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Abstract

In this work, first we formulate and compare three different discontinuous Interior
Penalty Galerkin methods for the two-dimensional Keller-Segel chemotaxis model.
Keller-Segel chemotaxis model is the important starting step in the modeling of the
real biological system. We show in the numerical tests that two of the proposed
methods fail to give accurate, oscillation-free solutions.

Next, we consider the application of the successful method for the Keller-Segel
model to the simulation of the more realistic, and closely related haptotaxis model
of tumor invasion into healthy tissues.
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1 Introduction

Since the late nineties, the discontinuous Galerkin (DG) methods have been
successfully applied to a wide variety of problems, ranging from solid mechan-
ics to fluid mechanics (see, e.g., [2,5,13,14,16,21,23,36]). Among the attractive
features of DG are local, element-wise mass conservation, flexibility to use
high-order polynomial and non-polynomial basis functions, ability to easily
increase the order of approximation on each mesh element independently, and
to achieve an almost exponential convergence rate when smooth solutions are
captured on appropriate meshes. Also worth mentioning are block diagonal
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mass matrices, which are of great computational advantage if an explicit time
integration is used with DG.

In this paper, we first consider the most common formulation of the Keller-
Segel system [12], which can be written in the dimensionless form as

+ V. Ve) = Ap,
PV V=80 e, 1)

¢ =Ac—c+p,
subject to the Neumann boundary conditions:
Vp-n=Ve-n=0, (x,y)€d, (2)

where  is a bounded domain in R?, 9 is its boundary and n is a unit normal
vector. We also have the following variables:

e p(x,y,t) is the cell density,
e c(x,y,t) is the chemoattractant concentration, and
e Y is a chemotactic sensitivity constant.

It is well-known that solutions of the system (1) may blow up in finite time (see
[25,26]). This blow-up is a mathematical description of a cell concentration
phenomenon that occurs in real biological systems (see [1,6-8,15,32]). The
Keller-Segel model (1) can be generalized to better reproduce the reality by
taking into account several additional factors, such as growth and death of
cells, presence of different chemicals in the biological system.

A common property of all existing chemotaxis systems is their ability to
model a concentration phenomenon, which mathematically results in solutions
rapidly growing in small neighborhoods of concentration points or curves. The
solutions may blow up or may exhibit a very singular behavior.

Capturing such singular solutions numerically is a challenging problem. A few
numerical methods have been proposed (see [22],[31]), for a simpler version of
the Keller-Segel model,

pe+ V- (xpVe) = Ap,
Ac—c+p=0,

Here the equation for concentration ¢ has been replaced by an elliptic equa-
tion, using an assumption that the chemoattractant concentration c¢ changes
over much smaller time scales than the density p. A fractional step numerical
method for a fully time-dependent chemotaxis system from [37] has been pro-
posed in [38]. However, the operator splitting approach may not be applicable
when a convective part of the chemotaxis system is not hyperbolic, which is a



generic situation for the original Keller-Segel model. This was shown in [11] by
introducing new variables for (u, v) := Ve. In [11], the finite-volume Godunov-
type central-upwind scheme was derived for (1) and extended to some other
chemotaxis and haptotaxis models. As it was mentioned above, the starting
points in the derivation of the central-upwind scheme in [11] were introduction
of new variables (u,v) := (cg, ¢,), differentiation of the concentration equa-
tion in (1) with respect to = and y, and rewriting of the original system in an
equivalent form. In this new form. the concentration equation is replaced with
the corresponding equation for the u, v :

pe + (xpu)s + (xpv)y = Ap,
up — pp = Au — u,
v —py =Av—v (3)

The system (3) is an appropriate form of the chemotaxis system if one wants
to solve it numerically by a finite-volume method. Even though the convective
part of the system (3) is not hyperbolic (see [11]), some stability of the result-
ing central-upwind scheme was ensured by proving its positivity preserving
property (see [11]).

