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Abstract. We propose a new model for segmenting piecewise constant images with
irregular object boundaries: a variant of the Chan-Vese model [10], where the length
penalization of the boundaries is replaced by the area of their neighborhood of thick-
ness ε. Our aim is to keep fine details and irregularities of the boundaries while
denoising additive Gaussian noise. For the numerical computation we revisit the clas-
sical BV level set formulation [23] considering suitable Lipschitz level set functions
instead of BV ones.

Keywords: Denoising, Segmentation, Variational Methods, Level Set.

2000 Mathematics Subject Classification: 68U10, 35A15, 65C20.

Contents

1. Introduction 1
2. The proposed model 3
2.1. The set-up of the model 3
2.2. Existence of a minimizer 5
2.3. Features and properties of our model 9
3. Approximated models for numerical computation 14
3.1. The Lipschitz level set function approach 14
3.2. Ambrosio-Tortorelli type approximation 18
3.3. The infinite Laplacian to select the length-scale ε 21
4. Numerical results 22
Acknowledgments 25
References 27

1. Introduction

One of the most well known variational segmentation models is the one proposed by Mum-
ford and Shah in [20], based on the minimization of the following functional:

Ems[u,Γ|u0] = H1(Γ) + α

∫

Ω\Γ
|∇u|2dx+ λ

∫

Ω
(u− u0)

2dx. (1.1)

Here Ω is a bounded Lipschitz domain (e.g., a rectangle), u0 : Ω → R+ ∪ {0} is the given
image, Γ ∈ Ω denotes the edge set of the ideal image u, and H1 denotes the 1-dimensional
Hausdorff measure, extending the classical notion of length. This functional is well defined
on the pair (u,Γ) with u ∈ W 1,2(Ω \ Γ), H1(Γ) < ∞, and Γ being relatively closed in Ω,
provided that the given image u0 belongs to L2(Ω).
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One other well-known work includes the Chan-Vese model [10], which successfully imple-
mented the piecewise constant segmentation using the celebrated level-set method. In the
context of two phase segmentation the corresponding energy looks like

Ecv[v,Γ|u0] = H1(Γ) + λ

2∑

i=1

∫

Ui

|u0 − ci|2, (1.2)

where v : Ω → {0, 1} is discontinuous on Γ and divides Ω in two sets U1 := {v = 1} and
U2 := {v = 0}, and c1 and c2 are the averages of u0 on U1 and U2, respectively. The function
u := c1χU1 + c2χU2 represents the segmented image.

Following these variational segmentation models, numerous extensions and properties have
been studied, such as [4, 7, 11, 15, 17, 18, 19, 24, 25, 26, 27].

In this paper, as an attempt to segment objects with irregular boundaries, we propose and
study a variant of the Mumford-Shah functional (1.1) (following the Chan-Vese approach
(1.2) for piecewise constant segmentation), replacing the length term H1(Γ) with the area of
the set

ε - Γ = ∪x∈ΓBε(x). (1.3)

We call this set the ε-neighborhood of the edge set Γ. By introducing this new length-scale
parameter ε in the model, we aim to capture rough boundaries of the main objects in the
image u0, while achieving at the same time the denoising effect. The heuristic behind this
feature is that, on dilute noise, the area of the ε-neighborhood acts as an additive measure,
while on fine oscillatory boundaries it is strictly sub-additive. In view of this behavior, the ε-
neighborhood term penalizes the presence of isolated connected components in the segmented
picture, thus removing dilute noise, while preserving finely oscillating boundaries of the main
objects in the picture, even allowing for infinite perimeter segmentations.

We analyze the properties of the proposed model focusing on two phase segmentation. We
propose three approaches to the numerical approximation of the model and present various
experiments.

Let L2 be the 2-dimensional Lebesgue measure. In order to approximate the ε-neighborhood,
we first notice that the term L2(ε - Γ) can be rewritten as

L2(ε - Γ) =

∫

Ω
f0

(
dist(x,Γ(v))

ε

)
dx,

where f0 := χ[0,1]. A natural way of approximating this penalization term is given by replacing
the discontinuous function χ[0,1] with a smoother function f . This leads to the following
functional

Ef (v) :=

∫

Ω
f

(
dist(x,Γ(v))

ε

)
dx+ λ

2∑

i=1

∫

Ui

|u0 − ci|2,

where f is a positive decreasing function. Examples of f include

f(t) = e−tk , or f(t) =
1

1 + tk
, for k ≥ 1.

Now, the idea of our Lipschitz level set approach consists in working with level set functions
φ that are signed distance functions from their zero level set Γ, so that

f

(
dist(·,Γ))

ε

)
= f

( |φ|
ε

)
. (1.4)
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In order to force φ to look like a signed distance function, we add the penalization

1

p

∫

Ω
|∇φ|pdx.

This term, as p→ ∞, enforces |∇φ| ≤ 1 (this power low approximation as been proposed also
in [16] as a model for dielectric breakdown), and in combination with the fitting term and
the perimeter penalization ensures that any minimizing φ stays as a signed distance function
from Γ.

The paper is organized as follows. In Section 2 we introduce our variational model and
study its main properties. In particular we provide the relaxed energy functional and prove
the existence of a minimizer of the original problem. One of the difficulties in this step is
that minimizing sequences have in general unbounded perimeters, and may converge to a
function that is not characteristic. To overcome this lack of compactness, we prove that
any minimizer of the relaxed functional can be suitably modified to produce a minimizing
characteristic function. Note that the minimizing set needs not be of finite perimeter, and
this is indeed in agreement with the main goal of keeping most of the fine details of the
original image while performing denoising. In the last part of the section we collect some
heuristic computations to highlight the main features of our model as a comparison to the
Chan-Vese model.

In Section 3 we present some approximations useful to the numerical implementation of
the model. In the first one, we present our revisited Lipschitz level set method. The main
novelty with respect to the classical BV level set formulation [23], is that our method involves
Lipschitz continuous level set functions, with uniformly bounded Lipschitz constant. These
Lipschitz level set functions turn out to be useful in implementing the ε-neighborhood of the
level set (see (1.4)). The second one is a phase-field approximation, inspired by the classical
Ambrosio-Tortorelli functional [1], the novelty being again in the use of uniformly Lipschitz
phase-field functions. Finally, we consider a variant of our variational model, involving the
infinite Laplace operator. The corresponding level set functions are still Lipschitz, but with
Lipschitz constant determined by a suitable variational problem. This variant is an attempt
of automatically select the length-scale ε. For all these approximations we perform a rigorous
Γ-convergence analysis (we refer the reader to the monographs [5] and [14] devoted to the
notion of Γ-convergence).

In Section 4 we present some numerical results. In particular, we compare the results
obtained using our Lipschitz level set method with those obtained using the Chan-Vese im-
plementation, based on the classical BV level set formulation [23].

2. The proposed model

In this section we present our model and we show the existence of an optimal segmentation
of Ω corresponding to the given image u0. Moreover, we explore various properties of the
model.

2.1. The set-up of the model. Let Ω ⊂ R
2 be a bounded Lipschitz open set representing

the image domain, and u0 ∈ L2(Ω; R+ ∪ {0}) be a given image. We propose the following
functional for piecewise constant two-phase segmentation with irregular boundaries (using
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the intensity fitting term from the Chan-Vese model):

E [v|u0] := L2(ε - Γ(v)) + λ

[∫

U
(u0 − c1)

2 +

∫

Ω\U
(u0 − c2)

2

]
, (2.1)

where ε, λ > 0 are two parameters, v = χU ∈ L∞(Ω; {0, 1}) is a segmentation of Ω, Γ = Γ(v)
is the edge set of v, and c1 and c2 are the averages of u0 on U and Ω \ U , respectively. If
v = χU minimizes the functional (2.1), then we call {U,Ω \ U} a minimal partition (with
respect ε, λ and u0). The segmented image is represented by the function u := c1v+c2(1−v).
Remark 1. Note that the averages c1 and c2 minimize the expression

∫
U (u0−c1)2+

∫
Ω\U (u0−

c2)
2 among all c1, c2 ∈ R.

