϕ) − F

(j)
i (A)

]
dx

=

∫

Q

[
f

(j)
i (SjA+ ∇jφ+ Sj∇

j−1ψ) − f
(j)
i (SjA+ ∇jφ)

]
dx

+

∫

Q

[
f

(j)
i (SjA+ ∇jφ) − f

(j)
i (SjA)

]
dx

+ β

∫

Q

[ ∣∣AjA+ Aj∇
j−1ψ

∣∣p − |AjA|
p
]
dx

=: I1 + I2 + I3.

By (4.1) and Young’s inequality, for every δ > 0 there exists a constant C = C(M
(j)
i , j, p, δ) such

that

I1 ≥ −L

∫

Q

(
1 + |SjA+ ∇jφ|p−1 + |Sj∇

j−1ψ|p−1
)
|Sj∇

j−1ψ| dx

≥ −δ − δ |SjA|
p − δ

∫

Q

|∇jφ|p dx− C

∫

Q

|Sj∇
j−1ψ|p dx.

Using Lemma 2.13

I1 ≥ −δ − δ |SjA|
p − δ

∫

Q

|∇jφ|p dx− C γ

∫

Q

|Aj∇
j−1ψ|p dx. (4.3)

Thanks to Lemma 5.4, for every 0 < ε < 1

I1 ≥ −δ(1 + εµp) − δ(1 + ε)|SjA|
p − C γ

∫

Q

|Aj∇
j−1ψ|p dx

− 8 δ ε
p−2

p

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx.

Then, applying Lemma 5.3 with µ̃ = 0, x = AjA, and y = Aj∇
j−1ψ,

I1 ≥ −δ(1 + εµp) − δ(1 + ε)|SjA|
p − C γ ε

p

2 |AjA|
p

− C γ ε
p−2

2

∫

Q

(
|AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx

− 8 δ ε
p−2

p

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx.

Thus, there exists a sequence of positive numbers {λ
(j)
i }i∈N, such that for every i ∈ N

I1 ≥ −
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

− λ
(j)
i

∫

Q

(
|AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx

−
1

i
−

1

i
|SjA|

p − λ
(j)
i |AjA|

p.

Here, for every fixed i ∈ N, λ
(j)
i = λ

(j)
i (ν(j),M

(j)
i , j, p, µ). By condition (a)

I2 ≥ ν(j)

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2 |∇jφ|2dx− h
(j)
i (SjA),
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so that

I1 + I2 ≥
ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

− λ
(j)
i

∫

Q

(
|AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx

−
1

i
−

1

i
|SjA|

p − λ
(j)
i |AjA|

p − h
(j)
i (SjA), (4.4)

We focus now on the first term of last expression. Applying Lemma 5.3 with µ̃ = µ2 + |A|2,
x = ∇jφ, and y = ∇j−1ψ, and recalling that ∇jφ+ ∇j−1ψ = ∇j−1ϕ we get

ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

≥
ν(j)

2

∫

Q

(
µ2 + |A|2 + |∇jφ|2

) p−2

2

|∇jφ|2 dx

≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

−
ν(j)

2

∫

Q

(
µ2 + |A|2 + |∇j−1ψ|2

) p−2

2

|∇j−1ψ|2 dx,

where in the first line we used the fact that 1 < p < 2. By Lemma 2.14 last inequality becomes

ν(j)

2

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

−
ν(j)

2
τ

∫

Q

(
µ2 + |A|2 + |Aj∇

j−1ψ|2
) p−2

2

|Aj∇
j−1ψ|2 dx

≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

−
ν(j)

2
τ

∫

Q

(
|AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx, (4.5)

again exploiting that 1 < p < 2. Collecting (4.4) and (4.5) we have

I1 + I2 ≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

−

(
λ

(j)
i +

ν(j) τ

2

)∫

Q

(
|AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx

−
1

i
−

1

i
|SjA|

p − λ
(j)
i |AjA|

p − h
(j)
i (SjA). (4.6)

Concerning I3, using the periodicity of ψ and thanks to Lemma 5.1 with µ = 0

I3 = β

∫

Q

[ ∣∣AjA+ Aj∇
j−1ψ

∣∣p − |AjA|
p
− p |AjA|

p−2
AjA · Aj∇

j−1ψ
]
dx

≥ β θp

∫

Q

(
|AjA|

2 + |Aj∇
j−1ψ|2

) p−2

2

|Aj∇
j−1ψ|2 dx. (4.7)

Choosing β = β
(j)
i > 0 such that

β
(j)
i θp ≥ λ

(j)
i +

ν(j) τ

2
,
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from (4.6) and (4.7) we obtain

I1 + I2 + I3 ≥
ν(j)

4

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

−
1

i
−

1

i
|SjA|

p − λ
(j)
i |AjA|

p − h
(j)
i (SjA),

so that (a’) holds. From (4.2) condition (b’) follows. �

The second lemma addresses the case p ≥ 2.

