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Abstract. In this article we show that for the homogenization of multiple integrals,
the quasiconvexification of the cell formula is different from the asymptotic formula
in general. To this aim, we construct three examples in three different settings: the
homogenization of a discrete model, the homogenization of a composite material and
the homogenization of a homogeneous material on a perforated domain.
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1. Introduction

For the homogenization of periodic integral functionals of the type

Iε(u) :=

∫

Ω∩εP
W
(x
ε
,∇u(x)

)
dx,

with suitable assumptions (recalled in Section 2.1), the Γ-limit writes

Ihom(u) :=

∫

Ω
Whom

(
∇u(x)

)
dx,

where Whom is obtained by an asymptotic formula on the number of periodic cells con-
sidered. If the integrand W (x, ·) happens to be convex almost everywhere, then the
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asymptotic formula reduces to a minimization problem on the unitary cell with periodic
boundary conditions, that we denote by Wcell. A counterexample due to Stefan Müller
in [12] shows that in general, for quasiconvex nonconvex energy densities, the inequality
Wcell ≥ Whom can be strict. More recently, Jean-François Babadjian and the first author
gave another such example in [3].

As will be made precise in Section 2 for both examples, the energy density Wcell is not
rank-one convex. In addition, in both cases, considering the quasiconvex envelop QWcell of
Wcell surprisingly removes the contradiction which allows to conclude that Wcell > Whom.
Hence, none of the known examples shows that the inequality QWcell ≥ Whom can be
strict, although this is to be expected.

The aim of this paper is twofold: to show that the known counterexamples to the
cell formula are not rigid enough to prove that QWcell > Whom, and then to provide
some new examples for which the latter strict inequality can be shown. The article is
organized as follows. In Section 2, we recall standard results on homogenization as well
as the two counterexamples to the cell formula mentioned above. We then show for each
example that the methods used by their respective authors to prove the disagreement of
Wcell with Whom fail to prove the disagreement of QWcell with Whom. The rest of the
paper is then dedicated to the construction of three different examples for which there
exists a deformation gradient Λ such that QWcell(Λ) > Whom(Λ). The examples are built
in dimension two and they are based on the fact that replacing (0, 1)2-periodicity by
(0, 2)2-periodicity is enough to relax significantly the energy to obtain the desired strict
inequality. The first example is a discrete example where the keyrole is played by the very
strong rigidity of discrete gradients. The second example is based on the same geometry
but is written in a continuous setting and exploits the rigidity of the incompatible two-
well problem together with an interplay between the geometry, the periodicity and the
zero levelset of the energy densities. These examples are presented in Section 3. The
last example is the object of Section 4. It relies on the homogenization of a homogeneous
material on a perforated domain, for which we prove that the zero levelset of Wcell is
contained in a quasiconvex set which is strictly contained in the zero levelset of Whom.
This is in particular the first example which shows the disagreement of Wcell and Whom

(as well as QWcell and Whom) for the homogenization of a homogeneous material on a
perforated domain.

Although the main result of this article is technical, we believe the examples are of
independent interest. We therefore provide the non-specialist reader with the required
background on convexity properties in Section 2.2.

Throughout the paper, we employ the following notation:

• Ω is a bounded open subset of R
d;

• Q = (0, 1)d denotes the unit cell;
• Qn = (0, n)d for all n ∈ N;
• Qm = m+Q for all m ∈ Z

d;
• χU is the characteristic function of a subset U of R

d;
• M

d is the set of d× d real matrices;
• M

d
sym is the set of d× d symmetric real matrices;

• SOd is the family of the elements Λ of M
d such that det Λ = 1 and ΛT Λ = I, where

I ∈ M
d is the identity matrix;
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• |Λ| :=
√

trace(ΛT Λ) is the Frobenius norm of a matrix Λ ∈ M
d;

• Ln denotes the n-dimensional Lebesgue measure;
• W 1,p

per(Qn,R
d) is the space of W 1,p

loc (Rd; Rd) functions which are Qn-periodic;
• As a general rule, c denotes a constant which may vary from line to line but which

is independent of the variables left.

2. Homogenization of multiple integrals and the cell formula

2.1. Continuous and discrete homogenization of nonconvex functionals. In this
section, we recall classical results of periodic homogenization of multiple integrals, as
well as (less) classical results of periodic homogenization of discrete systems. We refer
the reader to the monograph [7] for continuous homogenization and to the article [1] for
discrete homogenization.

Definition 1. Let U be a normed space. We say that I : U → [−∞,+∞] is the Γ-limit
of a sequence Ih : U → [−∞,+∞], or that Ih Γ-converges to I, if for every u ∈ U the
following conditions are satisfied:

i) Liminf inequality : for every sequence uh in U such that uh → u,

I(u) ≤ lim inf
h→+∞

Ih(uh);

ii) Recovery sequence: there exists a sequence uh in U such that uh → u and

I(u) = lim
h→+∞

Ih(uh).

Let d ∈ N. We focus on Γ-convergence of integral functionals on the normed space
Lp(Ω,Rd), p ∈ (1,+∞), in the context of periodic homogenization.

Let a > 0. We denote by W(a, p) the set of all continuous functions W : M
d → [0,+∞)

satisfying the following coerciveness and growth conditions of order p:

1

a
|Λ|p − a ≤ W(Λ) ≤ a(1 + |Λ|p) for all Λ ∈ M

d. (2.1)

Hypothesis 1. W : R
d × M

d → [0,+∞) is a Carathéodory function Q-periodic in the
first variable such that W (x, ·) ∈ W(a, p) for a.e x ∈ Q.

Hypothesis 2. P is a Q-periodic and open subset of R
d with Lipschitz boundary such

that Q \ P ⊂⊂ Q. Note that in particular P is connected.

Under Hypotheses 1 and 2, we consider for any ε > 0 the functional Iε : Lp(Ω,Rd) →
[0,+∞] defined by

Iε(u) :=





∫

Ω∩εP
W
(x
ε
,∇u(x)

)
dx if u|Ω∩εP ∈W 1,p(Ω ∩ εP,Rd),

+∞ otherwise.

Definition 2. We call cell integrand related to (W,P ) the function Wcell : M
d → [0,+∞)

defined by

Wcell(Λ) := inf
{∫

Q∩P
W
(
x,Λ + ∇φ(x)

)
dx : φ ∈W 1,p

per(Q,R
d)
}
. (2.2)
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If P = R
d we simply say that Wcell is the cell integrand related to W .

We call homogenized integrand related to (W,P ) the function Whom : M
d → [0,+∞)

defined by

Whom(Λ) := lim
n→∞

1

nd
inf
{∫

Qn∩P
W
(
x,Λ + ∇φ(x)

)
dx : φ ∈W 1,p

per(Qn,R
d)
}
.

If P = R
d we simply say that Whom is the homogenized integrand related to W .

The following theorem is a standard result (See [7, Theorem 19.1 and Remark 19.2]).

Theorem 1. Assume that W satisfies Hypothesis 1 and that P satisfies Hypothesis 2.
Then the homogenized integrand Whom related to (W,P ) is a quasiconvex function satis-
fying (2.1), and for any εh ց 0+ the sequence Iεh

Γ-converges to the functional Ihom :
Lp(Ω,Rd) → [0,+∞] defined by

Ihom(u) :=





∫

Ω
Whom

(
∇u(x)

)
dx if u ∈W 1,p(Ω,Rd),

+∞ otherwise.

In addition, if W (x, ·) is convex for a.e. x ∈ Q, then Whom is also convex and coincides
with the cell integrand Wcell related to (W,P ).

A result similar to Theorem 1 holds in a discrete setting, as shown in [1]. We give here
a simpler version, for which we only consider nearest-neighbors interactions. We also need
to slightly extend the result in [1] to take into account volumetric effects, which we will
need in Section 3. Yet, the result remains essentially the same and further details can be
found in [2].

Definition 3. Let T be a Q-periodic triangulation of R
d and P be the set of vertices of

T . We define the couples of nearest neighbors by

NN :=
{
(x, y) ∈ (P ∩Q)2 : ∃T ∈ T having [x, y] as an edge

}
.

For all ε > 0 and for all bounded open subset U of R
d, we define

Sε(U,R
d) :=

{
u ∈ C0(U,Rd) : u is affine on each element T ∈ εT ∩ U

}
.