In order to give a suitable definition of the edge set Γ = Γ(v), we need to take into account
that v is defined up to a negligible set (with respect to L2). Therefore we cannot merely set
Γ := ∂U \∂Ω. Indeed in this way also Γ should be defined up to a negligible set. On the other
hand, the ε-neighborhood of Γ as defined in (1.3) is sensitive to negligible modifications: for
instance supposing U open and removing from it a point, we introduce new boundary and
ε - Γ changes. Consequently, with such definition of Γ, the functional (2.1) is not well posed
on the class of the segmentations in L∞(Ω). To avoid any ambiguity, we need to consider a
precise representative within the Lebesgue equivalence class of the given function. To this
purpose, we recall that x ∈ Ω is a Lebesgue point of a given locally integrable function v if
there exists Lv(x) ∈ [0, 1] such that

lim
r→0

1

r2

∫

B(x,r)
|v(y) − Lv(x)| dy = 0.

In this case, Lv(x) is called the Lebesgue value of v at x. Moreover, given v, almost every
x ∈ Ω is a Lebesgue point for v, and satisfies v(x) = Lv(x). Therefore, it is well defined the
Lebesgue representative ṽ of v, given by

ṽ(x) :=

{
Lv(x) if x is a Lebesgue point for v;

0 elsewere.

Definition 1. The edge set of v = χU is defined as

Γ(v) = ∂{ṽ−1(1)} \ ∂Ω, (2.2)

where ṽ is the Lebesgue representative of v. In this way, ε - Γ(v) is independent on the choice
of the representative of v.

For the readers familiar with geometric measure theory, we mention that ∂{ṽ−1(1)} coin-
cides with the relative closure of the so called essential boundary of U . Our choice of the
precise representative ṽ yields that ∂{ṽ−1(1)} ⊂ ∂{w−1(1)} for any other representative w of
v. In other words, our definition gives the minimal boundary corresponding to U . Note also
that, when U is Lipschitz, then ∂{ṽ−1(1)} coincides with the usual topological boundary ∂U .

Remark 2 (The Minkowski content). Let Γ be a subset of Ω. Then the quantity

lim
ε→0

L2(ε - Γ)

2ε
,

if exists, is called the Minkowski content of Γ. It is well known that if Γ is regular (e.g.
a smooth curve) then the Minkowski content of Γ exists and coincides with the usual one
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dimensional measure H1(Γ). Hence, the first term in our model (2.1) represents (as ε → 0,
and rescaled by 2ε) a good approximation of the classical perimeter.

Therefore, defining

Eε[v|u0] =
1

2ε
L2(ε - Γ(v)) + λ

[∫

U
(u0 − c1)

2 +

∫

Ω\U
(u0 − c2)

2

]
dx,

we expect that for small ε the functionals Eε behave like the Chan-Vese functional Ecv defined
in (1.2). Indeed, by the analysis done in [6] it is possible to prove that the functionals Eε

Γ-converge to Ecv as ε → 0 (we refer also to [21] and to [13] for a similar analysis in the
framework of fracture mechanics).

On the other hand, for fixed ε, L2(ε - Γ) turns out to be dramatically smaller than 2εH1(Γ)
whenever Γ presents fine oscillations at scales smaller than ε (see Example 1). This relaxation
in the perimeter penalization for small oscillations represents the main difference of our model
with respect to the CV-model.

Example 1. Let Ω = (0, 1)2 and let u0 be defined for all (x, y) ∈ Ω as

u0(x, y) =

{
1 y < 1 + x

2 sin( 1
x),

0 otherwise.

In this case, Γ = {(x, y) : y = 1 + x
2 sin( 1

x)}. A simple calculation shows that H1(Γ) = ∞.
On the other hand, L(ε - Γ) ≤ 1 for all ε > 0.

Another motivation to consider L2(ε - Γ) is the case when Γ corresponds to fractal bound-
aries. For instance, consider a Koch snowflake, which is constructed as follows: start with
an equilateral triangle having unit length segments; next replace the middle third of every
line segment with a pair of line segments by forming an equilateral triangle with the removed
middle third segment to create a bump; repeat indefinitely the same process on every line
segment on the shape obtained previously. The resulting shape is called the Koch snowflake.
Let Γ be its boundary. Note that at each iteration, the length of the boundary of the new
shape is increased by one third. This implies, H1(Γ) = ∞. On the other hand, for any ε > 0,
L2(ε - Γ) is finite.

2.2. Existence of a minimizer. In this part we prove that the energy E in (2.1) admits
a minimal partition {U,Ω \ U} of Ω. Our approach follows the lines of the direct method
of calculus of variations. However, since the model allows for oscillatory boundaries, the
minimizing sequence may not have finite perimeter, and hence we can not apply standard
compactness arguments for sets with finite perimeter. The minimal partition itself could have
infinite perimeter, and this is indeed the main task of our model. In the following, to simplify
the notation we neglect the dependence on u0.

The main ingredient in the proof of the existence of a minimizer is given by providing
a relaxation formula for the functional E . To this purpose, we define the relaxation E :
L∞(Ω; [0, 1]) → R of E as

E(v) := inf
{

lim inf
n

E(vn), vn ∈ L∞(Ω; {0, 1}), vn
∗
⇀ v in L∞(Ω; [0, 1])

}
. (2.3)

Since L∞(Ω; [0, 1]) is compact with respect to the weak∗ topology, it is a standard fact (we
refer the reader to [8]) that the relaxation E of E admits a minimizer, and that

inf
v∈L∞(Ω;{0,1})

E(v) = min
v∈L∞(Ω;[0,1])

E(v). (2.4)
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In order to give an explicit formula for the functional E , we need to generalize the definition
of Γ(v) introduced in (2.2) to functions v ∈ L∞(Ω; [0, 1]):

Γ(v) :=
(
∂{ṽ−1(0)} ∪ ∂{ṽ−1(1)} ∪ ṽ−1((0, 1))

)
\ ∂Ω, (2.5)

where we recall that ṽ is the Lebesgue representative of v. Denoting by A0 the interior of
ṽ−1(0) and by A1 the interior of ṽ−1(1), we have Γ(v) = Ω \ (A0 ∪ A1). In particular, the
set Γ(v) turns out to be relatively closed in Ω. Observe that if v ∈ L∞(Ω; {0, 1}), then the
notions of Γ(v) defined in (2.2) and (2.5) agree. We finally mention that again this definition
provides the minimal edge set within the Lebesgue equivalence class of v.

In the following, we will need a stability result for the penalization term L2(ε -K) with
respect to the Hausdorff convergence. To this purpose, we recall that a sequence of closed
sets Kn converges to a closed set K in the sense of Hausdorff convergence if the following two
properties hold:

i) for every positive δ > 0, and for n large enough (depending on δ), we have Kn ⊆ δ -K;
ii) for every positive δ > 0, and for n large enough (depending on δ), we have K ⊆ δ -Kn.

It is well known that any sequence of equibounded closed sets Kn admits convergent subse-
quence. The following stability result is a direct consequence of the definition of Hausdorff
convergence.

Lemma 1. Let Kn be a sequence of closed sets converging to a closed set K in the sense of
Hausdorff convergence. Then L2(ε -Kn) → L2(ε -K) as n→ ∞.

We are in a position to give an explicit formula for the relaxation E of E .

Proposition 1. For all v ∈ L∞(Ω; [0, 1]) the following relaxation formula holds

E(v) = L2(ε - Γ(v)) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx, (2.6)

with c1(v) and c2(v) defined by

c1(v) :=

∫
Ω vu0 dx∫
Ω v dx

and c2(v) :=

∫
Ω(1 − v)u0 dx∫
Ω(1 − v) dx

. (2.7)

Remark 3. Note that the values c1(v) and c2(v) are obtained by minimizing the expression∫
Ω[v(u0 − c1)

2 + (1 − v)(u0 − c2)
2] in c1, c2 ∈ R.