Lemma 4.2. Let j ∈ {2, . . . , k}, p ≥ 2, µ ≥ 0, ν(j) > 0, and let {M
(j)
i }i∈N be a sequence

of positive constants. Let moreover θp and Θp be given by Lemma 5.1, and let {f
(j)
i }i∈N be a

sequence of functions f
(j)
i : ENk−j

k → R satisfying the following conditions:

(a) (strict j-quasiconvexity up to a perturbation)
∫

Q

[
f

(j)
i (A+ ∇jφ) − f

(j)
i (A)

]
dx ≥ −h

(j)
i (A)

+ ν(j)

∫

Q

(
µ2 + |A|2 + |∇jφ|2

) p−2

2 |∇jφ|2dx

for every A ∈ ENk−j

k , for every φ ∈ Cj
c (Q; RNk−j

), and for every i ∈ N, where {h
(j)
i }i∈N

is a sequence of functions h
(j)
i : ENk−j

k → [0,+∞);
(b) (p-growth condition)

|f
(j)
i (A)| ≤M

(j)
i (1 + |A|p) ∀A ∈ ENk−j

k , ∀ i ∈ N.

Then there exists an increasing sequence {F
(j)
i }i∈N of functions F

(j)
i : ENk−j+1

k → R, and a

sequence {L
(j)
i }i∈N of positive numbers, depending on ν(j),M

(j)
i , j, p, µ, such that

(a’) (strict (j − 1)-quasiconvexity up to a perturbation)

∫

Q

[
F

(j)
i (A+ ∇j−1ϕ) − F

(j)
i (A)

]
dx ≥ −h

(j)
i (SjA) −

1

i
−

1

i
|SjA|

p

+ ν(j) θp

4Θp

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

for every A ∈ ENk−j+1

k , for every ϕ ∈ Cj−1
c (Q; RNk−j+1

), and for every i ∈ N;
(b’) (p-growth condition)

|F
(j)
i (A)| ≤ L

(j)
i (1 + |A|p) ∀A ∈ ENk−j+1

k , ∀ i ∈ N;

(c) (F
(j)
i extends f

(j)
i )

F
(j)
i (A) = f

(j)
i (A) ∀A ∈ ENk−j

k , ∀ i ∈ N.

Proof. Let α ∈ (0, ν(j)/Θp] and β > 0 to be determined at the end of the proof. We define

F
(j)
i (A) := f

(j)
i (SjA) − α

(
µ2 + |SjA|

2
) p

2

+ α
(
µ2 + |SjA|

2 + β2|AjA|
2
) p

2

. (4.8)

Condition (c) is clearly satisfied. Let now ϕ ∈ C∞
per(Q; RNk−j+1

). As usual, we can write

∇j−1ϕ = ∇jφ+ ∇j−1ψ,

with ∇j−1ϕ,∇j−1ψ ∈ C∞
per(Q;ENk−j+1

k ), and ∇jφ ∈ C∞
per(Q;ENk−j

k ), where ψ ∈ C∞
per(Q;RNk−j+1

)
satisfies condition (2.7) with s = j − 1. Setting

(f
(j)
i )α(B) := f

(j)
i (B) − α

(
µ2 + |B|2

) p

2
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for every B ∈ ENk−j

k , we have

∫

Q

[
F

(j)
i (A+ ∇j−1ϕ) − F

(j)
i (A)

]
dx

=

∫

Q

[
(f

(j)
i )α(SjA+ ∇jφ+ Sj∇

j−1ψ) − (f
(j)
i )α(SjA+ ∇jφ)

]
dx

+

∫

Q

[
(f

(j)
i )α(SjA+ ∇jφ) − (f

(j)
i )α(SjA)

]
dx

+ α

∫

Q

[
gβ(SjA+ Sj∇

j−1ϕ, AjA+ Aj∇
j−1ϕ) − gβ(SjA,AjA)

]
dx

=: I1 + I2 + I3,

with gβ defined by (5.3), with X = ENk−j

k and Y = AjE
Nk−j+1

k . By repeating the chain of

inequalities (3.3), one can show (f
(j)
i )α is j-quasiconvex. In addition, applying Lemma 5.5 and