A major disadvantage of the system (3) is a mixed type of its convective
part. Especially, when a higher order numerical method is applied to (3), a
transition in the numerical scheme from a hyperbolic region to an elliptic
one may cause severe instabilities in the solution since the wave propagation
speeds in the elliptic region are infinite. Therefore, in order to develop high-
order DG methods for (1), we wrote it in a different form which is suitable for
discontinuous Galerkin settings (see [19]):

Let (u,v) := (cs, ¢y),

pi+ (xpu)z + (xpv)y = Ap, (4)
¢ =Ac—c+p, (5)

o = 1, (6)

Cy =0, (7)

where the new unknowns p, ¢, u, v satisfy the following boundary conditions:
Vp-n=Ve-n=(u,v)) -n=0, (r,y)cd. (8)

The convective part of the system (4)-(7) is hyperbolic. In [19], for the ob-
tained system (4)-(7), we developed a family of high-order DG methods. The
proposed methods are based on three primal discontinuous Galerkin methods:
Nonsymmetric Interior Penalty Galerkin (NIPG), Symmetric Interior Penalty
Galerkin (SIPG), and Incomplete Interior Penalty Galerkin (IIPG) methods
[4,17,18,35]. The choice of the numerical fluxes is crucial for the stability of
any scheme. The reader may consult, for more details, a study of DG numer-
ical fluxes (based on various approximate of Riemann problem solver) for the



nonlinear conservation laws (see [34]) and a study of the diffusive numerical
fluxes for DG schemes for linear transport equation (see [33]).

The numerical fluxes for the approximation of the convective terms in the
proposed DG methods are based on the techniques for the semidiscrete finite-
volume central-upwind schemes developed in [29] (see also [28], [30]). These
schemes belong to the family of nonoscillatory central schemes, which are
highly accurate, efficient, applicable to general multidimensional systems of
conservation laws and related problems. Like other central fluxes, the central-
upwind ones are obtained without using (an approximate) Riemann problem
solver, which is unavailable for the systems under consideration. At the same
time, a certain upwinding information—one-sided speeds of propagation—is
incorporated into the central-upwind fluxes.

In [19] we considered Cartesian grids, and for the proposed high-order DG
methods we proved the error estimates under the assumption of boundedness
of the exact solution. We also showed an interesting result that the blow-up
time of the exact solution is bounded from above by the blow-up time of
the solution of DG methods. In numerical tests presented in [19], we demon-
strated that the obtained numerical solutions have no negative values, and are
oscillation-free even without application of the slope limiting techniques.

In this paper, we would like first to compare three different discontinuous
Galerkin schemes applied to the classical Keller-Segel model:

e primal discontinuous Galerkin method applied to the original formulation
of the Keller-Segel model (1)

e primal discontinuous Galerkin method with the standard upwind numerical
fluxes for the reformulated Keller-Segel model (4)-(7)

e the new discontinuous Galerkin method developed in [19].

In the numerical tests in Section (4), we first show that compared to the new
discontinuous Galerkin method, the first two schemes fail to give the accurate
oscillation free solutions for the classical Keller-Segel chemotaxis model.

Secondly, we consider the important application of the new discontinuous
Galerkin scheme to the simulation of the more realistic, and closely related,
haptotaxis model of the tumor invasion (cancerous cell migration) into healthy
tissue.

The paper is organized as follows. In §2, we introduce the notations. In sec-
tion §3-84, we formulate different discontinuous Galerkin methods applied to
Keller-Segel model of the chemotaxis and show the numerical results. Finally
in section §5, we present the new discontinuous Galerkin methods applied to
the simulation of the haptotaxis model and give some conclusions.



2 Notations

We consider a discontinuous finite element discretization of the chemotaxis
Keller-Segel model and closely related haptotaxis model below. For this we
introduce a non-degenerate subdivision of the domain €2, made of rectangles
and denoted by &,. As usual, the maximum diameter over all mesh elements
is denoted by h. The set of interior edges is denoted by I'y,. To each edge e
in T'j,, we associate a unit normal vector n, = (n,,n,), with x-coordinate n,
and y-coordinate n,. We assume that n, is directed from the E' to E? (where
E' denotes the element with smaller index and E? denotes the element with
larger index). For a boundary edge, n, is chosen so that it coincides with the
outward normal. The discrete space of discontinuous piecewise polynomials of
degree r is denoted by W, , :

Win ={v € L*(Q) : VE € &, : v|p € P, (E)}

For any function v € W,, we denote the jump and average operator over
given edge e by [v] and {v} respectively. Assuming that n. is outward to E',
we can write:

Ve =0E, NOE;, [v]le=v|m —v|p, {v}| =0.50|m + 0.50|p2,

Ve = 0B, N 09, [W]le = vlm, {v}le=vlm.