Proof. We will divide the proof into two steps, where we will prove that (2.6) holds with =
replaced by ≤ and ≥ respectively.

Step 1 (≤). Let A0 be the interior of ṽ−1(0), A1 the interior of ṽ−1(1), so that Γ(v) = Ω\(A0∪
A1). By standard arguments, it is possible to construct a sequence wn ∈ L∞(Γ(v); {0, 1})
such that wn

∗
⇀ v|Γ(v) in L∞(Γ(v); [0, 1]). Define

vn(x) :=





0 if x ∈ A0;

1 if x ∈ A1;

wn if x ∈ Γ(v).

(2.8)

Clearly, we have vn
∗
⇀ v in L∞(Ω; [0, 1]), and hence by definition E(v) ≤ lim inf E(vn). Notice

that by the very definition of vn, we have Γ(vn) ⊆ Γ(v), and in particular
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L2(ε - Γ(vn)) ≤ L2(ε - Γ(v)). (2.9)

Let U(vn) := v−1
n (1). In view of (2.9) and of Remark (1), we have

E(v) ≤ lim inf E(vn)

≤ lim inf
n

(
L2(ε - (Γ(vn)) + λ

[∫

U(un)
(u0 − c1(v))

2dx+

∫

Ω\U(un)
(u0 − c2(v))

2dx
])

≤ lim
n

(
L2(ε - (Γ(v)) + λ

∫

Ω

[
vn

(
u0 − c1(v))

2 + (1 − vn)
(
u0 − c2(v))

2
]
dx

)

= L2(ε - Γ(v)) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx.

Step 2 (≥). Let vn be a sequence in L∞(Ω; {0, 1}) such that vn
∗
⇀ v and E(v) = lim E(vn).

Up to a subsequence (that we will not relabel) we can assume that Γ(vn) → Γ in the sense
of Hausdorff for some closed set Γ. First let us show that Γ(v) ⊆ Γ. Indeed, let x ∈
Ω \ Γ. Therefore, by the definition of Hausdorff convergence there exists δ > 0 such that
Γ(vn) ∩ Bδ(x) = ∅ for n large enough. This implies that either vn ≡ 0, or vn ≡ 1 on Bδ(x),
and these properties are clearly inherited by v. In conclusion, we have that x is in the interior
of the set {v−1(0)}∪{v−1(1)}, and hence x does not belong to Γ(v). By Lemma 1 we deduce
that

lim
n

L2(ε - Γ(vn)) = lim
n

L2(ε - Γ(vn)) = L2(ε - Γ) ≥ L2(ε - Γ(v)). (2.10)

By the continuity with respect to the weak∗ topology of the coefficients c1(·) and c2(·), and
in view also of (2.10), we get

E(v) = lim E(vn) = limL2(ε - (Γ(vn)) + λ

∫

Ω

[
vn(u0 − c1(vn))2 + (1 − vn)(u0 − c2(vn))2

]
dx

= L2(ε - (Γ)) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx

≥ L2(ε - (Γ(v))) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx.

This concludes the proof of the proposition. �

We are in a position to give the main result of the Section.

Theorem 1. For any given original image u0 in L2(Ω; R+ ∪ 0), the functional E defined in
(2.1) admits a minimizer.

Proof. Let v be a minimizer for E . Setting

v(x) :=





v(x) on v−1({0} ∪ {1}),
0 on x ∈ Ω : |u0(x) − c1(v)| ≤ |u0(x) − c2(v)|,
1 on x ∈ Ω : |u0(x) − c1(v)| > |u0(x) − c2(v)|,

it is easy to see that v is also a minimizer of E (since, passing from v to v, both addends in
(2.6) do not increase). Finally, in view of (2.4) we conclude that v minimizes E . �
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Remark 4 (The instability of segmentation in Γ). A theoretical drawback of our model is that
a minimizer v of E could in general exhibit a diffuse region I(v) := {x ∈ Ω : 0 < ṽ < 1} ⊆ Γ(v).
In the proof of Theorem 1 we have seen that we can always modify v on I(v) in order to make
it into a characteristic function. On the other hand, we expect in I(v) to have instability of
the minimization process. Therefore, two natural questions arise:

1) How large could the instability region be?
2) Are there natural assumptions on the original image u0 ensuring that I(v) = ∅, i.e.,

that any minimizer of E takes two values?

Concerning the first question, we observe that by minimality we always deduce the following
bound for Γ(v):

L2(Γ(v)) ≤ L2(ε - (Γ(v))) ≤ E(v) ≤ E(χΩ) ≤ λ‖u0‖2
2,

that clearly gives a bound for I(v) ⊂ Γ(v). Passing to the second question, we notice that by
minimality we necessarily have

I(v) ⊂
{
x ∈ Ω : |u0(x) − c2(v)| = |u0(x) − c1(v)|

}
=

{
x ∈ Ω : u0(x) =

c2(v) + c1(v)

2

}
.

Therefore, if for instance u0 does not have flat parts, i.e., u−1
0 (t) has measure zero for every

t ∈ R, then we deduce that I(v) = ∅. Another relevant assumption ensuring I(v) = ∅ is
that u0 takes only two values (because in this case none of these values can coincide with
(c2(v) + c1(v))/2).

More in general, we expect that the presence of the instability region I(v) is indeed a very
rare event, and it should not be an obstacle for practical purposes.

Remark 5 (A smooth variant of the proposed model). Here we discuss a possible variant of
the proposed model. Let us observe that the relaxation E of E can be rewritten as

Ef0(v) :=

∫

Ω
f0

(
dist(x,Γ(v))

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx, (2.11)

where f0 := χ[0,1]. A natural variant of our model, which could be convenient for numerical
purposes, consists in replacing the discontinuous function χ[0,1] with a smoother function f .
This leads to the following functional in L∞(Ω; [0, 1]):

Ef (v) :=

∫

Ω
f

(
dist(x,Γ(v))

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx, (2.12)

where c1(v), c2(v) are defined in (2.7) and f is a positive non-increasing lower semicontinuous
function. Examples of f include

f(t) = e−tk , or f(t) =
1

1 + tk
, for k ≥ 1.

For large k, f behaves more like f0. The proof of the existence in L∞(Ω; {0, 1}) of a minimizer
for Ef goes along the lines of the proof given for the functional Ef0.

Remark 6 (Invisible points for ε - Γ(v)). Let v ∈ L∞(Ω; [0, 1]) and set

N(v) := {x ∈ Ω : Bε(x) ⊆ ε - Γ(v)}.
Then by construction we have L2(ε - (Γ(v) ∪ N(v)) = L2(ε - (Γ(v)). Therefore, one can

modify the function v on N(v) increasing the set Γ but without changing the corresponding
ε - neighborhood. The presence of such region could be a source of noise, since formation of
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boundaries are not penalized there. Moreover, the presence of N(v), together with the set
I(v) discussed in Remark 4, may be a source of instability in our model.

Since the presence of N(v) is made possible by the fact that the graph of the function f0

in (2.11) has flat zones, a way to avoid the set N(v) is then to consider the variant Ef in
(2.12), with f strictly decreasing.

2.3. Features and properties of our model. In this section we compare the properties
of our model with the ones by Chan-Vese, focusing, in particular, on the following features.

• The denoising effect: for simplicity we will consider additive noise given by the pres-
ence in u0 of many small isolated components, and we will compare the capability of
the two models to remove them.

• The cornering effect: it is well known that the Chan-Vese model does not keep corners
and tends to give them a round shape; we will compare the analogous effect with our
proposed model.

• Resolution: namely the capability to distinguish between two close objects, instead
of considering them as a single one.

• Oscillatory boundary: we will compare the capability of the two models of keeping
finely oscillatory parts of the boundaries.