Proposition 2.9 to the function

B 7→ α
(
µ2 + |B|2

) p
2

,

we have that (f
(j)
i )α satisfies condition (b), for some positive constant M̃

(j)
i = M̃

(j)
i (α, µ,M

(j)
i ) in

place of M
(j)
i . Thus, by applying Proposition 2.7, we can still conclude that relation (4.1) holds

true for the function (f
(j)
i )α, for a suitable constant L = L(N,M

(j)
i , k, j, p, α). By repeating the

same argument of the previous proof, we get that for every δ > 0 there exists a positive constant

c = c(M
(j)
i , j, p, α, µ, δ) such that

I1 ≥ −δ − δ |SjA|
p − δ

∫

Q

|∇jφ|p dx− c γ

∫

Q

|Aj∇
j−1ψ|p dx

≥ −δ − δ |SjA|
p − δ

∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

− c γ

∫

Q

|Aj∇
j−1ψ|p dx.

Hence, we can find a sequence of positive numbers {λ
(j)
i }i∈N such that for every i ∈ N

I1 ≥ −
(
ν(j) − αΘp

)∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2

|∇jφ|2 dx

− λ
(j)
i

∫

Q

|Aj∇
j−1ψ|p dx−

1

i
−

1

i
|SjA|

p.

Here λ
(j)
i = λ

(j)
i (M

(j)
i , j, p, α, µ) for every fixed i ∈ N, . Adapting to the present situation inequality

(3.3) we get

I2 =

∫

Q

[
(f

(j)
i )α(SjA+ ∇jφ) − (f

(j)
i )α(SjA)

]
dx ≥ −h

(j)
i (SjA)

+
(
ν(j) − αΘp

)∫

Q

(
µ2 + |SjA|

2 + |∇jφ|2
) p−2

2 |∇jφ|2dx.
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Moreover, assuming without any loss of generality that β ≥ 1,

I3 ≥
α θp

2

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

+
αθp

2

∫

Q

(
µ2 + |SjA|

2 + |Sj∇
j−1ϕ|2

) p−2

2

|Sj∇
j−1ϕ|2 dx

+
αθpβ

2

4

(
µ2 + |SjA|

2
) p−2

2

∫

Q

|Aj∇
j−1ψ|2 dx+

αθpβ
p

4

∫

Q

|Aj∇
j−1ψ|p dx

≥
α θp

2

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx+
αθpβ

p

4

∫

Q

|Aj∇
j−1ψ|p dx.

Let us now choose

α = α(j) =
ν(j)

2Θp

,

and β = β
(j)
i > 0 such that

α(j) θp(β
(j)
i )p

4
≥ λ

(j)
i ,

we obtain ∫

Q

[
F

(j)
i (A+ ∇j−1ϕ) − F

(j)
i (A)

]
dx = I1 + I2 + I3

≥ ν(j) θp

4Θp

∫

Q

(
µ2 + |A|2 + |∇j−1ϕ|2

) p−2

2

|∇j−1ϕ|2 dx

− h
(j)
i (SjA) −

1

i
−

1

i
|SjA|

p,

so that (a’) holds. Finally, condition (b’) follows by (4.8).
�

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2.

Step 1. Case 1 < p < 2.
We start by applying Lemma 4.1 with j = k, ν(k) = ν and

f
(k)
i (A) = f(A), h

(k)
i (A) = 0 for every A ∈ Ek, i ∈ N.

Then, we apply again k − 2 times Theorem 4.1 with j = k − 1, k − 2, . . . , 2 respectively, with

ν(j) =
ν

4k−j
,

and, for every A ∈ ENk−j

k and i ∈ N,

f
(j)
i (A) = F

(j+1)
i (A).

Accordingly, the functions h
(j)
i will be chosen as

h
(k−1)
i (A) =

1

i
+

1

i
|SkA|

p + λ
(k)
i |AkA|

p,

and, for j = k − 2, . . . , 2,

h
(j)
i (A) =

k − j

i
+

1

i

k∑

r=j+1

|SrSr−1 . . .Sj+1A|
p + λ

(j+1)
i |Aj+1A|

p

+
k∑

r=j+2

λ
(r)
i |ArSr−1 . . .Sj+1A|

p,
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where the sequences {λ
(j)
i }i∈N are given by Lemma 4.1. In this way after the last step, corre-

sponding to j = 2, we obtain a sequence {F
(2)
i }i∈N of functions F

(2)
i : R

Nk

→ R given by

F
(2)
i (A) = f(Sk . . .S2A) + β

(2)
i |A2A|

p +

k∑

r=3

β
(r)
i |ArSr−1 . . .S2A|

p.

