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Abstract

We derive sharp necessary conditions for weak sequential lower semicontinuity of

integral functionals on Sobolev spaces, with an integrand which only depends on the

gradient of a scalar �eld over a domain in RN . An emphasis is put on domains with

in�nite measure, and the integrand is allowed to assume the value +∞.

1 Introduction

We consider functionals of the type

G(u) :=
∫

Ω
g(∇u) dx, (1.1)

where u ∈ L1,p
∼ (Ω) or u ∈ (L1,p ∩Lq)(Ω). A de�nition of these spaces is given below. Here

and throughout the rest of the paper, all functions are real-valued (except gradients, which
take values in RN ). Moreover, throughout we assume that

Ω ⊂ RN is nonempty, open and connected, 1 ≤ p <∞ and 1 ≤ q <∞, (1.2)

g : RN → R ∪ {+∞} is a Borel function, and (1.3)

g(ξ) ≥ −C |ξ|p for every ξ ∈ RN , (1.4)

with a constant C > 0, which makes sure that G as a map into R ∪ {+∞} is well de�ned
on each of the two mentioned spaces of admissible functions. Although the results below
do not require any further assumptions on Ω (unless explicitly stated otherwise), our main
focus is on domains with in�nite measure.

A natural space of admissible functions for G is

L1,p(Ω) :=
{
u ∈W 1,p

loc (Ω)
∣∣∣∣ ∫

Ω
|∇u|p dx <∞

}
,
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equipped with the seminorm

||u||L1,p(Ω) :=
(∫

Ω
|∇u|p dx

) 1
p

, where |∇u| :=

(
N∑

i=1

(∂iu)2

) 1
2

.

This becomes a norm if we identify functions whose gradients coincide almost everywhere.
Thus we are looking at the space

L1,p
∼ (Ω) :=

{
[u]
∣∣u ∈ L1,p(Ω)

}
,

where [u] = {ũ ∈ L1,p(Ω) | ∇u = ∇ũ a.e.}. This is a Banach space with the norm
||[u]||

L1,p
∼ (Ω)

:= ||u||L1,p(Ω), and weak convergence of a sequence (un) in L1,p
∼ (Ω) is equivalent

to the weak convergence of (∇un) in Lp(Ω; RN ) (see e.g. [5]). As an alternative setting, we
also discuss the space (L1,p ∩Lq)(Ω) for 1 < q <∞, which is a Banach space with respect
to the norm

||u||(L1,p∩Lq)(Ω) :=
(∫

Ω
|∇u|p dx

) 1
p

+
(∫

Ω
|u|q dx

) 1
q

.

The special case q = p includes the classical Sobolev space W 1,p(Ω). On domains with
in�nite measure, L1,p ∩ Lq consist of functions u which in some sense vanish at in�nity
as integrability of |u|q is required. Moreover, note that if p < N , we have a natural
identi�cation D1,p

∼ (Ω) = (L1,p ∩ Lp∗)(Ω) with p∗ := pN
N−p for a large class of domains Ω

with in�nite measure and suitable geometrical properties, including the whole space. For
details, we refer to the appendix.

As lower semicontinuity of functionals with respect to suitable weak topologies is the
cornerstone of the so-called direct methods in the calculus of variations, there is a rich
literature providing conditions of the integrand g which ensure this property of the cor-
responding functional G. In our simple setting, G is wslsc1 in L1,p

∼ (Ω) provided that g
is convex, lsc2 in RN and nonnegative (for p > 1). Of course, this is a rather standard
result, which we recall in Section 2. It is natural to ask whether these su�cient conditions
are sharp, and thus we are interested in �nding conditions on g which are necessary for
wslsc3 of G, much in the spirit of [2] but now for functionals depending on the gradient.
Also note that the precise knowledge of conditions on the integrand which are necessary
and su�cient for wslsc is crucial for determining the representation of a relaxed functional
(the largest wslsc functional below a given functional which is not wslsc). If g has �nite
measure, necessary conditions for wslsc of G are well known even for more general func-
tionals, although usually g is also assumed to be real-valued, or even to satisfy a p-growth
condition ([1], [3], e.g.). The case of a domain with in�nite measure together with an
integrand g which is allowed to assume the value +∞ has been open so far.

The main results of this note, Theorem 4.1 (for G de�ned on L1,p
∼ ) and Theorem 4.2 (for G

de�ned on L1,p ∩ Lq) in Section 4, state that the aforementioned su�cient conditions are
indeed essentially necessary if Ω has in�nite measure. The word "essentially" is included
here to signify that � somewhat surprisingly � there are counterexamples for functionals
which are trivial in the sense of De�nition 3.1, as we shall see in Section 3. The main
task in the proof of our main results hence is to make use of suitable conditions which rule
out trivial functionals to avoid this problem. On a technical level, complications in the

1weakly sequentially lower semicontinuous, i.e., lim inf G(wn) ≥ G(w) whenever wn ⇀ w weakly
2(sequentially) lower semicontinuous, i.e., lim inf g(ξn) ≥ g(ξ) whenever ξn → ξ
3weak sequential lower semicontinuity
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proof come from the fact that on a domain with in�nite measure, functions with merely
bounded gradient in general do not have have p-integrable gradient, and this prevents the
use of the simple constructions one could utilize to deduce properties of g from the of G
for functionals on domains with �nite measure, in analogy of the corresponding results for
functionals not involving derivatives in Lp spaces, presented in [2]. Thus, we have to rely
on a known admissible function u with G(u) < ∞ to correct the behavior of explicitly
constructed functions in the outer part of Ω in such a way that weak di�erentiability is
preserved and G stays �nite. We are able to do this by exploiting some of the properties
of the "pyramid" of Lemma 3.4, on which our construction is based.