In Chan-Vese model, decreasing the parameter λ allows to increase the denoising effect,
although to the detriment of cornering, resolution and capability of keeping fine oscillations
(and vice versa). The possibility of tuning on two parameters, ε and λ, could result in a more
performing model. In the following examples we try to clarify this point with some heuristic
computations. More precisely we will link the parameter λcv in the Chan-Vese model and the
parameters λ and ε in our model to make the denoising effect of the same magnitude. Then,
with this choice of the parameters, we will compare the cornering effect, the resolution and
the capability of keeping oscillations.

We illustrate the situation with four examples. In the following Ω is a rectangle and
u0 = χU0 for a certain U0 ⊂ Ω. We will compare the energy functionals (2.1) and (1.2) on
simple segmentations corresponding to some v = χU , with U ⊂ Ω Lipschitz. Moreover, to
simplify matter, we will not optimize the constant c1 and c2, fixing instead c1 = 1, c2 = 0.
In this case, the energy (1.2) reduces to the functional

Ecv[U |U0] := H1(∂U \ ∂Ω) + λcvL2(U △ U0), (2.13)

while the energy in our model (2.1) reduces to

E [U |U0] := L2(ε - (∂U \ ∂Ω)) + λL2(U △ U0). (2.14)

Critical size for noise removal. Here we heuristically compute the critical size of the noise
removed by the two models. Then we will link the corresponding parameters by enforcing the
same critical size. To simplify matter we will assume that the noise is given by the union of
many small balls, and we are looking for the critical radius δ (depending on the parameters)
such that any ball of radius smaller than δ will be removed. Since we are interested in keeping
fine details of the boundary of the given image, we assume the fidelity parameters λcv and λ
to be very large. Finally, as a further simplification, we will assume that the mutual distance
of these balls is larger than 2ε, so that their ε - neighborhoods are not overlapping; this allows
us to reduce to the case of a single ball (see Fig. 1).
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ε

Figure 1. Denoising.

Consider U0 = Bδ(x) ⊂ Ω. In this situation the model (2.13) removes the ball Bδ(x) if and
only if δ < 2/λcv . Indeed, in terms of perimeter a ball of size δ weighs 2πδ, while in terms of
area it weighs λcvπδ

2.
Passing to our proposed model, assuming for a while δ ≤ ε, we have L2(ε - ∂Bδ(x)) =

π(ε+ δ)2. Therefore, after some elementary computations it turns out that, for the proposed

model (2.14), the critical size δ satisfies δ ≈ cε/
√
λ, with 1 < c ≤ 2 (the extremal cases

corresponding to δ → 0 and to δ = ε, respectively).
Now, enforcing the same denoising effect for the two models, i.e, the same critical size δ,

we deduce the linking of the parameters

1

λcv
≈ c

ε√
λ
. (2.15)

Cornering. Here we compare the smoothing effect of the two models, assuming they perform
the same denoising, i.e., that (2.15) holds. To this purpose, we take U0 = Q, with Q the
unitary cube, and we consider the one-parameter family of competitors Uδ (with δ > 0)
obtained by U0 replacing the corners with circular arcs of radius δ (see Fig.2).

δ

Figure 2. Cornering.

Then minimizing the corresponding energy functionals with respect to δ gives the magni-
tude of the smoothing effect for the two models.
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An elementary computation leads to the following expression:

Ecv[Uδ |U0] = 4 − 2(4 − π)δ + λcv(π − 4)δ2.

Minimizing with respect to δ, we obtain the smoothing radius δcv = 1/λcv.
Passing to our proposed model, we have

E [Uδ|U0] = (1 + 2ε)2 + (1 − 2ε)2 − (4 − π)(δ + ε)2 + λ(4 − π)δ2.

Minimizing in δ, we obtain the smoothing radius for our proposed model δ = ε/(λ − 1).
Finally, enforcing (2.15) we deduce for λ large

δ =
ε

λ− 1
≈ ε

λ
=

1

2λcv

1√
λ

= δcv
1

2
√
λ
.

Summarizing, the above heuristic computation shows that our model seems to better preserve
corners while performing the same denoising.

Resolution. Let U0 be a strip of unitary height and length l with a crevice of size δ ≪ 1
(see Fig. 3). Moreover, let U be the rectangle obtained by filling the crevice of U0.

δ

Figure 3. Resolution.

We will compare now the resolution of the two models, understood as the capability of
keeping the crevice without filling it. To this purpose, we compare the energy of U and U0

for the two models, obtaining in this way the critical size δ of the crevice. Concerning the
Chan-Vese model we have

Ecv[U |U0] = 2l + λcvδ, Ecv[U0|U0] = 2(l − δ) + 2.

Therefore, the critical δ is given by

δcv =
2

λcv + 2
≈ 2

λcv
.

Passing to our model, assuming δ < 2ε a straightforward computation gives

E [U |U0] = 4εl + 2πε2 + λδ, E [U0|U0] = 4εl + 2πε2 + δ + 2ε+O(εδ),

where O(εδ) is such that O(εδ)/(εδ) ≤ C. By comparison, the critical δ in our model is given
by δ ≈ 2ε/(λ − 1) ≈ 2ε/λ. Finally, enforcing (2.15), we get

δ ≈ 2ε

λ
≈ 2

λcv

√
λ
≈ δcv√

λ
.
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This computation shows that on equal denoising, our model should guarantee a better reso-
lution.

Fine oscillatory boundaries. Finally, we compare the capability of preserving fine os-
cillatory boundaries for the two models. Let U be a strip of unitary height and length l.
Moreover, let U0 be the previous strip with in addition, along one of the sides of length l, a
jagged constituted by triangles of base δ and height h as in Fig. 4.

δ

h

Figure 4. Irregular boundary.

We assume δ small compared to l. Since the number of the triangles of the jagged is
approximately l/δ, we have

Ecv[U |U0] ≈ l +
λcvhl

2
, Ecv[U0|U0] ≈

2l

δ

√
h2 +

(δ
2

)2
,

from which we easily deduce that the critical size of the frequency of the oscillations is given
by

δcv ≈ 4h√
3 + 4λcvh+ λ2

cvh
2
.

This suggests that, in the case of the fidelity parameter λ quite larger than the inverse of the
amplitude h of the oscillation (λh ≫ 1), the sets close to U0 are energetically favorable in
the Chan-Vese model when the frequency δ of oscillation is larger than 4/λcv. For δ < 4/λcv

we have instead that the set U is energetically favorable, and indeed we expect that the
minimal segmentation cuts-off the vertical oscillations, decreasing the scale h and smoothing
the jagged. In the case λh ≪ 1, the sets close to U0 are energetically favorable when the
frequency of oscillation is at least larger than 4h/

√
3, that is the same order of the amplitude h.

Passing to our model the picture changes drastically, since we have

E [U |U0] ≈ 2εl +
λhl

2
, E [U0|U0] ≈ (2ε+ h)l.

Therefore, for any given λ ≥ 2 we could expect that the minimum of our model is closer to
U0 than to U . Moreover, when the oscillatory parts of the boundary are at a scale smaller
than ε, we aspect that the jagged is substantially kept because each perturbation flattening
the boundary does not modify substantially the ε-neighborhood. Similarly, the closeness of
the minimum to U0 should not be dependent by the frequency δ of the oscillation, because
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Model Chan-Vese Proposed

Denoising δcv = 2
λcv

δ = δcv

Cornering δcv = 1
λcv

δ = 1
2
√

λ
δcv

Resolution δcv = 2
λcv

δ = 1√
λ
δcv

Oscillatory boundaries δcv = 4
λcv

every δ << ε

Table 1. Comparison with 1
λcv

≈ ε√
λ
.

the ε-neighborhood remains almost the same (see Fig. 5). This fact is indeed one of the main
features of our model.

h

ε

Figure 5. Irregular boundary.

Remark 7 (Features of our model). In Table 1 we have summarized the features of our
model. In particular, assuming that the parameters in our model and in the Chan-Vese
model are chosen to perform similar denoising, then our model turns out to performs better
concerning the capability of keeping fine details of the boundary. We stress anyway that such
heuristic computations have been performed on ideal images, and through an asymptotic
analysis assuming λ very big and the noise very dilute.