For ε = 1, we simply write S(U,Rd) = Sε(U,R
d). Moreover, we write

Sper(Qn,R
d) := S(Qn,R

d) ∩W 1,∞
per (Qn,R

d).

We are now in position to define energy functionals on discrete systems.

Definition 4. Let f1 : Q ×Q× R
d → [0,+∞) and f2 : Q× R → [0,+∞) be continuous

functions and let ε > 0. For any bounded open subset U of R
d, we define the energy of

u ∈ Sε(U,R
d) as

Fε(u,U) :=
∑

m∈Zd : εQm⊆U

Fm
ε (u),

where, for any m ∈ Z
d such that εQm ⊆ U ,

Fm
ε (u) := εd

∑

(x,y)∈NN

f1

(
x, y,

u(εm+ εx) − u(εm+ εy)

ε|x− y|

)
+εd

∫

Q
f2

(
x,det∇u(εm+εx)

)
dx.
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If ε = 1, we simply write F (u,U) = Fε(u,U). Finally, we define the functional Iε :
Lp(Ω,Rd) → [0,+∞] by

Iε(u) :=

{
Fε(u,Ω) if u ∈ Sε(Ω,R

d),

+∞ otherwise.

As for the continuous setting, we may define a cell integrand and a homogenized inte-
grand as follows.

Definition 5. For all Λ ∈ M
d, let ϕΛ : R

d → R
d be given by ϕΛ(x) := Λ · x. We call cell

integrand related to (T , F ) the function Wcell : M
d → [0,+∞) defined by

Wcell(Λ) := inf
{
F (ϕΛ + φ,Q) : φ ∈ Sper(Q,R

d)
}
.

We call homogenized integrand related to (T , F ) the function Whom : M
d → [0,+∞)

defined by

Whom(Λ) := lim
n→∞

1

nd
inf
{
F (ϕΛ + φ,Qn) : φ ∈ Sper(Qn,R

d)
}
.

We have the following result (see [1] and [2]).

Theorem 2. Let T , f1, f2, Iε and Whom be as in Definitions 3, 4, 5. Let us further
assume that there exist a > 0 and p ∈ (1,∞) such that

0 ≤ f2(x, z) ≤ a(1 + |z|p/d) for all (x, z) ∈ Q× R,

1

a
|w|p − a ≤ f1(x, y,w) ≤ a(1 + |w|p) for all (x, y,w) ∈ Q×Q× R

d,

Then the homogenized integrand Whom associated to (T , F ) is a quasiconvex function sat-
isfying a growth condition (2.1), and for any εh ց 0+ the sequence Iεh

Γ-converges to the
functional Ihom : Lp(Ω,Rd) → [0,+∞] defined by

Ihom(u) :=





∫

Ω
Whom

(
∇u(x)

)
dx if u ∈W 1,p(Ω,Rd),

+∞ otherwise.

In addition, if f2 ≡ 0 and if f1(x, y, ·) is a convex function for all x, y ∈ Q, then Whom is

also convex and coincides with the cell integrand Wcell related to (T , F ).

2.2. Short summary of convexity properties. In this section, we recall the notions
of polyconvexity, quasiconvexity and rank-one convexity of functions and sets. We refer
the reader to [8, 9, 13] for details. We also state and prove some elementary lemmas that
will be used in the analysis of the counterexamples.

Definition 6. (quasiconvex function) Let W : M
d → R be locally bounded and Borel

measurable. Its quasiconvex envelope QW : M
d → [−∞,+∞) is defined by

QW (Λ) := inf

{
−
∫

U
W
(
Λ + ∇φ(x)

)
dx : φ ∈W 1,∞

0 (U,Rd)

}
,

where U is a bounded open subset of R
d. In particular, the infimum in the formula

is independent of the choice of U . If U = Q, then W 1,∞
0 (Q,Rd) can be replaced by
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W 1,∞
per (Q,Rd). The function W is said to be quasiconvex if W = QW . If QW is finite,

then it is quasiconvex.

Lemma 1. (main property) Let W : Ω× M
d → [0,+∞) be a Carathéodory function such

that W (x, ·) ∈ W(a, p) for a.e. x ∈ Ω and let U be a weakly closed subset of W 1,p(Ω,Rd).
Then

inf

{∫

Ω
W
(
x,∇u(x)

)
dx : u ∈ U

}
= min

{∫

Ω
QW

(
x,∇u(x)

)
dx : u ∈ U

}
> −∞,

and any weak limit of a minimizing sequence of the original problem is a minimizer of the
relaxed problem.

Remark 1. Assume that P satisfies Hypothesis 2. Since Q ∩ P has Lipschitz boundary,
any function ϕ ∈ W 1,p(Q ∩ P,Rd) can be extended to a function ϕ̃ ∈ W 1,p(Q,Rd). As a

consequence, {φ|Q∩P : φ ∈W 1,p
per(Q,Rd)} is a weakly closed subset of W 1,p(Q ∩ P,Rd).

Definition 7. (polyconvex function) For any matrix Λ ∈ M
d, let denote by M(Λ) the

vector that consists of all minors of Λ, and denote by δ(d) its length. We can identify
M(Λ) with a point of R

δ(d). We say that a function W : M
d → R is polyconvex if there

exists a convex function g : R
δ(d) → R such that for all Λ ∈ M

d,

W (Λ) = g(M(Λ)).

Definition 8. (rank-one convex function) We say that W : M
d → R is rank-one convex if

W (tA+ (1 − t)B) ≤ tW (A) + (1 − t)W (B)

for all t ∈ [0, 1] and for all A,B ∈ M
d rank-one connected, i.e., such that rank(B−A) = 1.

Lemma 2. Let W : M
d → R, then there holds

W is convex =⇒ W is polyconvex =⇒ W is quasiconvex =⇒ W is rank-one convex.

One can extend the notions of convexity, polyconvexity, quasiconvexity and rank-one
convexity to sets.

Definition 9. (polyconvex, quasiconvex and rank-one convex sets) Let K be a compact
subset of M

d. We define the polyconvex hull Kpc, quasiconvex hull Kqc and rank-one
convex hull Krc of K by

Kpc :=
{
Λ ∈ M

d : f(Λ) = 0 ∀ f : M
d → [0,+∞) polyconvex such that f |K ≡ 0

}
,

Kqc :=
{
Λ ∈ M

d : f(Λ) = 0 ∀ f : M
d → [0,+∞) quasiconvex such that f |K ≡ 0

}
,

Krc :=
{
Λ ∈ M

d : f(Λ) = 0 ∀ f : M
d → [0,+∞) rank-one convex such that f |K ≡ 0

}
.

The set K is said to be polyconvex if K = Kpc, quasiconvex if K = Kqc and rank-
one convex if K = Krc. We have the inclusions Krc ⊆ Kqc ⊆ Kpc ⊆ Kco, where the
superscript co denotes the classical convex hull.

We have the following useful characterizations of Kqc and Kpc.

Lemma 3. ([13, Theorem 4.10]). Given a compact set K ⊆ M
d, a matrix A ∈ M

d belongs
to Kqc if and only if there exists a sequence ψh bounded in W 1,∞(Q,Rd) such that

dist(∇ψh,K) → 0 in measure;

ψh(x) = A · x for x ∈ ∂Q.



COUNTEREXAMPLES IN NONCONVEX HOMOGENIZATION 7

Lemma 4. ([11, Lemma 1]). Given a compact set K ⊆ M
d, a matrix A ∈ M

d belongs to
Kpc if and only if M(A) lies in {M(Λ) : Λ ∈ K}co.

The sets we will be interested in are the zero-levelsets of energy densities defined as
follows.

Definition 10. Let W : M
d → [0,+∞) be a continuous function, we define its zero

levelset as

W−1(0) =
{
Λ ∈ M

d : W (Λ) = 0
}
.

In particular, if W is a quasiconvex function, then W−1(0) is a quasiconvex set.

Lemma 5. If W ∈ W(a, p), then

QW−1(0) = (W−1(0))qc.

Proof. Let K := W−1(0). The inclusion Kqc ⊆ QW−1(0) is trivial and we only need to
prove the opposite one. This proof makes use of Young measures, for which we refer the
reader to [13] for a comprehensive treatment.

Let A ∈ QW−1(0). By definition of the quasiconvex envelope, there exists φh ∈
W 1,∞

0 (Q,Rd) such that

0 = QW (A) = lim
h→+∞

∫

Q
W
(
A+ ∇φh(x)

)
dx.