We also denote by (2 a rectangular domain with the boundary 02 = 9€2; U0,
where 0€); and 0€), are the vertical and horizontal pieces of the boundary 0¢2,
respectively.

3 Description of the numerical schemes for classical Keller-Segel
chemotaxis model

We first consider the original Keller-Segel system of equations (1)-(2). Before
formulating the scheme, we introduce some additional notation. Let € be a
parameter that takes the value —1,0 or 1. By changing the value of ¢, we will
obtain the SIPG, IIPG or NIPG method. Let o,,0.,0, and o, be positive
real parameters, called penalty parameters. Stability of NIPG method does
not depend on the choice of the penalty parameters. However, the penalty
parameters have to be bounded below by a large enough constant (depending
on the problem), to ensure the stability of SIPG and IIPG. For the general
idea on how to estimate the penalty parameters for SIPG (similar techniques
can be used for [IPG), see for example [20]. By r,, r., 7, and r, we denote the
degree of the polynomial approximations for p, ¢, u and v respectively.



The direct application of the Interior Penalty Galerkin Methods to (1)-(2)
yields the following semi-discrete scheme.

Scheme 1.

Find (p"%, cP%) € H'([0,T]) "W, |, x Wy, , such that:

/Q prw’ + Y / p"¢ = xpPIV )V = 3 / {Vp"% - ne}[w)

EcEy, ecl'y,

+e Z/ {(Vw’n }p" 1+ > /XpDGTVcDG lw)+o, > |/ pPw’] = 0,

ecl'y, ecl’y, ecl'y,
(9)

va € Wfp,h

/DG c+/ DG _ DG w+Z/V0DGVw Z/{VCDG ne Hwe]

EGE BGF}L

+6Z/ {Vwe-n}c ) +o. > |3| /B[CDG][wC]zo, Yw® € Wy, (10)

ecl'y, eel’y,

where the the upwind value p”¢T|, defined in the standard way:

pDGT — pDG|E1 if VCDG “Me 2 Oa
pP% g, if VP9 o, < 0.,

and the initial conditions:

/pDG(-,O)wp:/p(-,O)wp, /CDG(.,o)wC:/c(.,o)wc. (11)

As we mentioned in the introduction of the paper, the original Keller-Segel
system is of mixed elliptic-hyperbolic type. The propagation speeds in the el-
liptic region are infinite. Hence, the direct application of the numerical method
(without separation of the elliptic and hyperbolic region in the convective term
of the numerical scheme) can cause severe instabilities in the solution, which
will be demonstrated in Section (4) for the scheme (9)-(10).

Next, consider (4)-(7) subject to (8). The system (4)-(7) is the system of
convection-diffusion-reaction equations

kQ:+F(Q). + G(Q)y, = kAQ + R(Q), (12)

where Q := (p, c,u,v)T, the fluxes are F(Q) := (xpu,0,c,0)T and G(Q) :=
(xpv,0,0,c)T and the reaction term is R(Q) := (0, p — ¢, u,v). Also, the con-
stant k£ = 1 in the first two equations in (12), and k& = 0 in the third and



the fourth equations. Here, the Jacobian of F and G has only real eigenvalues
given below:

Mo=yu, AF=AF =2F =0 and \S=yxv, A\F=)2F=)F=0. (13)

The important advantage of the system (12) over the original Keller-Segel
formulation (1) is that the convective part of this system is purely hyperbolic.
Therefore, we do not need to separate the hyperbolic region from the elliptic
one in the numerical method.

For the new system (4)-(7), let us formulate first the discontinuous Galerkin
method with convective term in the density equation of (4)-(7), approximated
by standard upwind technique mentioned above. Let us introduce vector f :=
(u,v). In this case the semi-discrete scheme is as followes.

Scheme 2.