On the other hands, in our simulations we will see that for real images we can fix the
parameters of our model in order to perform at the same time stronger denoising than Chan-
Vese model, keeping finer details of the boundaries.

Remark 8 (Dense noise). The link between the parameters (2.15) has been obtained by
heuristic computations assuming that the noise is made of balls of radius δ whose mutual
distance is greater than or equal to 2ε. Under this assumption we have compared our model
with Chan-Vese model, summarizing the results in Table 1.

Here we observe that the same heuristic computations can be repeated assuming that the
the mutual distance is greater than some ε̃ with δ < ε̃ ≤ ε. In this case we obtain the new
link 1/λcv = cε̃/

√
λ, and it turns out that the comparative analysis summarized in Table 1

still holds true in this case.
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3. Approximated models for numerical computation

In this section we present our approximations of the proposed model (2.1) that will be
used in our numerical experiments.

3.1. The Lipschitz level set function approach. Here we propose a level set approach
to our model, in the spirit of the successful method introduced by Chan-Vese [10] within the
context of two phase segmentation, following the celebrated level set formulation [23]. The
main novelty of our method consists in the use of Lipschitz level set functions, with uniformly
bounded Lipschitz constant (instead of BV level set functions).

We recall that the main idea in [10] is to consider the gradient flow of the following
functional:

Hcv(φ) =

∫

Ω
|∇H(φ)|dx+ λ

{ ∫

Ω
|u0 − c1(H(φ))|2H(φ))dx

+

∫

Ω
|u0 − c2(H(φ))|2(1 −H(φ))dx

}
,

(3.1)

where H is the Heaviside function defined by H(z) = 1 for z ≥ 0 and H(z) = 0 otherwise,
φ is the so called level set function, with {φ = 0} representing the unknown interface, and
c1(H(φ)), c2(H(φ)) are defined as in (2.7) with v replaced by H(φ).

One of the benefits of using level set method is its efficiency even if initial conditions are
chosen far from the original objects. Moreover, topological changes are automatically taken
care of during the evolution of the level set function.

We now set up the level set approximation of our model, working with the general formu-
lation of our model introduced in (2.12). Suppose φ be the signed distance function from the
zero level set Γ. Thus, we have

f

(
dist(·,Γ))

ε

)
= f

( |φ|
ε

)
.

In order to force φ to look like a signed distance function, we add the penalization

1

p

∫

Ω
|∇φ|pdx. (3.2)

This term, as p → ∞, enforces |∇φ| ≤ 1, and in combination with the fitting term and the
perimeter penalization ensures that any minimizing φ stays as a signed distance function
from Γ.

Summarizing, we propose the following functional to be minimized:

Hp(φ) =

∫

Ω
f

( |φ|
ε

)
+

1

p

∫

Ω
|∇φ|pdx

+λ

{∫

Ω
|u0 − c1(H(φ))|2H(φ)dx+

∫

Ω
|u0 − c2(H(φ))|2(1 −H(φ))dx

}
,

(3.3)

where c1(H(φ)) and c2(H(φ)) are defined as for (3.1).



VARIATIONAL SEGMENTATION 15

In order to show the relation between (3.3) and (2.12), it is convenient to rewrite the
functional Hp in the following equivalent way. We define

H̃p : L∞(Ω; [0, 1])×L∞(Ω; [−diam(Ω),diam(Ω)]) → [0,+∞]

(v, φ) 7→
{
Hp(φ) if v = H(φ),

+∞ otherwise.
(3.4)

The Γ-limit of such functionals will be described through the functional Jf : L∞(Ω; [0, 1]) ×
L∞(Ω; [0,diam(Ω)]) 7→ [0,+∞]:

Jf (v, φ) :=

∫

Ω
f

(
φ

ε

)
dx+ λ

∫

Ω
[v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2] dx. (3.5)

Note that when φ is the distance function d from Γ(v), then Jf (v, d) = Ef (v). Thus, observing
that

dist(x,Γ(v)) = sup{|φ(x)| : φ ∈W 1,∞(Ω) , |∇φ| ≤ 1 a.e. in Ω, Γ(v) ⊂ φ−1(0)}, (3.6)

and taking into account the monotonicity of f , the following relation between Jf and Ef is
easily established:

Ef (v) = min{Jf (v, φ) : φ ∈W 1,∞(Ω) , |∇φ| ≤ 1 a.e. in Ω, Γ(v) ⊂ φ−1(0)}. (3.7)

Let us introduce the Γ-limit

H : L∞(Ω; [0, 1]) × L∞(Ω; [−diam(Ω),diam(Ω)]) → [0,+∞]

(v,φ) 7→





Jf (v, |φ|) if φ ∈W 1,∞(Ω), |∇φ| ≤ 1 a.e. in Ω,

v = 0 in {φ < 0} and v = 1 in {φ > 0};
+∞ otherwise,

(3.8)

where Jf is defined in (3.5).
We endow the space L∞(Ω; [0, 1])×L∞(Ω; [−diam(Ω),diam(Ω)]) with the following metriz-

able convergence τ

(vn, φn)
τ→ (v, φ) if and only if

{
vn

∗
⇀ v weakly∗ in L∞(Ω; [0, 1]),

φn → φ uniformly in Ω.
(3.9)

We are ready to state the Γ-convergence result.

Theorem 2. The functionals H̃p defined in (3.4) are equicoercive and Γ-converge, as p→ ∞,
to the functional H defined in (3.8) with respect to the τ -convergence (3.9).

Proof. First of all we prove the equicoercivity property. Let pn → ∞, and let (vn, φn) be

such that H̃pn

f (vn, φn) ≤ C < +∞. Then, in particular, 1
pn

∫
Ω |∇φn|pn ≤ C , and thus

‖∇φn‖pn ≤ C
1

pn p
1

pn
n → 1 as n→ ∞. (3.10)

By the monotonicity of p 7→ ‖ · ‖p, it follows that the functions φn are uniformly bounded
in W 1,p for every fixed p > 1. We conclude by Sobolev embedding that the sequence φn is
precompact with respect to the uniform convergence. The precompactness of the sequence
vn with respect to the weak∗ convergence follows immediately from the bound 0 ≤ vn ≤ 1.
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Let us pass to the proof of the Γ-liminf inequality. let (vn, φn)
τ→ (v, φ) and assume,

without loss of generality, that H̃pn

f (vn, φn) is uniformly bounded. Note that the first integral

in (3.5) is lower semicontinuous with respect to the uniform convergence in φ, while the
second one is continuous with respect to the weak∗ convergence in v, thanks also to (2.7).
Hence, the Γ-liminf inequality will be proven once we show that |∇φ| ≤ 1 a.e. in Ω, v = 0
a.e. in {φ < 0}, and v = 1 a.e. in {φ > 0}.

In order to check that |∇φ| ≤ 1 a.e. in Ω, fix q > 1, and observe that by semicontinuity

‖∇φ‖q ≤ lim inf
n

‖∇φn‖q ≤ lim inf
n

‖∇φn‖pn = 1,

where we used the monotonicity of p 7→ ‖ · ‖p and (3.10). Letting q → ∞ in the above
inequality we deduce that ‖∇φ‖∞ ≤ 1. The constraint v = 1 in {φ > 0} is a consequence of
the fact that for every fixed δ > 0, φn > 0 in {φ > δ} for n large enough, so that vn and in
turn v are equal to 1 on {φ ≥ δ}. Analogously we deduce v = 0 in {φ < 0}.

In order to prove the Γ-limsup inequality let pn → ∞ and fix (v, φ) such that H(v, φ) =
Jf (v, |φ|) < +∞. We may also assume Γ(v) 6= ∅ since otherwise the construction is trivial.

Let {An} be a sequence of open sets such that An ⊂⊂ 1
n - Γ(v) and χAn

∗
⇀ vχΓ(v) and define

vn :=





0 in A0 \ 1
n - Γ(v),

1 in A1 \ 1
n - Γ(v),

χAn otherwise,

where A0 and A1 denote as usual the interior of ṽ−1(0) and ṽ−1(1), respectively. Finally,
setting dn := dist(·, ∂{vn = 0} ∩ Ω), we define

φn := [(vndn) ∧ φ] ∨ vndn

n
+ [((vn − 1)dn) ∨ φ] ∧ (vn − 1)dn

n
.