2 Su�cient conditions

For comparison with our main result in Section 4, we now recall the standard conditions
implying wslsc of G. In our simple setting, they go back to the following well-known
abstract result.

Theorem 2.1 (e.g. [1] or [3]). Let X be a Banach space and let F : X → R ∪ {+∞} be
convex and strongly lsc4. Then F is wslsc on X.

In our framework, this yields

Corollary 2.2. Let p ∈ [1,∞), let X = L1,p
∼ (Ω) or X = (L1,p ∩ Lq)(Ω), respectively, and

suppose that g is convex, lsc and nonnegative. Then G is wslsc on X.

Proof. Since convexity of g immediately implies convexity of G, it su�ces to show that
G is strongly lsc, and the latter is a consequence of Fatou's lemma.

In the case p = 1, a slight improvement is possible.

Corollary 2.3. Let X = L1,1
∼ (Ω) or X = (L1,1 ∩ Lq)(Ω), respectively. Moreover, suppose

that g is convex and lsc, and g(ξ) ≥ ν · ξ for a constant ν ∈ RN . Then G is wslsc on X.

Proof. By Corollary 2.2, we get wslsc of G̃(u) := G(u)−f(u), where f(u) :=
∫

Ω ν ·∇u dx.
Since f is a continuous linear functional on X, this implies wslsc of G.

Of course, these results are not sharp in general, and the extent to which the assumptions
can be relaxed in fact strongly depends on the domain. For domains with �nite measure, it
is well known that besides (1.4), no additional lower bounds on g are needed (the convexity
of g and (1.4) still imply that g(ξ) ≥ ν · ξ − C for constants ν ∈ RN and C ∈ R, and
for domains with �nite measure, this su�ces even for p > 1). Neither are the su�cient
conditions given in the corollaries above sharp in general for domains with in�nite measure.
However, this is entirely due to the fact that the value +∞ is allowed for g, which may
cause the existence of trivial functionals with nontrivial Lagrangian g as we shall see next.

3 Trivial functionals

De�nition 3.1. A function F : D → R ∪ {+∞} is called trivial, if it is �nite at at most
�nitely many points in D.

4(sequentially) lower semicontinuous with respect to the strong (norm) convergence in X
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The use of the term "trivial" here is motivated by the fact that such a functional is
automatically lsc, no matter what topology is being used. If Ω has �nite measure, G
de�ned on L1,p

∼ (Ω) is trivial if only if g is �nite at at most one point and G de�ned on
(L1,p ∩ Lq)(Ω) is trivial if and only if g ≡ +∞. For domains with in�nite measure, the
picture is more complicated, and this has immediate consequences concerning necessary
conditions for wslsc of G, as the following examples illustrate.

Example 3.2. Consider Ω = RN with N ≥ 2, and

g(ξ) :=


0 if ξ = 0,
2 if ξ = e (a �xed unit vector),
1 if ξ =

(
1 + 1

n

)
e for an n ∈ N,

+∞ elsewhere.

In this case, G : L1,p
∼ (Ω)→ (−∞,∞] is �nite only at [0]. In particular, G is (strongly) lsc

and wslsc in L1,p
∼ , despite the fact that g is neither lsc nor convex.

Proof. Consider [u] ∈ L1,p
∼ (RN ) with G(u) < ∞. For E := RN \ {∇u = 0} we have

|E| <∞ and ∇u(x) ∈ {αe | α ≥ 1} for a.e. x ∈ E. In particular, ∇u is always parallel to
e, whence u is constant on the hyperplanes

Ht := {x ∈ RN | x · e = t}

for a.e. t ∈ R, and thus ∇u ∈ {αe | α ≥ 1} a.e. on Ht, for a.e. t such that HN−1(Ht ∩ E)
(the N − 1-dimensional measure of Ht ∩ E) is positive. Hence,

∞ >

∫
Ω
g(∇u) ≥

∫
S
g(∇u) ≥ |S| for the strip S :=

⋃
HN−1(Ht∩E)>0

Ht.

But by Fubini's Theorem, |S| <∞ if and only if |E| = 0.

Note that the above example strongly hinges on the geometry of the domain, here the
whole space. If the class of admissible functions is subject to a built-in decay at in�nity,
such as in W 1,p(RN ), or L1,p

∼ (RN ) = L1,p(RN ) ∩ Lp∗(RN ) for p < N (cf. Theorem A.2),
even more general constructions are possible.

Example 3.3. Consider Ω = RN and assume that g(ξ) = +∞ for every ξ ∈ H, where
H ⊂ RN is an open halfspace. Then for 1 ≤ q < ∞, G : L1,p ∩ Lq(RN ) → R ∪ {∞} is
�nite at most at u = 0. In particular, it is strongly lsc and wslsc, despite the fact that g
does not have to be lsc or convex.

Proof. Consider u ∈ L1,p(RN ) ⊂ Lq(RN ) with G(u) <∞, and let e denote the unit vector
in RN such that H = {ξ ∈ RN | ξ · e > 0}. By assumption, ∇u /∈ H a.e., which implies
that for a.e. x0 ∈ RN , v : R→ R, v(t) := u(x0 + te), is nonincreasing. But v ∈ Lq(R) for
a.e. x0. In particular, v(t±n )→ 0 for suitable sequences t+n → +∞ and t−n → −∞, for any
such x0. Hence v = 0 for a.e. x0, and u = 0 accordingly.