As a consequence of the p-coercivity of W and Poincaré’s inequality, the sequence ψh(x) :=
A · x+ φh(x) is bounded in W 1,p(Q,Rd). Thus, up to extraction, ∇ψh generates a Young
measure µ : Q ∋ x 7→ µx ∈ P(Md), where P(Md) denotes the family of probability
measures on M

d.
By the fundamental theorem on Young measures (see [13, Theorem 3.1]), we get

0 = lim
h→+∞

∫

Q
W
(
A+ ∇φh(x)

)
dx ≥

∫

Q

(∫

Md

W (Λ)dµx(Λ)
)
dx

and therefore by [5, Lemma 3.3] suppµx ⊆ K for Lda.e. x ∈ Q. Again by the fundamental
theorem, this implies that

dist(∇ψh,K) → 0 in measure. (2.3)

By using Zhang’s lemma (see [13, Lemma 4.21]), ψh can be modified on small sets so that
its gradient be bounded in L∞(Q,Md), while keeping conditions (2.3) and ψh(x) = A · x
for x ∈ ∂Q. The thesis follows now by Lemma 3. �

We will also make use of the following results about the cell integrand.

Lemma 6. Assume that W satisfies Hypothesis 1 and that P satisfies Hypothesis 2. Then
the cell integrand Wcell related to (W,P ) is a continuous function.

Proof. This property is a direct consequence of the following inequality:

Wcell(Λ1) ≤Wcell(Λ2) + c(Λ1,Λ2)|Λ1 − Λ2| for all Λ1,Λ2 ∈ M
d, (2.4)

where c(Λ1,Λ2) is locally uniformly bounded.



8 M. BARCHIESI & A. GLORIA

Let us prove inequality (2.4). By Lemma 1 and Remark 1, we have

Wcell(Λ) = min

{∫

Q∩P
QW

(
x,Λ + ∇φ(x)

)
dx : φ ∈W 1,p

per(Q,R
d)

}
. (2.5)

Due to the growth condition from above satisfied by QW (x, ·), there exists c > 0 such
that for every Λ1,Λ2 ∈ M

d, there holds

|QW (x,Λ1) −QW (x,Λ2)| ≤ c|Λ1 − Λ2|(1 + |Λ1|p−1 + |Λ2|p−1)

This property, which is classical for convex functions, holds for rank-one convex functions
(see [10, Lemma 5.2]). Let now Λ1,Λ2 ∈ M

d, and let φ1, φ2 ∈ W 1,p
per(Q,Rd) be minimizers

associated with Λ1 and Λ2 through (2.5). We then have

Wcell(Λ1) −Wcell(Λ2) =

∫

Q∩P
QW

(
x,Λ1 + ∇φ1(x)

)
−QW

(
x,Λ2 + ∇φ2(x)

)
dx

≤
∫

Q∩P
QW

(
x,Λ1 + ∇φ2(x)

)
−QW

(
x,Λ2 + ∇φ2(x)

)
dx

≤
∫

Q∩P
c|Λ1 − Λ2|(1 + |Λ1|p−1 + |Λ2|p−1 + |Λ2 + ∇φ2(x)|p−1)dx.

Using the coercivity of QW (lower bound in (2.1)), we may bound ‖Λ2 + ∇φ2‖p
Lp from

above by the energy, which is less than c(1 + |Λ2|p) using the test function φ ≡ 0 and the
upper bound of (2.1). Hence, there exists a constant c > 0 such that the inequality

Wcell(Λ1) −Wcell(Λ2) ≤ c|Λ1 − Λ2|(1 + |Λ1|p−1 + |Λ2|p−1),

holds for any Λ1,Λ2 ∈ M
d, which proves the claim. �

Lemma 7. Let W ∈ W(a, p) and let P satisfy Hypothesis 2. Assume in addition that W
is quasiconvex, and that W−1(0) is not empty. Then A ∈ Md belongs to the zero levelset
of the cell integrand Wcell associated to (W,P ) if and only if there exists a Q-periodic
Lipschitz function φ : R

d → R
d satisfying

A+ ∇φ(x) ∈W−1(0) for a.e. x ∈ Q ∩ P.

Proof. The condition is obviously sufficient. By Lemma 1 and Remark 1, we have

Wcell(Λ) = min

{∫

Q∩P
W
(
Λ + ∇φ(x)

)
dx : φ ∈W 1,p

per(Q,R
d)

}
. (2.6)

Let A ∈W−1
cell(0) and let φ ∈W 1,p

per(Q,Rd) be a minimizer associated with A through (2.6).
Then

W
(
A+ ∇φ(x)

)
= 0 for a.e. x ∈ Q ∩ P.

Since W−1(0) is compact and Q ∩ P has a Lipschitz boundary, the function φ|Q∩P has a
Lipschitz representative. The conclusion follows by taking a Lipschitz Q-periodic extension
of φ|Q∩P on R

d. �

A similar characterization of the levelset of the cell integrand holds in the case of
mixtures.
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Lemma 8. ([3, Lemma 4.4]). Let W1,W2 ∈ W(a, p) be two quasiconvex functions such
that W−1

1 (0) and W−1
2 (0) are not empty. Given a measurable subset U of Q, let set

W : R
d × M

d → [0,+∞) as

W (x,Λ) := χ(x)W1(Λ) + (1 − χ(x))W2(Λ),

where χ is defined by χ := χU in Q and extended by periodicity to the whole R
d. Then

A ∈ M
d belongs to the zero levelset of the cell integrand Wcell associated to W if and only

if there exists a Q-periodic Lipschitz function φ : R
d → R

d satisfying

A+ ∇φ(x) ∈
{
W−1

1 (0) for a.e. x ∈ U

W−1
2 (0) for a.e. x ∈ Q \ U .

Remark 2. The previous lemma shows that in the case of a mixture of the type W =
χW1 + (1 − χ)W2, the zero levelset of Wcell depends only on the zero levelsets of W1,W2

and not on their global shapes or growths. The same property can be proved for the zero
levelset of Whom (see [6, Theorem 1.3]). This fact is one of the keys of our counterexamples:
we have to introduce suitable zero levelsets first, and only afterwards construct suitable
functions.

2.3. Stefan Müller’s counterexample. The energy under consideration W η : R
2 ×

M
2 → [0,+∞), (x,Λ) 7→ χη(x)W0(Λ) models a two-dimensional laminate composite, made

of a strong material and a soft material. The coefficient χη is the Q-periodic extension on
R

2 of

χη(x) :=

{
1 if x1 ∈ (0, 1/2)

η if x1 ∈ [1/2, 1)
,

where Q ∋ x = (x1, x2) and η > 0. The energy density W0 : M
2 → [0,+∞) is given by

W0(Λ) = |Λ|4 + f(detΛ) where

f(z) :=





8(1 + a)2

z + a
− 8(1 + a) − 4 if z > 0

8(1 + a)2

a
− 8(1 + a) − 4 − 8(1 + a)2

a2
z if z ≤ 0

for some a ∈ (0, 1/2).
In particular, W η(x, ·) is a nonnegative polyconvex function satisfying a standard growth

condition (2.1) of order p = 4. Its zero levelset is SO2 for all x ∈ Q.

We respectively denote by W η
cell and W η

hom the cell integrand and the homogenized
integrand associated with W η.

Using the one-well rigidity (Liouville theorem) on the unitary cell and using ‘buckling-
like’ test-functions on several periodic cells (see Figure 2.3), Stefan Müller obtained the
following result.

Theorem 3. [12, Theorem 4.3] For all λ ∈ (π/4, 1), there exist c1, c2 > 0 independent of
η, such that

W η
hom(Λ) ≤ η c1

W η
cell(Λ) ≥ c2,
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Figure 1. Compression of one periodic cell and buckling of several peri-
odic cells

where Λ := diag(1, λ), hence proving that the strict inequality W η
cell(Λ) > W η

hom(Λ) holds
provided η is small enough.

More precisely, it turns out that W η
cell is not even a quasiconvex function, as shown by

the following proposition.

Proposition 1. For all λ ∈ (0, 1), there exists c > 0 independent of η such that

QW η
cell(Λ) ≤ η c, (2.7)

where Λ := diag(1, λ).

Hence, in view of Proposition 1, Theorem 3 does not allow to conclude whether the
inequality QW η

cell(Λ) ≥W η
hom(Λ) may be strict or not.