By construction φn ∈ W 1,∞(Ω) and |∇φn| ≤ 1 almost everywhere. Moreover, since on the
open set {vn = 1} we have dn > 0, it follows from the definition of φn that {vn = 1} ⊆ {φn >
dn/n > 0}. On the other hand, again from the definition of φn we have {vn = 0} ⊆ {φn ≤ 0}.
Hence, necessarily {vn = 1} = {φn > 0} and {vn = 0} = {φn ≤ 0} and thus

vn = H(φn).

We now show that φn → φ uniformly. As ∂{vn = 0} ∩ Ω ⊆ 1
n - Γ(v) ∩ Ω, we may assume

(passing to a subsequence if necessary) that ∂{vn} → Γ ⊆ Γ(v) in the Hausdorff convergence.
Hence, setting d := dist(·,Γ), we have

d ≥ dist(·,Γ(v)) (3.11)

and dn → d uniformly. In turn, since vn
∗
⇀ v and {vndn} is still a sequence of bounded

equi-Lipschitz functions, we have vndn → vd uniformly. We conclude

φn → ψ := [(vd) ∧ φ] ∨ 0 + [((v − 1)d) ∨ φ] ∧ 0 uniformly.

On {φ > 0} we have v = 1 and, in turn, ψ = d ∧ φ = φ, where the last equality follows from
(3.7) and (3.11). Analogously, on {φ < 0} we have v = 0 and, in turn, ψ = −d ∨ φ = φ.
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Moreover, from the very definition of ψ, ψ = 0 on {φ = 0}. Summarizing, ψ = φ and

(vn, φn)
τ→ (v, φ). Therefore, we have

∫

Ω
f

(
φn

ε

)
dx+ λ

∫

Ω

[
vn(u0 − c1(vn))2 + (1 − vn)(u0 − c2(vn))2

]
dx→ H̃f (v, d).

Since ‖∇φn‖ ≤ 1 a.e., also 1
pn

∫
Ω |∇φn|pn dx → 0 as n → ∞. This establishes the Γ-limsup

inequality. �

Since the Γ-convergence of equicoercive functionals implies the convergence of minimizers
(we refer the reader to [5], [14]), taking into account (3.4), (3.6), and (3.7), we have the
following corollary which clarifies the relation between (3.3) and (2.12).

Corollary 1. Let pn → +∞ and for every n ∈ N let φn ∈ L∞(Ω; [−diam(Ω), diam(Ω)]) be a

minimizer for the functional Hpn defined in (3.3). Then, up to a subsequence, (H(φn), φn)
τ→

(v, φ) with v a minimizer for Ef , |φ| = dist(·,Γ(v)), v = 0 on {φ < 0}, and v = 1 on {φ > 0}.
Remark 9 (Relation with the Chan-Vese model). Consider a one-parameter family (Hρ)ρ>0

of smeared versions of the Heaviside function, where the sharp discontinuity is replaced by a
continuous transition on an interval of order ρ. More precisely, we let h : R → [0, 1] be any
Lipschitz continuous non-decreasing function satisfying

limt→−∞ h(t) = 0 , limt→+∞ h(t) = 1 , and

h′ is an even l.s.c. function, non-increasing in [0,+∞),
(3.12)

and for all t ∈ R we set

Hρ(t) := h

(
t

ρ

)
.

In the Chan-Vese model, the regularization term
∫
Ω |∇H(φ)| dx is approximated by

∫

Ω
|∇Hρ(φ)| dx =

∫

Ω
|H ′

ρ(φ)||∇φ| dx,

which is precisely the weighted total variation of φ concentrated at its zero level set.
In our approach we think of φ as a signed distance function, so that |∇φ| = 1. Hence, we

replace the above regularization term by
∫
Ω |H ′

ε(φ)| dx and the approximation of L2(ε - Γ)
looks like ∫

Ω
f

( |φ|
ε

)
dx = ε

∫

Ω
|H ′

ε(φ)|dx =

∫

Ω
h′

(
φ

ε

)
dx. (3.13)

The presence of the gradient penalization in (3.2) in the proposed model (3.3) enforces φ to be
the signed distance function and represents the main difference with the classical Chan-Vese
approach (3.1).

Remark 10. Note the appearance of ε in front of the perimeter penalization in (3.13). This is
mainly motivated by notational consistency with (2.12) (see also Remark 2). Of course there
is no loss of generality in writing the functional in this way, since ε and λ are independent
parameters.

One example of smooth function h that satisfies (3.12) is given by

h(x) :=
1√
π

∫ x

−∞
e−t2 dt,
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so that the nonlocal perimeter penalization becomes

ε

∫

Ω
|H ′

ε(φ)|dx =

∫

Ω
h′

(
φ

ε

)
dx =

1√
π

∫

Ω
e−

φ2

ε2 dx.

Note that here we normalize h so that
∫

R
h(x) dx = 1, but this normalization is indeed

unnecessary. Other examples of h such that h′(x
ε ) better approximate the characteristic

function of the interval [−1, 1] include hk(x) =
∫ x
−∞ e−tk dt, for large even k. In other words,

we have

L2(ε - Γ) ≈
∫

Ω
e
−φ(x)k

εk dx.

Such a function will be used in the numerical computations presented in the next section.
In order to approximate a local minimizer of Hp, in our simulations we will introduce an

artificial time t and projecting to the gradient descent direction, thus solving

∂φ

∂t
=

k

εk
φk−1e−(φ/ε)k

+ div(|∇φ|p−2∇φ) − λδ(φ)
[
(u0 − c1)

2 − (u0 − c2)
2
]

and updating the constants c1 and c2 at each time step according to the formulas

c1 =

∫
ΩH(φ)u0 dx∫

ΩH(φ)dx
and c2 =

∫
Ω(1 −H(φ))u0 dx∫

Ω(1 −H(φ))dx
.

Here, δ(φ) represents the Dirac delta function centered at 0. Numerically, we approximate
δ(φ) by

δγ(φ) =
1

1 + (φ/γ)2
, for some small γ > 0.

3.2. Ambrosio-Tortorelli type approximation. Here we discuss a phase field approxi-
mation of our proposed functional, based on classical Ambrosio-Tortorelli approximation of
free discontinuity problems (see [1]). The main feature of such approximation is that it allows
for discontinuity sets that are not boundary of some other set. Even if we do not need to
treat such general discontinuity sets, we aim to show that also in this context it can be easily
obtained a diffused transition region, enforcing some regularity on the phase-field function.
We believe indeed that such approach could be useful also in other contexts, as in fracture
mechanics, where recently a model for smeared crack set has been proposed by B. Schmidt,
F. Fraternali, and M. Ortiz. in [13].

We will work with the general formulation of our model introduced in (2.12). We now
introduce the approximating functionals. For n ∈ N and p > 1 let Jn,p

f : L∞(Ω; [0, 1]) ×
L∞(Ω, [0,diam(Ω)]) 7→ [0,+∞] be defined by

Jn,p
f (v, d) =

∫

Ω
f

(
d

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx

+ n

∫

Ω
v2(1 − v)2 dx+ n

∫

Ω
d2|∇v|2 dx+

1

p

∫

Ω
|∇d|p dx,

(3.14)

if v ∈W 1,2(Ω) and d ∈W 1,p(Ω), and +∞ otherwise. Here f is as in Remark 5 a positive non
increasing lower semicontinuous summable function and c1(v), c2(v) are as in (2.7).

The heuristics behind such approximation is the following: for n and p tending to infinity,
the last three terms in (3.14) force the segmentation v to be a characteristic function, Γ(v)
to coincide with the level set {d = 0}, and d to approximate the distance function from Γ(v),
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respectively. In turn, the first two addends will approximate the perimeter penalization and
the fidelity term, respectively.