The second example works whenever 0 is not contained in the interior of the convex hull
of {ξ | g(ξ) <∞}. If this behavior is ruled out, we have the following construction, which
will be at the heart of the proofs of Section 4:
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Lemma 3.4. Let F ⊂ RN be a �nite set such that 0 is contained in the interior of coF ,
the convex hull of F (in particular, F has at least N + 1 elements). Then the piecewise

a�ne pyramid

P (x) := min
{
η · x =

∑N
i=1 ηixi

∣∣∣ η ∈ F}, x ∈ RN ,

is a continuous function which satis�es P ∈ W 1,∞
loc (RN ), ∇P ∈ F a.e., P (0) = 0, and

P (x) ≤ −a |x| with the constant a := −min{P (x) | |x| = 1} > 0.

Remark 3.5. If 0 ∈ (coE)◦, where E ⊂ RN is an in�nite set, it is always possible to select
a subset F ⊂ E with at most 2N elements such that 0 ∈ (coF )◦, cf. [4].

Proof of Lemma 3.4. The de�nition of P immediately implies that P is continuous,
P (0) = 0 and P ∈ W 1,∞

loc with ∇P ∈ F a.e.. Moreover, for any x ∈ RN \ {0}, there
exists a η = η(x) ∈ F such that x · η < 0, because otherwise F would be a subset of
the halfspace {y ∈ RN | η · y ≥ 0}, which contradicts our assumption that 0 ∈ (coF )◦.
Hence P (x) < 0 for every x 6= 0. Finally, since P is 1-homogeneous, this also implies that
P (x) ≤ −a |x|.

In particular, this leads to the following conditions to rule out trivial functionals. In all
of them, we have to assume the existence of one function u at which G is �nite. For the
most general statement, we also need some control of the behavior of u as |x| → ∞, that
is, we require "sublinear growth" at in�nity in the sense that

{x ∈ Ω | |u(x)| ≥ a |x|} has �nite measure for every a > 0. (3.1)

Theorem 3.6. Suppose that there exists u ∈ L1,p(Ω) with "sublinear growth" in the sense

of (3.1) such that G(u) ∈ R, and suppose that 0 ∈ (co{g < +∞})◦. Then G is nontrivial

on L1,p
∼ (Ω). If, in addition, u ∈ Lq(Ω), then G is also nontrivial on L1,p ∩ Lq(Ω).

The proof employs the following simple observation:

Lemma 3.7. Let Q be a function in L1,∞(Ω) such that Q(x) ≤ −s |x| on Ω, and suppose

u ∈ L1,p(Ω) satis�es (3.1). Then {u < Q} = {x ∈ Ω | u(x) < Q(x)} has �nite measure

and v(x) := max{u(x), Q(x)} also is a function in L1,p(Ω), with ∇v = ∇u a.e. on {u ≥ Q}
and ∇v = ∇Q a.e. on {u < Q}.

Proof. Certainly, v is weakly di�erentiable, and its gradient is a function in Lp
loc of the

form stated above. Moreover, by the properties of P there exists an a > 0 such that
P (x) ≤ −a |x|. Hence, our assumption on u implies that {u < P} has �nite measure. This,
together with the fact that ∇P is bounded, in turn entails that

∫
Ω |∇v|

p dx <∞.

Proof of Theorem 3.6. Choose a suitable �nite subset F ⊂ {g < +∞} such 0 ∈ (coF )◦,
and let P denote the associated pyramid introduced in Lemma 3.4. Then by the previous
lemma, for any h ∈ R,

vh := max{u, P + h} = h+ max{u− h, P}

is a function in L1,p(Ω). Moreover, {vh 6= u} is a set of �nite measure and (g◦∇P )(Ω) ⊂ R
is bounded, whence G(vh) ∈ R. If u ∈ Lq(Ω), we also get vh ∈ Lq(Ω) since ∇P (Ω) ⊂ RN

is bounded. Finally, observe that {[vh] | h ∈ R} ⊂ L1,p
∼ (Ω) is an in�nite set, whence G is

nontrivial on L1,p
∼ (Ω).
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Note that (3.1) automatically holds, if Ω ⊂ RN has the properties required in Corollary A.4
in the appendix, or if u ∈ (L1,p ∩ Lq)(Ω).

Corollary 3.8. Suppose that Ω ⊂ RN has the properties required in Corollary A.4.

Moreover, suppose that there exists u ∈ L1,p(Ω) such that G(u) ∈ R, and suppose that

0 ∈ (co{g < +∞})◦. Then G is nontrivial on L1,p
∼ (Ω).

Corollary 3.9. Suppose that there exists u ∈ (L1,p ∩ Lq)(Ω) such that G(u) ∈ R, and
suppose that 0 ∈ (co{g < +∞})◦. Then G is nontrivial on (L1,p ∩ Lq)(Ω).

In general, 0 ∈ (co{g < +∞})◦ is not necessary for nontrivial G. However, this is the only
condition on g which guarantees a nontrivial functional independently of the domain, as
it is necessary in case Ω = RN . In particular, we have the following:

Corollary 3.10 (Ω = RN ). G is nontrivial on (L1,p ∩ Lq)(RN ) if and only if there exists

u ∈ (L1,p ∩Lq)(RN ) \ {0} such that G(u) ∈ R. Moreover, if 1 < p < N , the above remains

true for L1,p
∼ (RN ) instead of (L1,p ∩ Lq)(RN ).