Proof of Proposition 1. Since

QW η
cell(Λ) = inf

{∫

Q
W η

cell

(
Λ + ∇φ(x)

)
dx : φ ∈W 1,∞

per (Q,R2)

}

it is enough to exhibit a test function φ ∈W 1,∞
per (Q,R2) such that the majoration in (2.7)

holds. Let φ ∈W 1,∞
per (Q,R2) be such that

∇φ(x) = χ̄(x)

(
0

√
1 − λ2

0 0

)
, (2.8)

where χ̄ is the Q-periodic extension on R
2 of

χ̄(x) :=

{
1 if x1 ∈ (0, 1/2)

−1 if x1 ∈ [1/2, 1)
.

We also choose ϕ ∈ L∞(Q,W 1,∞
per (Q,R2)) such that

∇yϕ(x, y) = χ̄(y)

(
λ− 1 0

χ̄(x)
√

1 − λ2 0

)
,
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Then, in the strong phase (χ̄(y) = 1), the test function Λ + ∇φ(x) + ∇yϕ(x, y) is the
rotation (

λ ±
√

1 − λ2

∓
√

1 − λ2 λ

)
,

and, in the soft phase (χ̄(y) = −1), the deformation gradient is of the form

A :=

(
2 − λ ±

√
1 − λ2

±
√

1 − λ2 λ

)
. (2.9)

Hence,

QW η
cell(Λ) ≤

∫

Q

∫

Q
W η
(
y,Λ + ∇φ(x) + ∇yϕ(x, y)

)
dy dx ≤ 1

2
ηW0(A),

for some A of the form (2.9).

Remark 3. Since (2.8) is a rank-one matrix almost everywhere, the same proof shows
that the bound in Proposition 1 also holds for the rank-one convex envelope of W η

cell. To
check this fact, it is enough to notice that by the test function in (2.8) we can obtain a
suitable test function for the convex envelope of t 7→Wcell(Λ+ te1 ⊗ e2) at t = 0. In other
words, a lamination in one single direction gives the upper bound on the rank-one convex
envelope.

It is also worth noting that Proposition 1 is not peculiar to dimension two, as shown in
the Appendix, although Remark 3 does not hold in dimension three.

2.4. Counterexample by comparison of the zero levelsets. Let us consider the
following matrices of M

2

O := diag(0, 0), I := diag(1, 1), A := diag(−1, 1), B := diag(0, 1), and C := diag(0, 1/2),

and two quasiconvex functions W1,W2 ∈ W(a, p) such that

W−1
1 (0) = {O, A} and W−1

2 (0) = {O, I}.
We define W : R

2 × M
2 → [0,∞) by

W (x,Λ) := χ(x)W1(Λ) + (1 − χ(x))W2(Λ),

where χ is given by χ := χ(0,1/2)×(0,1) in Q and extended by periodicity to the whole R
2.

Then, Jean-François Babadjian and the first author proved in [3, Example 6.1] that
Wcell(I) = Wcell(B) = Whom(I) = Whom(B) = 0 and Wcell(C) > 0. Since C ∈ {O, B}rc

and Whom is rank-one convex, this implies that Whom(C) = 0 < Wcell(C). However, one
also has QWcell(C) = 0.

3. Counterexamples from composite materials

In this section, we propose two examples for which QWcell(Λ) > Whom(Λ) for some
Λ ∈ M

2. The first one relies on the rigidity of periodic discrete gradients, whereas the
second example uses the rigidity of the incompatible two-well problem together with the
periodicity constraint. Both examples are based on the same geometry (see Figures 2
and 4).



12 M. BARCHIESI & A. GLORIA

3.1. Discrete example. Let us first describe the geometry of the model.

Geometry. The geometry is a Q-periodic triangulation T of R
2. The periodic pattern

is sketched on Figure 2. We will make use of the following notation: For all n ∈ N, let
Tn = Qn ∩ T while for all m ∈ Z

2 and τ ∈ {1, . . . , 8}, Tm
τ denotes the τ th triangle of

T ∩Qm, according to the numerotation of Figure 2. Moreover, for i ∈ {1, 2, 3}, we denote
by xm

τ,i the ith vertex of the triangle Tm
τ and we set Nm

τ := {xm
τ,1, x

m
τ,2, x

m
τ,3}.

�
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�

1 2

3 4

5 6

7 8

y1

y2

y3

y4

Figure 2. Geometry.

Energy. Let U be a bounded open subset of R
2. Given u ∈ S(U,R2), m ∈ Z

2, τ ∈
{1, . . . , 8}, and i ∈ {1, 2, 3}, if U ∩ Tm

τ 6= Ø and xm
τ,i ∈ U , we set

∇um
τ := ∇u|T m

τ
(which is constant on Tm

τ )

um
τ,i := u(xm

τ,i).

Let f1, f2 : R
2 → [0,+∞) be defined by

f1(z) :=(z2 − 1)2

f2(z) :=(z − 1)2.

Accordingly to Definition 4, for all η > 0 we consider the energy

F η(u,U) :=
∑

m∈Z2 :Qm⊆U

F η,m(u),

where, for any m ∈ Z
2 such that Qm ⊆ U ,

F η,m(u) :=

4∑

τ=1


1

8
f2(det∇um

τ ) +
∑

i,j∈Nm
τ ,i<j

η

2
f1

(
|um

τ,i − um
τ,j|

|xm
τ,i − xm

τ,j|

)


+
8∑

τ=5


η

8
f2(det∇um

τ ) +
∑

i,j∈Nm
τ ,i<j

η

2
f1

(
|um

τ,i − um
τ,j|

|xm
τ,i − xm

τ,j|

)
.

The model satisfies the assumptions of Theorem 2. We respectively denote by W η
cell and

W η
hom the cell integrand and the homogenized integrand associated with (T , F η).

The following results hold.
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Lemma 9. For all η > 0 and for all Λ ∈ M
2 invertible, QW η

cell satisfies the following
lower bound

QW η
cell(Λ) ≥ 1

2
f2(det Λ).

Lemma 10. For all λ ≥ 1, there exists c > 0 independent of η such that

W η
hom(λI) ≤ η c

Theorem 4. For all λ > 1, there exists η > 0 such that

W η
hom(λI) < QW η

cell(λI).

Theorem 4 is a direct consequence of Lemmas 9 and 10. Let us prove the two lemmas.

Proof of Lemma 9. For all η > 0, let consider the energy

F̃ η(u,U) :=
∑

m∈Z2 :Qm⊆U

F̃ η,m(u),

where, for any m ∈ Z
2 such that Qm ⊆ U ,

F̃ η,m(u) :=
4∑

τ=1

1

8
f2(det∇uτ ) +

8∑

τ=5

η

8
f2(det∇uτ ).

Let W̃ η
cell be the cell integrand associated with (T , F̃ η). Since we have neglected the

contributions of the terms involving f1, we have W η
cell ≥ W̃ η

cell.
For all η > 0 and Λ ∈ M

2, we claim that

W̃ η
cell(Λ) = F̃ η(ϕΛ, Q).

Let ψ be an admissible deformation of the form ψ = ϕΛ + φ, φ ∈ Sper(Q,R
2). Due to the

periodicity constraint on Q, an elementary geometric argument shows that

1

4
(det∇ψ|T1

+ det∇ψ|T2
+ det∇ψ|T3

+ det∇ψ|T4
) = det Λ,

1

4
(det∇ψ|T5

+ det∇ψ|T6
+ det∇ψ|T7

+ det∇ψ|T8
) = det Λ.

(3.1)

To prove this assertion, up to multiplying ∇ψ by Λ−1, it is enough to consider Λ = I.
In this case, referring to Figure 2, we define ψ at y1 := (0, 1/2), y2 := (1/2, 0), y3 :=
(1, 1/2), y4 := (1/2, 1) by

ψ(y1) = (α1, 1/2 + β1)

ψ(y3) = (1 + α1, 1/2 + β1),

ψ(y2) = (1/2 + α2, β2),

ψ(y4) = (1/2 + α2, 1 + β2),

where α1, α2, β1, β2 ∈ R. A straightforward calculation then shows that

det∇ψ|T1
= 4
(
α1β2 − (β1 − 1/2)(α2 + 1/2)

)

det∇ψ|T2
= 4
(
−α1β2 + (β1 − 1/2)(α2 − 1/2)

)

det∇ψ|T3
= 4
(
−α1β2 + (β1 + 1/2)(α2 + 1/2)

)

det∇ψ|T4
= 4
(
α1β2 − (β1 + 1/2)(α2 − 1/2)

)
.
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λ− zλ

Figure 3. Deformation of Q2 by the Q2-periodic competitor ψ.