The main difference between the level set and the Ambrosio Tortorelli approximation is that
here v and the distance function are independent variables and the coupling Γ(v) ⊂ {d = 0}
is enforced only in the limit, while in the definition of H̃p in (3.4), v and the signed function
φ are coupled by the relation v = H(φ).

In order to state the Γ-convergence result we introduce the functional Jf : L∞(Ω; [0, 1]) ×
L∞(Ω; [0,diam(Ω)]) 7→ [0,+∞] defined by

Jf (v, d) :=

∫

Ω
f

(
d

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx,

Note that when d is the distance function from Γ(v), then Jf (v, d) = Ef (v). Thus, observing
that

dist(x,Γ(v)) = sup{d(x) : d ∈W 1,∞(Ω) , |∇d| ≤ 1 a.e. in Ω, Γ(v) ⊂ d−1(0)}, (3.15)

and taking into account the monotonicity of f , the following relation between Jf and Ef is
easily established:

Ef (v) = min{Jf (v, d) : d ∈W 1,∞(Ω) , |∇d| ≤ 1 a.e. in Ω, Γ(v) ⊂ d−1(0)}. (3.16)

We endow the space L∞(Ω; [0, 1]) × L∞(Ω; [0,diam(Ω)]) with the following (metrizable)
convergence τ :

(vn, dn)
τ→ (v, d) if and only if

{
vn

∗
⇀ v weakly∗ in L∞(Ω; [0, 1])

dn → d uniformly in Ω.
(3.17)

We are in a position to state the Γ-convergence theorem.

Theorem 3. The functionals Jn,p
f defined in (3.14) are equicoercive and Γ-converge (as

n, p → +∞, with respect to the τ -convergence defined in (3.17)) to the functional Gf (v, d)
defined as Jf (v, d) if |∇d| ≤ 1 a.e. in Ω and Γ(v) ⊂ d−1(0), and +∞ otherwise.

Proof. First of all we prove the equicoercivity property. Let pn → ∞, and let (vn, dn) be such
that Jn,pn

f (vn, dn) ≤ C < +∞. Then, in particular, 1
pn

∫
Ω |∇dn|pn ≤ C , and thus

‖∇dn‖pn ≤ C
1

pn p
1

pn
n → 1 as n→ ∞. (3.18)

By the monotonicity of p 7→ ‖ · ‖p, it follows that the functions dn are uniformly bounded
in W 1,p for every fixed p > 1. We conclude by Sobolev embedding that the sequence dn is
precompact with respect to the uniform convergence. The precompactness of the sequence
vn with respect to the weak∗ convergence follows immediately from the bound 0 ≤ vn ≤ 1.

We now prove the Γ-convergence result. In order to establish the Γ-liminf inequality,

let (vn, dn)
τ→ (v, d) and assume, without loss of generality, that Jn,pn

f (vn, dn) is uniformly

bounded.
Note that the first integral in (3.14) is lower semicontinuous with respect to the uniform

convergence in d, while the second one is continuous with respect to the weak∗ convergence in
v, thanks also to (2.7). Hence, since the remaining terms in (3.14) are positive, the Γ-liminf
inequality will be proven once we show that |∇d| ≤ 1 a.e. in Ω and Γ(v) ⊂ d−1(0).
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In order to check that |∇d| ≤ 1 a.e. in Ω, fix q > 1, and observe that by semicontinuity

‖∇d‖q ≤ lim inf
n

‖∇dn‖q ≤ lim inf
n

‖∇dn‖pn = 1,

where we used the monotonicity of p 7→ ‖ · ‖p and (3.18). Letting q → ∞ in the above
inequality we deduce that ‖∇d‖∞ ≤ 1.

In order to show that Γ(v) ⊂ d−1(0), let Ω+ := {x ∈ Ω : d(x) > 0}. By uniform
convergence, on any compact subset K ⊂ Ω+ we have limn minK dn = minK d > 0. Then,
by the fact that n

∫ +
Ω d2

n|∇vn|2 dx is uniformly bounded it follows that vn → v strongly in

W 1,2
loc (Ω+) and ∇v = 0 in Ω+. In turn, since n

∫ +
Ω v2

n(1 − vn)2 dx is uniformly bounded,
we deduce that v restricted to Ω+ is a characteristic function, constant on each connected
component of Ω+. In particular, Ω+ is contained in the union of the interior of v−1(0) and
the interior of v−1(1), and hence Γ(v) ⊂ Ω\Ω+ = d−1(0). As observed before, this establishes
the Γ-liminf inequality.

Let us pass now to the proof of the Γ-limsup inequality. Let (v, d) be such that Gf (v, d) <
+∞ and consider the sequence vn defined as in (2.8). Then, with an argument similar to
that used in the proof of Proposition 2.3, we have Jf (vn, d) → Jf (v, d). This observation,
combined with a standard diagonalization procedure, shows that it is enough to prove the
Γ-limsup inequality assuming that v is a characteristic function. Hence, fix (v, d) with v a
characteristic function and Jf (v, d) < +∞, let hn → ∞ and ρn be a sequence of standard
mollifiers with support in B1/hn

(0). We set

vn := ρn ∗ v, dn(x) := dist(x, 2
hn

- Γ(v)) ∧ d.
Then we clearly have that vn → v strongly in L1 and dn → d uniformly, so that

∫

Ω
f

(
dn

ε

)
dx+ λ

∫

Ω

[
vn(u0 − c1(vn))2 + (1 − vn)(u0 − c2(vn))2

]
dx→ Jf (v, d).

Moreover, by construction supp∇vn ⊂ {dn = 0}, and thus n
∫
Ω d

2
n|∇vn|2 dx = 0. Since

‖∇dn‖ ≤ 1 a.e., also 1
pn

∫
Ω |∇dn|pn dx → 0 as n → ∞. Finally, we can suitably choose hn

going to infinity so fast that n
∫
Ω v

2
n(1 − vn)2 dx → 0, and this establishes also the Γ-limsup

inequality. �

Since the Γ-convergence of equicoercive functionals implies the convergence of minimizers,
taking into account (3.15) and (3.16), we have the following immediate corollary of the
previous theorem.

Corollary 2. Let pn → +∞ and for every n ∈ N let (vn, dn) be a minimizer for Jn,pn

f . Then,

up to a subsequence, (vn, dn)
τ→ (v, d) with d = dist(·,Γ(v)) and v a minimizer for Ef .

In order to minimize the functional Jn,p
f with respect to each of its variable, in our numerical

experiments we project to the gradient descent direction and, by introducing an artificial time
t, we solve the following time dependent system of equations

vt = = −λ
[
(u0 − c1)

2 − (u0 − c2)
2
]

− 2n
[
v(1 − v)2 − v2(1 − v) + div(d2|∇v|)

]
,

dt = = k
dk−1

εk
e
− dk

εk − 2nd|∇v|2 + div(|∇φ|p−2∇φ).
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At each time step we update the constants c1 and c2 according to the formulas

c1 =

∫
Ω vu0dx∫
Ω vdx

and c2 =

∫
Ω(1 − v)u0dx∫
Ω(1 − v)dx

.

3.3. The infinite Laplacian to select the length-scale ε. Here we propose a variant of
our model in the attempt of automatically select the length-scale ε through a minimization
procedure. To this purpose, consider our proposed functional Ef defined in (2.12) where ε
in not anymore a parameter, but a variable of the functional. We clearly have that such an
energy is minimized for ε → 0. For this reason, in order to have a non trivial variational
problem we could think of adding a term penalizing too small ε. These considerations lead
to the following basic definition

Ef (v, ε) :=

∫

Ω
f

(
dist(x,Γ(v))

ε

)
dx+λ min

c1, c2∈R

∫

Ω

[
v(u0−c1)2+(1−v)(u0−c2)2

]
dx+

1

ε
. (3.19)

The main motivation to consider such a functional is that it leads indeed to very natural
approximations, based on the use of the infinite laplacian. On the other hands, we stress out
that at the present we don’t have theoretical motivations or experimental evidence that such
a variant of our model represents an efficient way of selecting the length-scale ε. Exploiting
this point is not the purpose of this paper but of future interests, and would need a specific
interesting analysis.