Proof. As "only if" is trivial, it su�ces to show the converse. The existence of u 6≡ 0
with G(u) ∈ R implies 0 ∈ (co{g < +∞})◦ by Example 3.3. Thus, the assertion is a
consequence of the previous Corollaries.

4 Necessary conditions

Our main results are the following:

Theorem 4.1. Suppose that G(u) ∈ R for a function u ∈ L1,p(Ω) with "sublinear growth"

in the sense of (3.1), and suppose that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is

wslsc in L1,p
∼ (Ω). Then g is lsc and convex. If, in addition, the measure of Ω is in�nite,

then we also have that g(0) = 0, and for every ξ ∈ RN ,

g(ξ) ≥ 0 if 1 < p <∞,

g(ξ) ≥ ν · ξ if p = 1, where ν ∈ RN is a constant.
(4.1)

Theorem 4.2. Suppose that G(u) ∈ R for a function u ∈ (L1,p ∩ Lq)(Ω), and suppose

that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is wslsc in (L1,p ∩ Lq)(Ω). Then the

conclusion of Theorem 4.1 holds.

The proofs of the theorems are given at the end of this section.

Remark 4.3. Theorem 4.1 holds even for p = ∞ with only minor modi�cations in the
proof (in the propositions below), if weak convergence throughout is replaced by weak∗-
convergence. In particular, G is then assumed to be w∗slsc5 in L1,∞

∼ (Ω). The same can be
said for Theorem 4.2 if either p =∞ or q =∞ or both.

Obviously, assumption (3.1) for u in Theorem 4.1 can be dropped if Corollary A.4 is
applicable (in particular, p < N):

Corollary 4.4. Suppose that p and Ω satisfy the requirements of Corollary A.4, that

G(u) ∈ R for a function u ∈ L1,p(Ω), and that 0 ∈ (co{g ∈ R})◦. Moreover, assume that

G is wslsc in L1,p
∼ (Ω). Then the conclusion of Theorem 4.1 holds.

5sequentially lower semicontinuous with respect to weak∗-convergence
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Finally, using Example 3.3 and Corollary 4.4, we observe that the simplest possible result
holds for Ω = RN if p < N :

Corollary 4.5 (Ω = RN ). Suppose that 1 < p < N and suppose that G(u) ∈ R for

a function u ∈ L1,p(Ω) \ {0}. Moreover, assume that G is wslsc in L1,p
∼ (Ω). Then the

conclusion of Theorem 4.1 holds.

Below, we repeatedly use the following notion of convergence of sets:

De�nition 4.6 (Convergence of sets in measure). Given a sequence An of measurable sets
in RN and A ⊂ RN measurable, we say that An → A in measure, or LN− limAn = A, if

LN(A \An) + LN(An \A)→ 0.

Here, LN is the Lebesgue measure in RN .

The main part of the proof of Theorem 4.1 is split into two propositions.

Proposition 4.7. Suppose that G(u) ∈ R for a u ∈ L1,p(Ω) with "sublinear growth" in the

sense of (3.1), and suppose that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is strongly

lsc in L1,p
∼ (Ω). Then g is lsc on RN .

Proof. It is enough to show that g is lsc at every point ξ ∈ {g ∈ R}. Choose a �nite subset
F of {g ∈ R} such that 0 ∈ (coF )◦, and let P denote the associated pyramid introduced
in Lemma 3.4. Moreover, let (ξn) ⊂ RN be a sequence converging to ξ. W.l.o.g., we may
assume that g(ξn) is bounded in R (using (1.4) to obtain the bound from below), and by
extracting a subsequence (if necessary) we can make sure that lim inf g(ξn) is actually a
limit. Thus, it su�ces to show that

lim g(ξn) ≤ g(ξ). (4.2)

To exploit the strong lsc of G, we construct a suitable sequence of functions wn having
slope ξn one a suitable sets of positive measure, converging strongly to a limit function
w, in such a way that � roughly speaking � the a�ne parts of wn converge to an a�ne
part of w with slope ξ. Before we give the details, let us describe the underlying idea
of this construction: We �rst cut o� the tip of P (together with a whole side, if ξn or ξ
do not lie in (coF )◦) with an a�ne function of slope ξn (or ξ), shift the result so that
the former position of the tip moves to some z ∈ Ω and then take the maximum with u
to correct the behavior of this function for large |x| to ensure that the resulting map wn

(or w) belongs to L1,p(Ω). By �rst adding a suitably large constant h to the truncated
pyramid Qn (or Q), this can be done in such a way that a large part with slope ξn (or ξ) is
present in wn (or w). Technical di�culties arise mainly from the fact that we do not know
anything about u apart from (3.1), which makes controlling the unwanted side e�ects of
the construction (caused by the set where ∇w = ξ but ∇wn 6= ξn and vice versa) rather
arduous; in particular, the arguments below could be greatly simpli�ed if u ≡ 0.
For every x ∈ Ω and for the parameters h ∈ R (to be chosen later) and z ∈ Ω (chosen
arbitrarily), let

w(x) := max{u(x), Q(x− z) + h} with Q(y) := min{P (y), ξ · y − 1},
wn(x) := max{u(x), Qn(x− z) + h} with Qn(y) := min{P (y), ξn · y − 1},

and

S := {x ∈ Ω | P (x− z) > Q(x− z)}, Sn := {x ∈ Ω | P (x− z) > Qn(x− z)},
T := {x ∈ Ω | u(x) ≤ P (x− z) + h}, R := {x ∈ Ω | u(x) = Q(x− z) + h}.