Here for r = 2, . . . , k, the sequence {β
(r)
i }i∈N is that one given in the proof of Lemma 4.1. The

functions F
(2)
i just defined have the following properties:

(a’) (strict 1-quasiconvexity up to a perturbation)

∫

Q

[
F

(2)
i (A+ ∇ϕ) − F

(2)
i (A)

]
dx ≥ −h

(2)
i (S2A) −

1

i
−

1

i
|S2A|

p

+
ν

4k−1

∫

Q

(
µ2 + |A|2 + |∇ϕ|2

) p−2

2

|∇ϕ|2 dx− λ
(2)
i |A2A|

p

≥ −h
(2)
i (S2A) −

1

i
−

1

i
|S2A|

p − λ
(2)
i |A2A|

p

for every A ∈ RNk

, for every ϕ ∈ C1
c (Q; RNk−1

), and for every i ∈ N;
(b’) (growth condition)

|F
(2)
i (A)| ≤ L

(2)
i (1 + |A|p) ∀A ∈ R

Nk

, ∀ i ∈ N,

with L
(2)
i = L

(2)
i (ν,M, p, µ) for every fixed i ∈ N;

(c) (F
(2)
i extends f)

F
(2)
i (A) = f(A) ∀A ∈ Ek, ∀ i ∈ N.

Now, for every A ∈ RNk

and i ∈ N, we set

Fi(A) := inf

{∫

Q

F
(2)
i (A+ ∇ϕ(x)) dx : ϕ ∈ C∞

per(Q; RNk−1

)

}
.

From property (a’) it follows that for every A ∈ RNk

and for every i ∈ N

F
(2)
i (A) − h

(2)
i (S2A) −

1

i
−

1

i
|S2A|

p − λ
(2)
i |A2A|

p ≤ Fi(A) ≤ F
(2)
i (A). (4.9)

Noticing that for every A ∈ Ek

lim
i→+∞

h
(2)
i (S2A) = lim

i→+∞

[
k − 2

i
+

1

i

k∑

r=3

|Sr . . .S2A|
p

]
= 0,

from property (c) and (4.9) we have (1.6). Finally, (1.7) follows from (b’) and (4.9).

Step 2. Case p ≥ 2.

We first apply Lemma 4.2 with j = k, ν(k) = ν and

f
(k)
i (A) = f(A), h

(k)
i (A) = 0 for every A ∈ Ek, i ∈ N.

At this point, we apply again k−2 times Lemma 4.2 with j = k−1, k−2, . . . , 2 respectively, with

ν(j) = ν

(
θp

4Θp

)k−j+1

,
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and, for every A ∈ ENk−j

k and i ∈ N,

f
(j)
i (A) = F

(j+1)
i (A), h

(j)
i (A) =

k − j

i
+

1

i

k∑

r=j+1

|SrSr−1 . . .Sj+1A|
p.

Finally, when j = 2, we obtain a sequence {F
(2)
i }i∈N of functions F

(2)
i : RNk

→ R given by

F
(2)
i (A) = f(Sk . . .S2A) +

k∑

r=3

L
(r)
i (SrSr−1 . . .S2A , ArSr−1 . . .S2A)

+ L
(2)
i (S2A , A2A), (4.10)

where we set

L
(r)
i (A,B) := −

ν(r)

2Θp

(
µ2 + |A|2

) p
2

+
ν(r)

2Θp

(
µ2 + |A|2 + (β

(r)
i )2|B|2

) p
2

, r = 2, . . . , k.

The functions F
(2)
i just defined have the following properties:

(a’) (strict 1-quasiconvexity up to a perturbation)

∫

Q

[
F

(2)
i (A+ ∇ϕ) − F

(2)
i (A)

]
dx ≥ −h

(2)
i (S2A) −

1

i
−

1

i
|S2A|

p

+
ν

4k

(
θp

Θp

)k ∫

Q

(
µ2 + |A|2 + |∇ϕ|2

) p−2

2

|∇ϕ|2 dx

≥ −h
(2)
i (S2A) −

1

i
−

1

i
|S2A|

p

for every A ∈ RNk

, for every ϕ ∈ C1
c (Q; RNk−1

), and for every i ∈ N;
(b’) (growth condition)

|F
(2)
i (A)| ≤ L

(2)
i (1 + |A|p) ∀A ∈ R

Nk

, ∀ i ∈ N;

(c) (F
(2)
i extends f)

F
(2)
i (A) = f(A) ∀A ∈ Ek, ∀ i ∈ N.