To approximate the energy functional (3.19) in the Lipschitz level set method we fix an
ε > 0, and replace the term 1

pn

∫
Ω |∇φ|pn by ‖∇φ‖p, or equivalently with its Γ-limit ‖∇φ‖∞

(see [16]), obtaining in this way the following functional

H∞(φ) =

∫

Ω
f (|φ|/ε) dx+ ‖∇φ‖L∞(Ω)

+λ

{∫

Ω
|u0 − c1(H(φ))|2H(φ)dx+

∫

Ω
|u0 − c2(H(φ))|2(1 −H(φ))dx

}
.

Analogously, we could consider also the Ambrosio-Tortorelli approximation, obtained by
minimization of the following energy

Jn,∞
f (v, d) =

∫

Ω
f (d/ε) dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx

+ n

∫

Ω
v2(1 − v)2 dx+ n

∫

Ω
d2|∇v|2 dx+ ‖∇d‖L∞(Ω).

We refer the interest readers to Aronsson [2] and Aronsson-Crandall-Juutinen [3] and
references therein for a thorough study of the problem of absolutely minimizing Lipschitz
extension, and to [16] for the corresponding power low approximation. Here, we just mention
that the corresponding Euler-Lagrange equation is the so called infinite laplacian, defined by

∆∞φ =
1

|∇φ|2
[
φ2

x1
φx1x2 + 2φx1dx2φx1x2 + φ2

x2
φx2x2

]
= 0.

The time dependent equation

∂φ

∂t
= ∆∞φ, and φ(0, x) = φ0(x)
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u0 u ε - Γ(u) φ

Figure 6. The segmented fingerprint using our presented model, approxi-
mated through the Lipschitz level set method, with λ = 20, ε = 40.

with Neumann boundary condition has been applied to image interpolation by Caselles-Morel-
Sbert [9] and most recently by Elion-Vese [12] to image decomposition. In [22], Oberman
proposed a convergent scheme for ∆∞. It is this scheme with 4-point-neighbor that we’ll use
for the numerical computations based on Lipschitz level set method, solving

∂φ

∂t
=

k

εk
φk−1e−(φ/ε)k

+ ∆∞φ− λδ(φ)
[
(u0 − c1)

2 − (u0 − c2)
2
]
,

and updating at each time step the constants c1 anc c2 according to the following formulas

c1 =

∫
ΩH(φ)u0 dx∫

ΩH(φ)dx
and c2 =

∫
Ω(1 −H(φ))u0 dx∫

Ω(1 −H(φ))dx
.

4. Numerical results

In this section we show some numerical results for our proposed model. We will focus on
the level set approximation, based on the use of Lipschitz functions, comparing the results
with those obtained implementing the classical Chan-Vese model [10].

We begin by showing the result of our model on a fingerprint with noise. In Figure 6 we
see that our model is capable to preserve all the details of the fingerprint, removing almost
all the noise from the picture. We fix p = 15 and we approximate the ε-neighborhood of Γ(u)

with f(φ
ε ) := e−(φ/ε)8 . Moreover we chose λ = 20, ε = 40.

In the next experiment we will see the effect of tuning the parameter ε on the segmented
image. In Figure 7 we take λ = 20, and ε = 10, 20, 30, 40. Increasing ε we increase the
penalization effect on the dilute noise, so that the denoising effect increases. For ε = 40 we
get an almost complete denoising.

On the other hand, our model predicts that near the boundaries of the finger print penal-
ization effect is relaxed, and indeed increasing ε does not affect the details of the finger print.
This relaxation effect of our model can be understood looking at the ε-neighborhood of Γ(u):
for ε = 20, 30, 40, the set ε - Γ(u) covers all the fingerprint, and therefore in this region the
penalization of the boundaries is indeed independent of ε.

Toning λ in our model clearly increases the amount of details in the pictures. We show
this aspect in Figure 8, where we fix ε = 20, and we chose λ = 10, 50, 500. Increasing λ we
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u, ε=10 u, ε=20 u, ε=30 u, ε=40

ε - Γ(u) ε - Γ(u) ε - Γ(u) ε - Γ(u)

Figure 7. The segmented fingerprint using our presented model, approxi-
mated through the Lipschitz level set method, with λ = 20, ε = 10, 20, 30, 40.

u0 u, λ=10 u, λ=50 u, λ=500

Figure 8. The segmented tree with ε = 20 and λ = 10, 50, 500.

get more details of the branch of the three, while (for this specific picture) the denoising is
almost complete. Only for λ = 500 some pixel assimilable to noise appears.

In order to compare our model with Chan-Vese model, we implement a picture representing
a nebula, surrounded by stars. We consider here the stars as noise to be removed, while we
want to identify the contours of the nebula. in Figure 9 we show the results with ε = 20
and with λ = 80, 100, 120, and we compare the results with the Chan-Vese model with
λcv = λ− 60. With this choice of the parameters, we have that our model exhibit slight finer
details of the contour of the nebula, while the denoising effect if largely better.

The difference between the two models can be clearly understood looking at the level set
functions, that are very sharp in the Chan-Vese model (approximating a characteristic BV
function), and diffused in our model (being a Lipschitz function).
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u0

u, ε=20, λ=80 φ, λ=80 ε - Γ(u), λ=80 ucv, λcv=20 φ, λcv=20

u, ε=20, λ=100 φ, λ=100 ε - Γ(u), λ=100 ucv, λcv=40 φ, λcv=40

u, ε=20, λ=120 φ, λ=120 ε - Γ(u), λ=120 ucv, λcv=60 φ, λcv=60

Figure 9. Comparison between the proposed model and Chan-Vese model.
Here we chose λcv = λ− 60, for λ = 80, 100, 120, and ε = 20.

u0 u, λ=200, ε=20 ucv, λcv=100

Figure 10. The segmented image u and ucv for big λ.

In Figure 10 we compare the segmented nebula for very big λ’s. We have that both model
preserve very fine details of the nebula, while the denoising is very weak. The proposed model
performs a little better.
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ε=10 ε=20 ε=30 ε=40

Figure 11. The segmented image u and the ε-neighborhood results for ε =
10, 20, 30, 40 and λ ≡ 50.

In Figure 11 we show the effect of tuning the parameter ε in our model: we fix λ = 50, and
we consider ε = 10, 20, 30, 40. We see that increasing ε, the denoising effect in the regions
far from the nebula increases: isolated stars disappear increasing ε. At the same time, the
details of the contour of the nebula increase. This effect is particularly evident on the top of
the picture. On the other hand, increasing ε increases also the number of stars around the
contour of the nebula: toning ε we determine the length-scale of the region were we want to
keep fine oscillations of the boundary, and this region turns out to attract also some noise,
according with Remark 6, assimilated to fine oscillations of the boundary of the segmented
image. At the same time, tuning ε we determine the intensity of the denoising effect on dilute
noise.

Finally, in Figure 12 and Figure 13 we show some results concerning the Ambrosio-
Tortorelli approximation and the infinite laplacian approximation

In Figure 14 we compare some segmented fingerprint using the Chan-Vese model and our
presented model approximated through the Lipschitz level set method, its variant based on
the infinite laplacian and the Ambrosio-Tortorelli method, with ε = 20, λ = 20.
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u0 u ε - Γ(u) v

Figure 12. The segmented fingerprint using the Ambrosio-Tortorelli approx-
imation with λ = 1000, ε = 15

u0 u ε−Γ(u) φ

Figure 13. The segmented fingerprint using the infinite laplacian approxi-
mation with λ = 20, ε = 15

uls, λ=20, ε=40 ucv, λ=30, ε=20 uat, λ=1000, ε=15 u∞, λ=20, ε=15

Figure 14. The segmentation results of the fingerprints for the different models.
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