Thus, as expected,

1

4
(det∇ψ|T1

+ det∇ψ|T2
+ det∇ψ|T3

+ det∇ψ|T4
) = 1

and the second equation of (3.1) follows now from the fact that
∫
Q det(Λ + ∇φ) = det Λ

because ± det is quasiconvex.

Hence, by Jensen’s inequality (f2 is a convex function),

W̃ η
cell(Λ) =

1

2
(1 + η)f2(det Λ).

Since W̃ η
cell is a polyconvex function (hence quasiconvex) not greater than W η

cell on M
2,

for all Λ ∈ M
2 there holds

QW η
cell(Λ) ≥ W̃ η

cell(Λ) ≥ 1

2
f2(detΛ).

Proof of Lemma 10. Let zλ be a solution of zλ(λ − zλ) = 1/8. We define a Q2-periodic
competitor ψ as on Figure 3.

Since in triangles of the form Tm
i , i ∈ {1, 2, 3, 4}, where the material is strong,

det∇ψ = 1 =⇒ f2(det∇ψ) = 0,

one has F η(ψ,Q2) = ηF 1(ψ,Q2). Hence, since ψ − ϕλI ∈ Sper(Q2,R
2), we have

W η
hom(λI) ≤ F η(ψ,Q2) ≤ ηF 1(ψ,Q2).

3.2. An example from solid-solid phase transformations. To build the following
counterexample, we introduce energy densities on Q such that a phenomenon similar to
the one on Figure 2 may occur at the continuous level. The rigidity now relies on the set
of matrices we introduce hereafter.
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T1 T2

T3 T4

U2

Figure 4. Geometry.

• Matrices in M
2

A1 := diag(1, 1), A2 := diag(4, 3), B1 := diag(1, 3), B2 := diag(4, 1),

C :=
1

2
diag(5, 4), R :=

1√
2

(
1 1
−1 1

)
.

• Compact sets in M
2

K1 := SO2A1 ∪ SO2A2, K2 := SO2B1 ∪ SO2B2,

H1 := K1R, H2 := (K2R)pc.

• Geometry (see Figure 4)

T1 := {x ∈ Q : x2 ≥ x1 + 1/2}, T2 := {x ∈ Q : x2 ≥ −x1 + 3/2},
T3 := {x ∈ Q : x2 ≤ −x1 + 1/2}, T4 := {x ∈ Q : x2 ≤ x1 − 1/2},
U1 :=

⋃4
i=1 Ti, U2 := Q \ U1.

The counterexample is as follows.

Theorem 5. Let W1,W2 ∈ W(a, p) be two quasiconvex functions (to be built later) such
that

W−1
1 (0) = H1 and W−1

2 (0) = H2. (3.2)

Consider the energy density W : R
2 × M

2 → [0,+∞) defined by

W (x,Λ) := χ(x)W1(Λ) + (1 − χ(x))W2(Λ),

where χ is given by χ := χU1
in Q and extended by periodicity to the whole R

2. The
following properties hold:

1) the cell integrand Wcell related to W is bounded from below by a constant c > 0;
2) CR belongs to the zero levelset of the homogenized integrand Whom related to W .

Therefore QWcell(CR) ≥ c > Whom(CR).

We will make use of the following facts in the proof.
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i) The compact set K1 is polyconvex and rigid, i.e., if U ⊆ R
2 is an open connected

set and ψ : U → R
2 is a Lipschitz function such that

∇ψ(x) ∈ K1 for a.e. x ∈ U,

then ψ is affine. We refer to [15, Theorem 2] and [13, Theorem 4.11] for the proofs.
Since R is a rotation, the same properties hold for H1.

ii) H1 ∩H2 = Ø, because by Lemma 4

H2 ⊆
{
Λ ∈ M

2 : detΛ ∈ [3, 4]
}
.

iii) A1 is rank-one connected to B1 and B2, and A2 to B1 and B2 also. More precisely,
denoted by {e1, e2} the canonical basis in R

2,

A1 −B1 = −2e2 ⊗ e2

A1 −B2 = −3e1 ⊗ e1

A2 −B1 = 3e1 ⊗ e1

A2 −B2 = 2e2 ⊗ e2.

Proof of Theorem 5.
Property 1). Since Wcell grows superlineary at infinity and is continuous by Lemma 6,
it is enough to prove that Wcell(Λ) 6= 0 for any Λ ∈ M

2. We proceed by contradiction
and assume there exists Λ ∈ M

2 such that Wcell(Λ) = 0. By Lemma 8, there exists a
Q-periodic Lipschitz function φ : R

2 → R
2 such that

Λ + ∇φ(x) ∈
{
H1 for a.e. x ∈ U1

H2 for a.e. x ∈ U2
. (3.3)

Due to the rigidity, we infer that there exists Di ∈ H1 such that Λ+∇φ(x) = Di for a.e.
x ∈ Ti. Again by the rigidity, the periodicity condition implies that there exists D ∈ H1

such that Di = D for all i ∈ {1, 2, 3, 4}.
By observing that ψ(x) := (Λ−D) · x+ φ(x) belongs to W 1,∞

0 (U2), from the definition
of quasiconvexity we get

W2(D) ≤ −
∫

U2

W2

(
D + ∇ψ(x)

)
dx = −

∫

U2

W2

(
Λ + ∇φ(x)

)
dx = 0

and so D ∈ H2, which contradicts H1 ∩H2 = Ø.

Property 2). It is sufficient to find φ ∈W 1,p
per(Q2,R

2) such that
∫

Q2

W
(
x,CR+ ∇φ(x)

)
dx = 0.

This can be accomplished by using the following function ψ : (−1/
√

2, 1/
√

2)2 → R
2,

ψ(1)(x) :=





x1 if x ∈ (−1/
√

2,−
√

2/4) × (−1/
√

2, 1/
√

2)

4x1 − 3
√

2/4 if x ∈ [−
√

2/4,
√

2/4] × (−1/
√

2, 1/
√

2)

x1 + 3
√

2/2 if x ∈ (
√

2/4, 1/
√

2) × (−1/
√

2, 1/
√

2)

;

ψ(2)(x) :=





x2 if x ∈ (−1/
√

2, 1/
√

2) × (−1/
√

2,−
√

2/4)

3x2 −
√

2/2 if x ∈ (−1/
√

2, 1/
√

2) × [−
√

2/4,
√

2/4]

x2 +
√

2 if x ∈ (−1/
√

2, 1/
√

2) × (
√

2/4, 1/
√

2)

.
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Let ϕ be the (−1/
√

2, 1/
√

2)2-periodic extension of ϕ : x 7→ ψ(x) − C · x. Then φ : x 7→
ϕ(R · x) does the job. Actually, as illustrated on Figure 5, CR + ∇φ(x + m) ∈ H1 for
(x,m) ∈ U1 × Z

2 and CR+ ∇φ(x+m) ∈ H2 for (x,m) ∈ U2 × Z
2.

�

A1R

B2R

A1R

B1R

A2R

B1R

A1R

B2R

A1R

Figure 5. The values of CR + ∇φ in R−1(−1/
√

2, 1/
√

2)2. On the left
the axis are oriented in the directions R−1e1 and R−1e2.

To complete the counterexample we need to build two quasiconvex functions W1,W2

satisfying (3.2).

Lemma 11. Let H be a compact, polyconvex and frame-invariant subset of M
2. Given

p ∈ (1,+∞), for a suitable a > 0 there exists a quasiconvex function W ∈ W(a, p) such
that

W−1(0) = H.

If p ≥ 2, then W can be chosen polyconvex.