For every i ∈ N, we define now Fi as the quasiconvexification of the function F
(2)
i :

Fi(A) := inf

{∫

Q

F
(2)
i (A+ ∇ϕ(x)) dx : ϕ ∈ C∞

per(Q; RNk−1

)

}

for every A ∈ RNk

. From property (a’) and by the definition of Fi, we have

F
(2)
i (A) − h

(2)
i (S2A) −

1

i
−

1

i
|S2A|

p ≤ Fi(A) ≤ F
(2)
i (A), ∀A ∈ R

Nk

. (4.11)

Noticing that

lim
i→+∞

h
(2)
i (S2A) = 0 for all A ∈ R

Nk

,

from property (c) and (4.11) we have (1.6). Finally, (1.7) follows from (b’) and (4.11). �

4.1. Proof of Theorem 1.3. To conclude the section, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. It is enough to adapt the proof of [8, Theorem 3] and to use Theorem
1.3. �
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5. Appendix

This section contains some auxiliary results used in the rest of the paper. First, we give the
proof of Proposition 2.5.

Proof of Proposition 2.5. Since A ∈ ENk−s−1

k and B ∈ As+1E
Nk−s

k , we can write A = Ss+1A and

B = As+1C, for some C ∈ ENk−s

k . As a first step, let us prove that for every r, l ∈ {k−s+1, . . . , k}
with r 6= l we have

AT k−s
r · CT

k−s

l = A · CT k−s
r = AT k−s

r · C. (5.1)

To fix the ideas, let us assume r < l. By definition of transpose operators

A
T k−s

r

i1i2...ik
C

T
k−s

l

i1i2...ik
= Ai1i2...ik−s−1irik−s+1...ir−1ik−sir+1...ik

Ci1i2...ik−s−1ilik−s+1...il−1ik−sil+1...ik
,

for every i1, i2, . . . , ik = 1, . . . , N . In the last expression, since A ∈ ENk−s−1

k and r, l > k − s, we
can exchange the indices in r-th and l-th position in the first factor, obtaining

A
T k−s

r

i1i2...ik
C

T
k−s

l

i1i2...ik
= Ai1i2...ik−s−1irik−s+1...ir−1ilir+1...il−1ik−sil+1...ik

Ci1i2...ik−s−1ilik−s+1...il−1ik−sil+1...ik
.

Summing last relation with respect to i1, . . . , ik and renumerating the indices

AT k−s
r · CT

k−s

l =

1,N∑

i1...,ik

A
T k−s

r

i1i2...ik
C

T k−s

l

i1i2...ik

=

1,N∑

i1...,ik

Ai1i2...ik−s−1irik−s+1...ir−1ilir+1...il−1ik−sil+1...ik
Ci1i2...ik−s−1ilik−s+1...il−1ik−sil+1...ik

=

1,N∑

i1...,ik

Ai1...ik
Ci1i2...ik−s−1irik−s+1...ir−1ik−sir+1...ik

=

1,N∑

i1...,ik

Ai1i2...ik
C

T k−s
r

i1i2...ik
= A · CT k−s

r .

In the same way one can prove the second equality in (5.1).
Let us now prove the proposition. We have

(s+ 1)2A ·B = (s+ 1)2 (Ss+1A · As+1C)

=
(
A+AT

k−s

k−s+1 + · · · +AT
k−s

k

)
·
[
sC − (CT

k−s

k−s+1 + · · · + CT
k−s

k )
]

= sA · C −
k∑

r=k−s+1

AT k−s
r · CT k−s

r −
k∑

r=k−s+1

A · CT k−s
r

+ s

k∑

r=k−s+1

AT k−s
r · C −

k∑

l=k−s+1

k∑

r 6=l
r=k−s+1

AT k−s
r · CT

k−s

l

Since the sum of the first two terms is zero, using relation (5.1) we get

(s+ 1)2A · B = (s− 1)

k∑

r=k−s+1

A · CT k−s
r −

k∑

l=k−s+1

k∑

r 6=l
r=k−s+1

A · CT k−s
r

= (s− 1)

k∑

r=k−s+1

A · CT k−s
r − (s− 1)

k∑

r=k−s+1

A · CT k−s
r = 0.

�

In the remaining part of the section we state some lemmas that are proved in [8].