7



By de�nition,

w = u = wn a.e. on Ω \ T and thus ∇w = ∇u = ∇wn a.e. on Ω \ T ,
and T is a set of �nite measure (for �xed h),

(4.3)

due to Lemma 3.4 and the "sublinear growth" (3.1) of u. By Lemma 3.7, w ∈ L1,p(Ω),
wn ∈ L1,p(Ω) and g(∇wn) ∈ L1(Ω). To show the strong convergence of wn to w in
L1,p, observe that in addition to (4.3), ∇w(x) ∈ {∇u(x)} ∪ {ξ} ∪ F on T and ∇wn(x) ∈
{∇u(x)} ∪ {ξn} ∪ F on T . Since F ∪ {ξ} ∪ {ξn | n ∈ N} is bounded in R and ∇wn → ∇w
pointwise a.e. (because ∇Qn → ∇Q pointwise a.e.), this implies that wn → w strongly
in L1,p

∼ (Ω) by dominated convergence. The same argument also shows that g(∇wn) is
bounded in L1(Ω), and in particular, we also have g(∇w) ∈ L1(Ω) due to the strong lsc
of G. By choosing h su�ciently large, we can make sure that

LN(T ∩ S ∩ {u < w}) ≥ 1
2

min{LN(Ω ∩ S) , 1} > 0, (4.4)

since the measure of {u < w} ∩ S ⊂ T becomes arbitrarily large as h→∞.
We are now in position to exploit the strong lsc of G. In the following, let V denote any
measurable set with

S ∩ {u < w} ⊂ V ⊂ S ∩ ({u < w} ∪R). (4.5)

As a consequence, ∇w = ξ a.e. on V by de�nition of S and R, and we have∫
V
g(ξ) +

∫
T\S

g(∇w) +
∫

(T∩S)\V
g(∇u)

= G(w)−
∫

Ω\T
g(∇u)

≤ lim inf G(wn)−
∫

Ω\T
g(∇u)

= lim inf
(∫

T∩Sn∩{u<wn}
g(ξn) +

∫
T\Sn

g(∇w) +
∫

(T∩Sn)\{u<wn}
g(∇u)

)
(4.6)

where we used (4.3) and (4.5). It remains to resolve the lim inf in the last line of (4.6).
We claim that V can be chosen in such a way that

lim inf
(∫

T∩Sn∩{u<wn}
g(ξn) +

∫
T\Sn

g(∇w) +
∫

(T∩Sn)\{u<wn}
g(∇u)

)
=
∫

V
lim g(ξn) +

∫
T\S

g(∇w) +
∫

T\V
g(∇u).

(4.7)

holds in addition to (4.5), at least for a suitable subsequence of ξn (not relabeled). Post-
poning the proof of this for a moment, observe that (4.6) and (4.7) imply that

LN(V ) g(ξ) =
∫

V
g(ξ) ≤ lim

∫
V
g(ξn) = LN(V ) lim g(ξn),

and this yields (4.2), since 0 < LN(V ) ≤ LN(T ) <∞ due to (4.4).
The proof of (4.7) is essentially a consequence of Lebesgue's theorem on dominated con-
vergence and the regularity of the Lebesgue measure. First, we claim that

M ∩ Sn →M ∩ S in measure for every M ⊂ Ω with �nite measure. (4.8)

8



For a proof, note that due to the locally uniform convergence of Qn to Q,

LN
(
M ∩ (S \ Sn)

)
→ 0 and LN

(
M ∩ (Sn \ S̃)]

)
→ 0,

where S̃ := {x ∈ Ω | P (x − z) ≥ Q(x − z)}. This already yields (4.8) since S̃ \ S = {x ∈
Ω | P (x− z) = Q(x− z)} is a set of measure zero, due to the fact that the a�ne function
f(x) := x · ξ − 1 always intersects P transversally (this is obvious if ξ /∈ F ⊃ ∇P (RN ),
and even if ξ ∈ F , ∇P (S̃ \ S) ⊂ F \ {ξ} as the side of P with slope ξ gets cut o�
completely by f in the de�nition of Q). As an immediate consequence of (4.8), also using
that g(∇u) ∈ L1(Ω), g(∇w) ∈ L1(Ω) and that g(ξn) is bounded, we may replace Sn with
S or S ∩ Sn in (4.7) and it thus su�ces to show that

lim
∫

T∩S∩Sn∩{u<wn}
g(ξn) =

∫
T∩S∩V

g(ξ),

lim
∫

(T∩S∩Sn)\{u<wn}
g(∇u) =

∫
(T∩S)\V

g(∇u).
(4.9)

Since g(ξn)→ g(ξ) and g(∇w) ∈ L1(Ω), (4.9) in turn follows once we show that

T ∩ S ∩ Sn ∩ {u < wn} = T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h} → V in measure (4.10)

for a suitable V . As a �rst step, observe that

T ∩ S ∩ Sn ∩ {u < wn} ∩ {u < w} → T ∩ S ∩ {u < w} in measure, (4.11)

since wn → w pointwise a.e. and T has �nite measure. Moreover, since u > Q(· − z) + h
on Ω \ (R ∪ {u < w}), the same argument yields that(

T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h}
)
\ (R ∪ {u < w})→ ∅ in measure, (4.12)

To discuss the remainder, the limit of T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h} ∩ R, we have to
distinguish the points where Qn > Q or Q < Qn, respectively, and since we work on S∩Sn,
this comes down to comparing the a�ne functions x 7→ (x − z) · ξ and x 7→ (x − z) · ξn.
By passing to a subsequence of ξn (not relabeled), we may assume that

ξ − ξn
|ξ − ξn|

−→
n→∞

η, for an η ∈ RN with |η| = 1. (4.13)