Proof. Let V (Λ) := dist(Λ,H)p and set W (Λ) := QV (Λ). By Lemma 5, W−1(0) = H.
Since the Frobenius norm is frame-invariant, the same holds for V , and therefore for W
since for all Λ ∈ M

2 and all R ∈ SO2,

W (RΛ) = inf

{∫

Q
V (RΛ + ∇φ)dx : φ ∈W 1,p

0 (Q,R2)

}

= inf

{∫

Q
V (RΛ +R∇R−1φ)dx : φ ∈W 1,p

0 (Q,R2)

}

= inf

{∫

Q
V
(
R(Λ + ∇ϕ)

)
dx : ϕ ∈W 1,p

0 (Q,R2)

}

= inf

{∫

Q
V (Λ + ∇ϕ)dx : ϕ ∈W 1,p

0 (Q,R2)

}
= W (Λ).
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A different construction allows us to consider a polyconvex energy density in the case
p ∈ [2,+∞). We define the functions

V1(Λ) := dist(Λ,Hco)p and V2(Λ) := dist
(
M(Λ), L

) p

2 ,

where L := {M(Λ) : Λ ∈ H}co. Both are polyconvex and with p-growth, moreover V1 is
p-coercive and, by Lemma 4, the zero levelset of V2 is H. The function W := max{V1, V2}
does the job. In addition, it is easy to verify that also in this case W is frame-invariant. �

Remark 4. The previous lemma is optimal, because a polyconvex function with sub-
quadratic growth is convex (see [8, Corollary 5.9]).

3.3. Comparison of boths examples. In the discrete example, the zero levelset of the
energy density of the strong phase is J = {Λ ∈ M

2,det Λ = 1}, the space of isochoric
deformations, which is not rigid. The rigidity comes from the structure of Q-periodic
discrete gradients on T1.

In the continuous example, we replace S1
per(Q,R

2) by W 1,p
per(Q,R2), hence adding much

more flexibility to the periodic gradients. In order to keep the required rigidity, we then
replace J by H1 in the strong phase.

The rigidity of the discrete example lies in (3.1), whereas the rigidity of the continuous
example lies in (3.3).

Compared to Stefan Müller’s example, the repartition of the strong phase in Q allows
to take full advantage of the constraint of periodicity in both examples of this section. On
the contrary, in Section 2.3, the periodicity constraint is lost in the x1-direction, as shown
by Proposition 1.

4. Counterexample on perforated domains

Geometry and energy
Let us begin by describing the geometry of the subset P , sketched on Figure 6.

Definition 11. The set P is the complement in R
2 of the set

⋃
m∈Z2 O +m, where

O :=
{
x ∈ Q : x1 ∈ [1/8, 7/8] and 3x1 ≤ 4x2 ≤ 3x1 + 1

}
.

Let us introduce some sets in the space M
2, that we will use to describe the energy

density.

Definition 12. Let l1 := 3/4, l2 := 9/16 and l3 := 1/4. We consider the following sets
(see Figure 7):

• K1 :=
{
diag(s, 0) : s ∈ (0, 1]

}
and K2 :=

{
diag(0, t) : t ∈ (0, 1]

}
;

• K := K1 ∪K2 ∪ {diag(0, 0)};
• H :=

{
diag(s, t) : s, t ∈ [0, 1] and t ≤ 1 − s

}
;

• L :=
{
diag(s, t) : 0 < s ≤ l1l3/l2 and 0 < t ≤ l3 − l2s/l1

}
;

• M :=
{
diag(s, t) : 0 < s ≤ l1/2 and 0 < t ≤ l3

}
.

The counterexample is as follows.

Theorem 6. Let p ∈ [2,+∞) and let W : M
2 → [0,+∞) be given by

W (Λ) := dist(Λ,H)p + |det(Λ)|
p

2 ,
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l3

l2

l1

Figure 6. In grey the set Q ∩ P .

l3

l1l3/l2

1

1

l3

l1/2

1

1

Figure 7. A representation of K ∪ L and K ∪M in R
2, identified with

the set of the diagonal matrices.

where H is as in Definition 12. Then, W is polyconvex and belongs to W(a, p) for a
suitable a > 0. Moreover, with the notation of Definitions 11 and 12, there holds

1) the zero levelset of the cell integrand Wcell related to (W,P ) coincides with K ∪L;
2) the zero levelset of the homogenized integrand Whom related to (W,P ) contains

K ∪M ;
3) K ∪ L is quasiconvex.

Therefore, for all Λ ∈ (K ∪M) \ (K ∪ L) 6= Ø, QWcell(Λ) > Whom(Λ) = 0.

Proof. The set H being convex, Λ 7→ dist(Λ,H)p is a convex function. Since Λ 7→ |det Λ| p

2

is polyconvex, W is polyconvex. It is easy to verify that W satisfies (2.1) for a suitable
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a > 0. The strict inequality QWcell(Λ) > Whom(Λ) is a direct consequence of 1)-3) using
Lemma 5. Let us split the proof of 1)-3) into three steps.

Step 1. Since W−1(0) = K, by using φ ≡ 0 as a test function in (2.2), we obtain
K ⊆W−1

cell(0). Let us check that L ⊆W−1
cell(0). Given s ∈ (0, l1l3/l2) and t ∈ (0, l3− l2s/l1),

we define ψ : Q→ R
2 by

ψ(1)(x) :=





0 if x ∈ (0, 1/2) × (0, 1)

x1 − 1/2 if x ∈ [1/2, 1/2 + s] × (0, 1)

s if x ∈ (1/2 + s, 1) × (0, 1)

;

ψ(2)(x) :=





0 if x ∈ (0, 1) × (0, 5/8 − t)

x2 − 5/8 + t if x ∈ (0, 1) × [5/8 − t, 5/8]

t if x ∈ (0, 1) × (5/8, 1)

.

(4.1)

We have that φ(x) := ψ(x) − diag(s, t) · x is Q-periodic and that ∇ψ(x) ∈ K if x ∈ P .
More precisely, ∇ψ(x) /∈ K only if x belongs to [1/2, 1/2 + s]× [5/8− t, 5/8] ⊆ O. There,
∇ψ ≡ diag(1, 1) (see Figures 8 and 9).

1/2

Figure 8. The first component of ψ is flat on Q ∩ P with the exception
of the grey zone, where the gradient is equal to (1, 0).

It remains to proceed with the delicate part of the argument: the opposite inclusion
W−1

cell(0) ⊆ K∪L. Let C = (cij) ∈W−1
cell(0). By Lemma 7, there exists a Lipschitz function

ψ : Q → R
2 such that ∇ψ(x) ∈ K for L2a.e. x ∈ Q ∩ P and φ(x) := ψ(x) − C · x is

Q-periodic. We will show that ψ is substantially a laminate as in (4.1). Let us point out
that if Λ ∈ K, then either Λ11 = 0 or Λ22 = 0.

We use the following notation:

Ls :=
{
r ∈ (0, 1) : (s, r) ∈ ({s} × (0, 1)) ∩ P

}
;

Ls :=
{
r ∈ (0, 1) : (r, s) ∈ ((0, 1) × {s}) ∩ P

}
.

Notice that Ls = (0, 1) if s ∈ (0, 1/8)∪(7/8, 1) and that Ls has two connected components
if s ∈ [1/8, 7/8]. Similarly, Ls = (0, 1) if s ∈ (0, 3/32)∪(29/32, 1) and it has two connected
components if s ∈ [3/32, 29/32].
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5/8

Figure 9. The second component of ψ is flat on Q∩P with the exception
of the grey zone, where the gradient is equal to (0, 1).

Since ∂2ψ
(1)(x) = 0 for L2a.e. x ∈ Q ∩ P , ψ(1)(s, ·) is constant along any connected

component of Ls for all s ∈ (0, 1). In particular for s ∈ (0, 1/8) ∪ (7/8, 1), ψ(1)(s, ·)
is constant and therefore the (0, 1)-periodicity of φ(s, ·) imposes that c12 = 0. For s ∈
[1/8, 7/8], ψ(1)(s, ·) is constant on each of the two connected components of Ls. Hence,

by periodicity, ψ(1)(s, ·) is constant on the whole Ls.
From the fact that ψ(1)(s, ·) is constant along Ls for any s ∈ (0, 1), we can deduce that

if x ∈ Q∩P is a differentiability point for ψ(1), then ψ(1) is differentiable in all {x1}×Lx1

and
∇ψ(1)(x) = ∇ψ(1)(x) ∀x ∈ {x1} × Lx1 . (4.2)

Similarly, one can show that c21 = 0 and that if x ∈ Q ∩ P is a differentiability point
for ψ(2), then ψ(2) is differentiable in all Lx2

× {x2} and

∇ψ(2)(x) = ∇ψ(2)(x) ∀x ∈ Lx2 × {x2}. (4.3)

Let X1, X2 be two L1-negligible subsets of the interval (0, 1) such that ψ is differentiable

in P̃ := (Q ∩ P ) \ (X1 ×X2) and ∇ψ(x) ∈ K for all x ∈ P̃ . Let us show that, if for some

x ∈ P̃ there holds ∇ψ(x) ∈ K1, then

∇ψ(x) ∈ K1 ∪ {diag(0, 0)} ∀x ∈ P̃ ∩
(
(0, 1) × Lx1

)
. (4.4)

In fact, since ∇ψ(1)(x) 6= (0, 0), we have ∇ψ(1) 6= (0, 0) in {x1} × Lx1 due to (4.2) and

therefore ∇ψ ∈ K1 in {x1} ×
(
Lx1 \ X2

)
. As now ∇ψ(2) ≡ (0, 0) in {x1} ×

(
Lx1 \ X2

)
,

(4.3) implies that ∇ψ(2) ≡ (0, 0) in P̃ ∩
(
(0, 1) × Lx1

)
.