Lemma 5.1. Let X be a Hilbert space, and let g : X → R be given by

g(x) :=
(
µ2 + |x|2

) p

2

. (5.2)
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For every p > 1, there exist two constants θp > 0 and Θp > 0 such that for every µ ≥ 0 the
function g defined in (5.2) satisfies the following inequalities

θp(µ
2 + |x|2 + |y|2)

p−2

2 |y|2 ≤ g(x+ y) − g(x) −∇g(x) · y

≤ Θp(µ
2 + |x|2 + |y|2)

p−2

2 |y|2

for every x, y ∈ X.

Lemma 5.2. Let X,Y be Hilbert spaces and let p > 1, µ ≥ 0, β ≥ 0. Let gβ : X ×Y → R be given
by

gβ(x, y) :=
(
µ2 + |x|2 + β2|y|2

) p

2

. (5.3)

Then

gβ(x + ξ, y + η) − gβ(x, y) −∇xgβ(x, y) · ξ −∇ygβ(x, y) · η (5.4)

≥ θp

(
µ2 + |x|2 + |ξ|2 + β2|y|2 + β2|η|2

) p−2

2
(
|ξ|2 + β2|η|2

)

for every x, ξ ∈ X, y, η ∈ Y , where θp is the first constant in Lemma 5.1. Therefore, if p ≥ 2,
we have

gβ(x+ ξ, y + η) − gβ(x, y) −∇xgβ(x, y) · ξ −∇ygβ(x, y) · η (5.5)

≥ θp

(
µ2 + |x|2 + |ξ|2

) p−2

2

|ξ|2 +
θpβ

2

2

(
µ2 + |x|2

) p−2

2

|η|2 +
θpβ

p

2
|η|p

for every x, ξ ∈ X, y, η ∈ Y .

Lemma 5.3. Let X be a Hilbert space and let 1 < p ≤ 2. Then for every µ̃ ≥ 0 and every
0 < δ < 1 we have

(
µ̃2 + |x+ y|2

) p−2

2

|x+ y|2 ≤ 2
(
µ̃2 + |x|2

) p−2

2

|x|2 + 2
(
µ̃2 + |y|2

) p−2

2

|y|2,

δ
2−p
2

(
µ̃2 + |y|2

) p−2

2

|y|2 ≤
(
µ̃2 + |x|2 + |y|2

) p−2

2

|y|2 + δ
(
µ̃2 + |x|2

) p−2

2

|x|2

for every x, y ∈ X.

Lemma 5.4. Let 1 < p ≤ 2. Then

bp ≤ 8ε
p−2

p (µ2 + a2 + b2)
p−2

2 b2 + εap + εµp

for every a ≥ 0, b ≥ 0, µ ≥ 0, and 0 < ε < 1.

Lemma 5.5. Let X be a Hilbert space, and let f ∈ C1(X)∩C2(X \ {0}). Assume that there exist
p > 1, C > 0, and µ ≥ 0 such that

|∇2f(x)| ≤ C
(
µ2 + |x|2

) p−2

2 (5.6)

for every x ∈ X \ {0}. Then

|∇f(x+ y) −∇f(x)| ≤ KpC
(
µ2 + |x|2 + |y|2

) p−2

2

|y| (5.7)

for every x, y ∈ X, where Kp ≥ 1 is a constant depending only on p.

Lemma 5.6. Let X be a Hilbert space and let f ∈ C1(X). Assume that there exist p > 1 and
µ ≥ 0 such that

|∇f(x+ y) −∇f(x)| ≤
(
µ2 + |x|2 + |y|2

) p−2

2

|y|

for every x, y ∈ X. If 1 < p ≤ 2, then for every ε > 0 there exists a constant c1 = c1(ε, p) > 0,
depending only on ε and p, such that

|f(x+ y + z) − f(x+ y) −∇f(x) · z|

≤ ε
(
µ2 + |x|2 + |y|2

) p−2

2

|y|2 + c1

(
µ2 + |z|2

) p−2

2

|z|2
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for every x, y, z ∈ X.
If p ≥ 2, then for every ε > 0 there exists a constant c2 = c2(ε, p) > 0, depending only on ε and

p, such that

|f(x+ y + z) − f(x+ y) −∇f(x) · z|

≤ ε
(
µ2 + |x|2 + |y|2

) p−2

2

|y|2 + c2

(
µ2 + |x|2

) p−2

2

|z|2 + c2|z|
p

for every x, y, z ∈ X.
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