De�ne

Hn :=
{
x ∈ Ω

∣∣∣ (x− z) · ξ − ξn|ξ − ξn|
< 0
}
, H :=

{
x ∈ Ω

∣∣ (x− z) · η < 0
}
,

and observe that

T ∩Hn → T ∩H in measure

due to (4.13). Together with (4.8), this implies that

T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h} ∩R = T ∩ S ∩ Sn ∩Hn ∩R→ T ∩ S ∩H ∩R. (4.14)

Combined, (4.11), (4.12) and (4.14) yield (4.10) for

V :=
[
T ∩ S ∩ {u < w}

]
∪
[
T ∩ S ∩R ∩H

]
which obviously satis�es (4.5). This concludes the proof of (4.7).
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In case G is wslsc, we obtain

Proposition 4.8. Suppose that G(u) ∈ R for a u ∈ L1,p(Ω) with "sublinear growth" in

the sense of (3.1), and suppose that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is wslsc

in L1,p
∼ (Ω). Then g is convex on RN .

Proof. Let ξ1, ξ2 ∈ RN with ξ1 6= ξ2 such that g(ξ1) < ∞ and g(ξ2) < ∞. We have to
show that for every θ1, θ2 ∈ (0, 1) with θ1 + θ2 = 1,

g(ξ̄) ≤ θ1g(ξ1) + θ2g(ξ2), where ξ̄ := θ1ξ1 + θ2ξ2. (4.15)

Let F be a �nite subset of co{g ∈ R} such that 0 ∈ (coF )◦ and let P denote the associated
pyramid introduced in Lemma 3.4. We are going to prove (4.15) with arguments very
similar to those applied in Proposition 4.7. Essentially, we now truncate the pyramid with
a laminate λn composed of piecewise a�ne functions whose gradient oscillates faster and
faster in {ξ1, ξ2} with average slope ξ̄. For any n ∈ N and y ∈ RN de�ne

λ(y) := ξ̄ · y and λn(y) := λ(y) + max
{

Λ
(
y + 2−nk(ξ1 − ξ̄)

) ∣∣ k ∈ Z
}
,

where Λ(y) := min{(ξ1 − ξ̄) · y, (ξ2 − ξ̄) · y}.

Observe that λ, λn ∈W 1,∞
loc (RN ),

λ ∈W 1,∞
loc (RN ), λn ∈W 1,∞

loc (RN ), λn ≤ λn+1 ≤ λ, ∇λn ∈ {ξ1, ξ2} a.e.,
λn − λ→ 0 in L∞(RN ), and ∇λn ⇀

∗ ∇λ = ξ̄ in L∞(RN ).
(4.16)

Moreover,

LN(M ∩ {∇λn = ξi}) −→
n→∞

θiLN(M) , i = 1, 2, (4.17)

for every �xed measurable setM ⊂ RN with �nite measure. The laminate can be built into
admissible functions for G just as in Proposition 4.7. For every x ∈ Ω and for parameters
h ∈ R (chosen below) and z ∈ Ω (chosen arbitrarily), let

w(x) := max{u(x), Q(x− z) + h} with Q(y) := min{P (y), λ(y)− 1},
wn(x) := max{u(x), Qn(x− z) + h} with Qn(y) := min{P (y), λn(y)− 1},

and

S := {x ∈ Ω | P (x− z) > Q(x− z)}, Sn := {x ∈ Ω | P (x− z) > Qn(x− z)},
T := {x ∈ Ω | u(x) < P (x− z) + h}.

We now list a few consequences of these de�nitions which will be used later. First, note
that

w = wn = u on Ω \ T and thus ∇w = ∇wn = ∇u a.e. on Ω \ T ,
and T is a set of �nite measure (for �xed h),

(4.18)

due to Lemma 3.4 and the "sublinear growth" (3.1) of u. In particular, w,wn ∈ L1,p
∼ (Ω).

Second, since λ ≥ λn+1 ≥ λn on RN in L∞(RN ), we also have

w ≥ wn+1 ≥ wn, and S ⊂ Sn+1 ⊂ Sn for all n ∈ N, (4.19)

properties we could not get in Proposition 4.7, and which will allow us to use V :=
T ∩ S ∩ {u < w}. Third,

M ∩ Sn →M ∩ S in measure for every M ⊂ Ω with �nite measure, (4.20)
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which can be shown in the same way as (4.8) in the proof of Proposition 4.7. As a
consequence of (4.20), ∇wn → ∇w strongly in Lp(T \ S; RN ) (note that wn = w on
Ω \ (Sn ∪ S), and the sequence |∇wn|p is equiintegrable by construction). In addition, we
have that ∇wn = ∇λn ⇀ ∇λ = ∇w weakly in Lp(T ∩ S; RN ). Since wn = u = w on
Ω \ T , we infer that ∇wn ⇀ ∇w weakly in Lp(Ω; RN ), or, equivalently, wn ⇀ w weakly
in L1,p

∼ (Ω), so that we may employ the wslsc of G along the sequence wn. In particular,
g(∇w) ∈ L1(Ω) as G(wn) is bounded. As in the proof of Proposition 4.7, we choose h
large enough so that

LN(T ∩ S ∩ {u < w}) ≥ 1
2

min{LN(Ω ∩ S) , 1} > 0. (4.21)

Due to the wslsc of G, we have

LN(T ∩ S ∩ {u < w}) g(ξ) +
∫

T\S
g(∇w) +

∫
T∩S∩{u≥w}

g(∇u)

= G(w)−
∫

Ω\T
g(∇u)