We are in position to conclude the first step. Given s ∈ (0, 1/8) \X1 and t ∈ (0, 3/32) \
X2, we define the following two sets.

S : =
{
s ∈ (0, 1) \X1 : ∂1ψ

(1)(s, t) > 0
}
;

T : =
{
t ∈ (0, 1) \X2 : ∂2ψ

(2)(s, t) > 0
}
.

Since ∇ψ ∈ K, ∂1ψ
(1)(s, t) ≤ 1 for all s ∈ S, and we infer from

c11 =

∫ 1

0
c11 + ∂1φ

(1)(s, t)ds =

∫ 1

0
∂1ψ

(1)(s, t)ds =

∫

S
∂1ψ

(1)(s, t)ds,
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that 0 ≤ c11 ≤ L1(S). Similarly, 0 ≤ c22 ≤ L1(T ). In particular this shows that

c11, c22 ∈ [0, 1].

If c11 > 0, for any ε > 0 there exist s1, s2 ∈ S such that s2 − s1 ≥ c11 − ε. Recalling
that if ∇ψ(x) ∈ K and ∂1ψ

(1)(x) > 0 then ∇ψ(x) ∈ K1, from (4.4), we obtain

∇ψ(x) ∈ K1 ∪ {diag(0, 0)} ∀x ∈ P̃ ∩
(
(0, 1) × (Ls1 ∪ Ls2)

)
.

Since T ⊆ (0, 1) \ (Ls1 ∪ Ls2), we have the estimate

c22 ≤ L1(T ) ≤ max
{

0,
l2
l1

(s1 − s2) + l3

}
≤ max

{
0,
l2
l1

(−c11 + ε) + l3

}
.

The arbitrariness of ε > 0 completes the proof of the step.

Step 2. Since Whom is rank-one convex and W−1
hom(0) ⊇ K, it is sufficient to prove that

C := diag(l1/2, l3) ∈W−1
hom(0).

Let us construct a Lipschitz function ψ : Q2 → R
2 such that ∇ψ ∈ K a.e. in Q2 ∩ P and

φ(x) := ψ(x) − C · x is Q2-periodic. In this way we get

Whom(C) ≤ 1

4

∫

Q2∩P
W
(
C + ∇φ(x)

)
dx = 0.

Despite the complexity of the following description, the function ψ is very simple.

Consider the following sets (see Figure 10):

• U := {x ∈ [1/8, 1] × [3/32, 3/32 + l2] : 4x2 < 3x1};

• U1 :=
(
[0, 1] × [0, 3/32 + l2]

)
\ (U ∪O);

• U2 := {x ∈ [1/8, 1] × [3/32, 3/32 + l3] : 4x2 < 3x1};
• U3 := {x ∈ [0, 1]2 : (1, 1) − x ∈ U2};
• U4 := {x ∈ [0, 1]2 : (1, 1) − x ∈ U1};

• U5 := U ∪
(
[0, 1] × [0, 1/8)

)
;

• U6 := [0, 1/8) × [3/32, 3/32 + l3);

• U7 := {x ∈ [0, 1]2 : (1, 1) − x ∈ U6};
• U8 := {x ∈ [0, 1]2 : (1, 1) − x ∈ U5}.

To simplify the exposition, we introduce two auxiliary Lipschitz functions ϕ1, ϕ2 : [0, 1]2 \
O → R:

ϕ1(x) :=





0 if x ∈ U1

x2 − 3/32 if x ∈ U2

x2 − l2 − 3/32 if x ∈ U3

h3 if x ∈ U4

; ϕ2(x) :=





0 if x ∈ U5

x2 − 3/32 if x ∈ U6

x2 − l2 − 3/32 if x ∈ U7

h3 if x ∈ U8

.

Both ϕ1 and ϕ2 can be extended to Lipschitz maps in all [0, 1]2.
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U1

U2

U3

U4

3
32

l2 + 3
32

l3 + 3
32

U5U6

U7U8

Figure 10

We are now in position to define the desired function ψ : Q2 → R
2 (see Figures 11, 12

and 13).

ψ(1)(x) :=





0 if x ∈ (0, 9/8] × (0, 2)

x1 − 9/8 if x ∈ (9/8, 9/8 + l1] × (0, 2)

l1 if x ∈ (9/8 + l1, 2) × (0, 2)

;

ψ(2)(x) :=





ϕ1(x) if x ∈ (0, 1] × (0, 1]

ϕ2(x− (1, 0)) if x ∈ (1, 2) × (0, 1]

ϕ1(x− (0, 1)) + l3 if x ∈ (0, 1] × (1, 2)

ϕ2(x− (1, 1)) + l3 if x ∈ (1, 2) × (1, 2)

.

(4.5)

9/8

Figure 11. In [(0, 2)× (0, 1)]∩P the first component of ψ is flat with the
exception of the grey zone, where the gradient is equal to (1, 0).
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Figure 12. In [(0, 2) × (0, 1)] ∩ P the second component of ψ is flat with
the exception of the grey zone, where the gradient is equal to (0, 1).

Figure 13. The graph of the second component of ψ in [(0, 2) × (0, 1)] ∩ P .

Step 3. The set H is convex and so the inclusion (K ∪ L)qc ⊆ H is immediate.
As a direct consequence of [14, Theorem 1], for any C ∈ M

2
sym the set

NC :=
{
D ∈ M

2
sym : D − C is not positive definite

}

is quasiconvex. Since for any D ∈ H \ (K ∪ L) there exists a C ∈ H \ (K ∪ L) such that

D /∈ NC , whereas K ∪ L ⊆ NC ,

we can conclude that

(K ∪ L)qc ⊆ H ∩
( ⋂

C∈H\(K∪L)

NC

)
= K ∪ L
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and then K ∪ L is quasiconvex.
�

Remark 5. The proof of Theorem 6 does not take advantage of the particular structure
of W but it is based only on the fact that W−1(0) = K. Therefore, instead of W we
can consider the function V : M

2 → [0,+∞) defined as the quasiconvex envelope of
dist(·,K)p, p ∈ (1,+∞). Indeed, since K is polyconvex (because zero levelset of the
polyconvex function W ), by Lemma 5 it follows that V −1(0) = K. Note that in this way
our counterexample covers also the case of energy densities with growth p ∈ (1, 2).

Remark 6. LetN be a convex and compact subset of M
2 sufficiently large so that ∇ψ ∈ N

a.e. inQ2, where ψ is defined as in (4.5). Consider now the function V : R
2×M

2 → [0,+∞)
defined by

V (x,Λ) := χP (x)W (Λ) + (1 − χP (x))dist(Λ, N)p.

Since Wcell ≤ Vcell, we have the inclusion V −1
cell (0) ⊆ K ∪ L. We also have the inclusion

K ∪M ⊆ V −1
hom(0): in fact K ⊆ V −1

hom(0) (because K ⊆ N) and diag(h1/2, h3) ∈ V −1
hom(0)

(by using again ψ). In this way we can conclude that also by mixing a polyconvex function
and a convex function, the inequality QVcell > Vhom can occur.

Appendix: Stefan Müller’s example in dimension three

To show that Proposition 1 is not peculiar to dimension two, let us consider the corre-
sponding energy for a three-dimensional soft material reinforced by a strong plate. The
energy is now given by W0 : M

3 ∋ Λ 7→ |Λ|4 + f(detΛ) where

f(z) :=





12(1 + a)2

z + a
− 12(1 + a) − 9 if z > 0

12(1 + a)2

a
− 12(1 + a) − 9 − 12(1 + a)2

a2
z if z ≤ 0

for a ∈ (0, 1/2). The energy density under consideration is still of the formW η : R
3×M

3 →
[0,+∞), (y,Λ) 7→ χη(y)W0(Λ) where χη is the Q-periodic extension on R

3 of

χη(y) :=

{
1 if y1 ∈ (0, 1/2)

η if y1 ∈ [1/2, 1)
,

with Q = (0, 1)3 ∋ y = (y1, y2, y3) and η > 0. Such an energy density is nonnegative,
polyconvex, frame-invariant and its zero-levelset is SO3.

Proposition 2. For all λ1, λ2 ∈ (0, 1), there exists c > 0 independent of η such that

QW η
cell(Λ) ≤ η c,

where Λ := diag(1, λ1, λ2).

Proof. Essentially, one has to construct a Lipschitz domain U of R
3, a function φ ∈

W 1,∞
per (U,R3) and a function ϕ ∈ L∞(U,W 1,∞

per (Q,R3)) such that Λ+∇φ(x)+∇yϕ(x, y) ∈
SO3 for all x ∈ U and y ∈ (0, 1/2) × (0, 1)2 (the strong phase of the material).

Notation. The canonical basis of R
3 is denoted by {e1, e2, e3}.
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We will use the angles θ and γ defined by

cos θ = λ1, sin θ =
√

1 − λ2
1,

cos γ = λ2, sin γ =
√

1 − λ2
2.

We set ρ :=
√

sin2 θ + cos2 θ sin2 γ and define the unit vectors e4 and e5 by

e4 :=
1

ρ
(sin θ e2 + cos θ sin γ e3) ,

e5 :=
1

ρ
(sin θ e2 − cos θ sin γ e3) .

Definition of U . In order to describe U , we need the following quantity

τ :=
cos θ sin γ

sin θ
.

We set U := U1 ∪ U2 ∪ U3 ∪ U4, where

U1 :=
{
(x1, x2, x3) : 0 < x1 < 1; 0 < x3 ≤ 1/2; 1/2 − τx3 ≤ x2 < 1 − τx3

}
,

U2 :=
{
(x1, x2, x3) : 0 < x1 < 1; 0 < x3 ≤ 1/2; −τx3 < x2 ≤ 1/2 − τx3

}
,

U3 :=
{
(x1, x2, x3) : 0 < x1 < 1; 1/2 ≤ x3 < 1; 1/2 − τ(1 − x3) ≤ x2 < 1 − τ(1 − x3)

}
,

U4 :=
{
(x1, x2, x3) : 0 < x1 < 1; 1/2 ≤ x3 < 1; −τ(1 − x3) < x2 ≤ 1/2 − τ(1 − x3)

}
.

The domains U1, U2, U3, U4 are sketched on Figure 14. Note that the interface between U1

and U2 (resp. U3 and U4) is perpendicular to e4 (resp. e5).

Zone U1: A1 Zone U3: A3

Zone U2: A2 Zone U4: A4

x2

x3

Figure 14. Domain U (in the plane generated by {e2, e3}).
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Definition of φ. We consider the piecewise constant function G ∈ L∞(U,M3) of the form

G =




0 × ×
0 × ×
0 0 0


 ,

where the non zero two-dimensional submatrix

(
× ×
× ×

)
is one the following four pos-

sible submatrices:

A1 :=

(
sin θ cos θ sin γ

0 − sin θ sin γ

)
in U1, A2 :=

(
− sin θ − cos θ sin γ

0 − sin θ sin γ

)
in U2,

A3 :=

(
sin θ − cos θ sin γ

0 sin θ sin γ

)
in U3, A4 :=

(
− sin θ cos θ sin γ

0 sin θ sin γ

)
in U4,

according to Figure 14.
Let us check that G is a gradient field:

A1 −A3 = 2[cos θ sin γ e1 − sin θ sin γ e2] ⊗ e3

A2 −A4 = 2[− cos θ sin γ e1 − sin θ sin γ e2] ⊗ e3

A1 −A2 = 2e1 ⊗ [sin θ e2 + cos θ sin γ e3]
= 2ρ e1 ⊗ e4

A3 −A4 = 2e1 ⊗ [sin θ e2 − cos θ sin γ e3]
= 2ρ e1 ⊗ e5.

These couples of matrices being rank-one connected, G is actually a gradient field ∇φ on
U . This gradient can be extended by periodicity (due to the boundary conditions).

Definition of ϕ. We consider the following specific rotations in 3D, which are composi-
tions of rotations around e2 and e3:

R(α, β) :=




cosα − sinα 0
sinα cosα 0

0 0 1






cos β 0 sinβ
0 1 0

− sin β 0 cosβ




=




cos β cosα − sinα cosα sin β
cos β sinα cosα sinα sin β
− sin β 0 cos β


 ,

where α and β are the two angles. We also denote by χ̄ the Q-periodic extension on R
3 of

χ̄(y) :=

{
1 if y1 ∈ (0, 1/2)

−1 if y1 ∈ [1/2, 1)
.

We construct a function ϕ of the form ϕ(x, y) :=
∑4

i=1 χUi
(x)ϕi(y), where ϕ1, . . . , ϕ4

are defined as follows.

Zone 1. For x ∈ U1,

Λ + ∇φ(x) =




1 sin θ cos θ sin γ
0 cos θ − sin θ sin γ
0 0 cos γ


 .
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We then choose ϕ1 ∈W 1,∞
per (Q,R3) such that

∇ϕ1(y) = χ̄(y)




cos γ cos θ − 1 0 0
− cos γ sin θ 0 0

− sin γ 0 0


 .

In the strong phase (χ̄(y) = 1),

Λ + ∇φ(x) + ∇ϕ1(y) =




cos γ cos θ sin θ cos θ sin γ
− cos γ sin θ cos θ − sin θ sin γ

− sin γ 0 cos γ


 = R(θ̃, γ)

is a rotation, with θ̃ = −θ. In the soft phase (χ̄(y) = −1)

Λ + ∇φ(x) + ∇ϕ1(y) =




2 − cos γ cos θ̃ − sin θ̃ cos θ̃ sin γ

− cos γ sin θ̃ cos θ̃ sin θ̃ sin γ
sin γ 0 cos γ


 .

Zone 2. For x ∈ U2,

Λ + ∇φ(x) =




1 − sin θ − cos θ sin γ
0 cos θ − sin θ sin γ
0 0 cos γ


 .

We then choose ϕ2 ∈W 1,∞
per (Q,R3) such that

∇ϕ2(y) = χ̄(y)




cos γ cos θ − 1 0 0
cos γ sin θ 0 0

sin γ 0 0


 .

In the strong phase (χ̄(y) = 1),

Λ + ∇φ(x) + ∇ϕ2(y) =




cos γ cos θ − sin θ − cos θ sin γ
cos γ sin θ cos θ − sin θ sin γ

sin γ 0 cos γ


 = R(θ, γ̃)

is a rotation, with γ̃ = −γ. In the soft phase (χ̄(y) = −1),

Λ + ∇φ(x) + ∇ϕ2(y) =




2 − cos γ̃ cos θ − sin θ cos θ sin γ̃
− cos γ̃ sin θ cos θ sin θ sin γ̃

sin γ̃ 0 cos γ̃


 .

Zones 3 and 4. Proceeding as above, one may find ϕ3, ϕ4 ∈W 1,∞
per (Q,R3) such that for all

x ∈ U3 and y ∈ (0, 1/2) × (0, 1)2,

Λ + ∇φ(x) + ∇ϕ3(y) =




cos γ cos θ sin θ − cos θ sin γ
− cos γ sin θ cos θ sin θ sin γ

sin γ 0 cos γ


 = R(θ̃, γ̃)

is a rotation, with θ̃ = −θ, γ̃ = −γ; and for all x ∈ U4 and y ∈ (0, 1/2) × (0, 1)2,

Λ + ∇φ(x) + ∇ϕ4(y) =




cos γ cos θ − sin θ cos θ sin γ
cos γ sin θ cos θ sin θ sin γ
− sin γ 0 cos γ


 = R(θ, γ)
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is a rotation.

Finally, we are in position to conclude the proof. By using φ and ϕ defined above as
test-functions, one obtains

QW η
cell(Λ) ≤

∫

U

∫

Q
W η
(
y,Λ + ∇φ(x) + ∇yϕ(x, y)

)
dy dx ≤ η c,

where c = max(W (Ci))/2 and {Ci}i is the finite set of values taken by Λ + ∇φ(x) +
∇yϕ(x, y) in the soft phase. �
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