≤ lim inf G(wn)−
∫

Ω\T
g(∇u)

= lim inf
(∫

T∩Sn∩{u<wn}
g(∇λn) +

∫
T\Sn

g(∇w) +
∫

T∩Sn∩{u≥wn}
g(∇u)

)

= lim inf
( 2∑

i=1

LN
(
T ∩ Sn ∩ {u < wn} ∩ {∇λn = ξi}

)
g(ξi)

+
∫

T\Sn

g(∇w) +
∫

T∩S∩{u≥w}
g(∇u)

)
= LN(T ∩ S ∩ {u < w})

(
θ1g(ξ1) + θ2g(ξ2)

)
+
∫

T\S
g(∇w) +

∫
T∩S∩{u≥w}

g(∇u),

(4.22)
where we used (4.3) and (4.5), and the last equality above still has to be justi�ed. Post-
poning this for a moment, note that as a consequence,

Ag(ξ) ≤ A
(
σ1g(ξ1) + σ2g(ξ2)

)
, where A := LN(T ∩ S ∩ {u < w}).

which implies (4.15). Here, note that A is �nite and bounded away from zero due to (4.21).
As a consequence of Lebesgue's theorem on dominated convergence, (4.20) and the fact
that g(∇w) ∈ L1(Ω), the last equality in (4.22) can be checked by showing that

T ∩ Sn ∩ {u < wn} → T ∩ S ∩ {u < w} in measure (4.23)

and

LN
(
T ∩ Sn ∩ {u < wn} ∩ {∇λn = ξi}

)
−→
n→∞

LN
(
T ∩ S ∩ {u < w}

)
θi (4.24)

for i = 1, 2. Here, we may replace Sn with S due to (4.20), and we also may replace
{u < wn} by {u < w}, since {u < wn} ⊂ {u < w} due to (4.19) and

LN
(
{u < w} \ {u < wn}

)
→ 0,

where we used that w−wn → 0 pointwise in Ω and {u < w} ⊂ T is a set of �nite measure.
This already �nishes the proof of (4.23), and (4.24) is a consequence of (4.23) combined
with (4.17).
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Proof of Theorem 4.1. Since wslsc of G implies strong lsc of G, lsc of g is a consequence
of Proposition 4.7 below, and convexity of g is due to Proposition 4.8. Now suppose that
LN(Ω) = ∞. In this case, the existence of u with

∫
Ω |g(∇u)| < ∞ and

∫
Ω |∇u|

p < ∞
implies that there is a sequence ξn → 0 such that g(ξn) → 0. Since g is lsc and (1.4)
holds, we infer that g(0) = 0. If p > 1, any convex function satisfying (1.4) and g(0) = 0
has to be nonnegative. Finally, if p = 1, the subdi�erential of the convex function g at 0
contains at least one point ν ∈ RN , and since g(0) = 0 and 0 is contained in the interior
of {g ∈ R} = co{g ∈ R}, this entails (4.1).

Proof of Theorem 4.2. First, observe that Proposition 4.7 and Proposition 4.8 remain
valid if L1,p

∼ (Ω) is replaced by (L1,p∩Lq)(Ω) and u ∈ (L1,p∩Lq)(Ω) is given (in particular,
u then satis�es (3.1)). In fact, the only thing we have to show in addition in the proofs
of the propositions is that in both cases, the corresponding constructed sequence wn also
satis�es wn → w strongly in Lq(Ω) (in Proposition 4.8, weak convergence would actually
su�ce, but we get strong convergence anyway). Since wn = w = u on Ω \ T where T is a
set of �nite measure, and wn → w in Lq(Ω) is easily shown using dominated convergence.
The rest of the proof is analogous to the proof of Theorem 4.1.

5 Concluding remarks

It is remarkable that the proof presented here does not directly use the assumption that
the functional is nontrivial. Instead, we had to assume that

0 ∈ (co{g ∈ R})◦ ⊂ RN , (5.1)

which as we saw is su�cient for G to be nontrivial on (L1,p ∩ Lq)(Ω) (if G 6≡ ∞) with an
arbitrary domain Ω, but necessary only on Ω = RN . It is actually not too di�cult to �nd
and use suitable weaker replacements for this assumption on other domains with simple
geometry, which again are necessary and su�cient for nontrivial G. For instance, for the
cylinder

C :=
{

(x1, x2, . . . , xN ) ∈ RN | x2
2 + . . .+ x2

n < 1
}
,

G de�ned on (L1,p ∩ Lq)(C) is nontrivial if and only if G 6≡ ∞ and

0 ∈ (coP1({g ∈ R}))◦ ⊂ R, (5.2)

where P1 is the projection (x1, . . . , xN ) 7→ x1. Moreover, by a suitable corresponding
modi�cation of the pyramid P , (5.1) can be replaced by (5.2) in our main results for
Ω = C. However, trying to �nd a reasonably general classi�cation of domains with a
corresponding list of characterizations for trivial functionals in terms of g seems to be a
pretty hopeless task. It thus would be interesting to know whether necessary conditions
for wslsc of G in L1,p

∼ , especially if L1,p
∼ is not embedded into some Lq, can be obtained

without using assumptions like (5.1) or (5.2), instead trying to exploit directly that there
is more than one function on which G is known to be �nite.

Another interesting question is whether our results, which are for scalar �elds only, can
be extended to the vector case. Technically, this would require fundamentally new ideas,
since joining pieces of functions together by taking their maximum or minimum, which
is the main method employed here, then no longer works well. Moreover, characterizing
trivial functionals on RN again becomes a challenging � and maybe related � task. We
probably have to replace the convex hull in (5.1) by an appropriate notion of a quasiconvex
hull. But which one exactly? And how to use it, is there always a suitable replacement
for the pyramid in this case?
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A Properties of L1,p(Ω)

We recall embeddings of L1,p on unbounded domains originally obtained in [6] in a frame-
work more general than presented here. For this purpose, we need certain properties of Ω
speci�ed below. The simplest examples for domains satisfying (Ω : 1) and (Ω : 2) below
are the whole space and in�nite (circular) cones.

De�nition A.1.

(i) An cone (with vertex at 0) is a set of the form

V = V (e, ε) :=
{
x ∈ RN | e · x > (1− ε) |x|

}
,

where e · x denotes the euclidean scalar product. (The parameters ε ∈ (0, 1) and
e ∈ SN−1 specify the opening angle and the axis direction of the cone.)

(ii) Two domains Ωi,Ωj ⊂ RN are said to overlap on an outer cone if there is a cone V
and a radius R > 0 such that V \BR(0) ⊂ Ωi ∩ Ωj .

(iii) Ω ⊂ RN satis�es the in�nite cone condition, if there exists a cone V such that
Ω + V := {x+ y | x ∈ Ω, y ∈ V } ⊂ Ω.

(iv) Ω ⊂ RN satis�es condition (Ω : 1′), if

Ω satis�es the in�nite cone condition with a cone V (e, ε), and
there is a µ ∈ (0, 1) such that e · x > µ2 |x| for every x ∈ Ωi.

(Ω : 1′)

(v) Ω ⊂ RN satis�es condition (Ω : 1), if

Ω = ∪k
i=1Ωi for a �nite number k of subdomains Ωi ⊂ Ω,

where each Ωi satis�es condition (Ω : 1′) and for any j ≥ 2,
there is an i < j such that Ωi and Ωj overlap on an outer cone.

(Ω : 1)

(This is condition (A) in [6].)

(vi) Ω ⊂ RN satis�es condition (Ω : 2′), if

there exist z ∈ RN and R > 0 such that

[
z +R

x− z
|x− z|

, x

]
is contained in Ω for every x ∈ Ω with |x− z| > R.

(Ω : 2′)

(vii) Ω ⊂ RN satis�es condition (Ω : 2), if

Ω = ∪k
i=1 ∪

li
j=1 Ωij for a �nite number of subdomains Ωij ,

such that each Ωij satis�es condition (Ω : 2′) and

Ω̃i := ∪li
j=1Ωij satis�es the in�nite cone condition for every i.

(Ω : 2)

(This is condition (B) in [6].)

If p < N , L1,p
∼ is continuously embedded in Lp∗ for domains satisfying (Ω : 1), as the

following result shows.
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Theorem A.2 (cf. Theorem 1 in [6]). Suppose that 1 < p < N and that Ω ⊂ RN is a

domain satisfying (Ω : 1). Then for any u ∈ L1,p(Ω), there is a h ∈ R such that u − h
satis�es Sobolev's inequality in the form(∫

Ω
|u(x)− h|p

∗
dx

) 1
p∗

≤ C
(∫

Ω
|∇u|p dx

) 1
p

(A.1)

with a constant C = C(N, p,Ω) > 0. Here, p∗ := pN
N−p .

If p ≥ N , the result above (with p∗ =∞) is false in general. Nevertheless, something can
still be said in form of an estimate for a weighted norm.

Theorem A.3 (cf. Theorem 2 and Theorem 3 in [6]). Suppose that 1 < N = p <∞, that

Ω ⊂ RN is a domain satisfying (Ω : 2) and and that B ⊂ Ω is a (bounded) open ball. Then

for q ∈ [p,∞) and for any u ∈ L1,p(Ω),(∫
Ω

(
γ(x) |u(x)|

)q
dx

) 1
q

≤ C
(∫

Ω
|∇u|p dx+

∫
B
|u|p dx

) 1
p

(A.2)

with a constant C = C(N, p, q,Ω, B) > 0. Here, the weight γ is given by

γ(x) :=

{
(1 + |x|)−1+ N

p
−N

q if p > N ,

(1 + |x|)−1+ N
p
−N

q (1 + |ln(|x|)|)−1 if p = N > 1.

Moreover, the above is also true for p = ∞, as well as for q = ∞ if N < p, where the

corresponding integral norm in (A.2) has to be replaced by the essential supremum.

In some sense, this entails sublinear growth at in�nity whenever p <∞:

Corollary A.4. Let Ω ⊂ RN be open and connected. Moreover, suppose that either

1 < p < N and Ω is a �nite union of subdomains Ωi such that each Ωi satis�es (Ω : 1′)
(but they do not necessarily overlap), or 1 < N ≤ p <∞ and Ω satis�es (Ω : 2). Then for

any u ∈ L1,p(Ω) and any a > 0, the set

{|u| > a |·|} := {x ∈ Ω | |u(x)| > a |x|}

has �nite Lebesgue measure.

Proof. If p < N , since (Ω : 1′) implies (Ω : 1), (A.1) holds on each Ωi, with possibly
di�erent numbers hi. Of course, this is only possible if {|u| > a |·|} ∩Ωi has �nite measure
for each i. If p ≥ N , the weight function on the left hand side of (A.2) satis�es γ(x) |x| → ∞
as |x| → ∞ for any choice of q > p, and thus the measure of {|u| > a |·|} is �nite as a
consequence of (A.2). Here, note that the right hand side of (A.2) is �nite due to Poincaré's
inequality on B.
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