Find (pP% cP%) € H'Y([0,T]) N WP X Wy, and (u ba P&y e L([0,T]) N
Wi X W, such that:

Tu,

Equation for p :

/pt w? + Z/ PE — xpP )Vt — Z/{VPDG n,}[uw’]

EEE}LE ecly, e

SO I\ES G ROD o § [T TARD o) BT U B AR U
ecl'y, ¢ ecl'y, ecl'y, ¢

(14)

Equation for ¢ :

[Pours X [Verivut— 5 [0 nur) e 3 [(Vur n o)

Q EeghE ecly e ecly e

+0'c |/ DG C]+/ DG /pDGwCZO, Yw® € ch,h (15)
Q

ecly,

Equation for u :

/ DGyu | Z/ _Z/CDGT.nx[wu]

Q Eegy, E ecl'y ¢

-y / DG . pyw' + o, |6|/ WP W] =0, Yu"eW:, (16)

ecoN ¢ BGF;LU(991

Equation for v :

/ DGy | Z/ _Z/CDGT_ny[wv]

Q EEE}LE ecl'y, e



- Y [P’ +o, ||/ vPNw’] =0, Yw’ e W, ,, (17)

ecoNo e ethanz

and the initial conditions:

/pDG(-,O)w”:/p(-,O w?, /CDG :/c
/uDG(-,O)w“ = /u(~,0)w“, /UDG /v (18)

Finally, the third method that we will consider is the new discontinuous
Galerkin schemes developed in [19]. In the same way as it was done in [19], we
introduce the following semi-discrete numerical schemes based on three primal
discontinuous Galerkin methods, which combine the special treatment of the
convective terms:

Scheme 3.

Find (p”%, cP%) € H'([0,T]) N W, ), x Wy, , and (%, vP%) € L*([0,T]) N
Wi X W, such that:

Equation for p :

[oPeuwr+ 5 [9pP0Tur = 3 [{VP n ]+ 2 3 [(Tur - npP]

EeShE ecly ¢ ecl'y ¢
+o, ) / [P Nw’] = 3 /XPDG PG (w), + Z/XPDG PEY* - n [w)
eely, | | E€&, el &
_ Z /XPDG DG(wp + Z / XPDG DG) y[wp] =0, Yu’e erp,h
Ee€é, ecl'y, ¢
(19)
Equation for ¢ :
[ePour+ Y [Verivur— 3 [{9elC on }ur]
Q Eec‘:hE ecl'y, ¢
+e Y /{Vw n.} "+ 0. > / bat c]—l—/ ba C—/pDGwC: , YwteWwr ,
ecl'y ¢ eEF |
(20)
Equation for u :
/ et ¥ [Pt + T / (=cP9); - my [
EeghE BGFhe
-y / DG . pyw' + o, / WP W] =0, Yu'eW:, (21)
e€o ¢ ethufm |



Equation for v :

[oPuwr+ 3 [P, + T [P myfu]

Q Eegy, E ecl'y ¢

- > /CDG-nyw”wv ||/ VP =0, Yu'e W, (22)

ecila o e€l, U,

and subject to the initial conditions (18).

To approximate the convective terms in (19) and (21)—(22), we use the central-
upwind fluxes developed in ([29,27]):

(XpDG DG) out(XpDG DG)|EZ1 _ ain(XpDGUDG)|eEl2 B aoutain [ DG]
aout — ain qout — ain ’
(23)
(XpDGUDG) bout (XPDG DG) |El1 bln (XpDG DG) |El2 boutbin. [pDG]
pout _ b n bout — pin ’
(24)
e aout(cDG)|eEl1 o ain(cDG)|eEl2 aoutain DG o
(_C )U - qout — ain - qout — ain ['U, ]’ ( )
DGs bout (CDG)Eh o bin(CDG)|eEl2 boutbin DG
(=), = - pout _ pin "~ pout _ pin [v7%]. (26)

Here, a®", a'", b°** and b™ are the one-sided local speeds in the 2- and y-
dlrectlons. Since the convective part of the system (4)—(7) is hyperbolic, these
speeds can be estimated using the largest and the smallest eigenvalues of the

Jacobian % and 93 o (see (13)):

a2t = max ((xuP9)[E", (xuP%)[E2,0) , @ = min (xuP)[E", (xuP?)|F,0),

0 = masx (P9, (P9I, 0) b = min (PO, (0P, 0).

(27)
Remark. If a®** — '™ = 0 at a certain element edge e, we set
DGy DGY|Ely 4 (y, DGy DGY|El2
Xp Xp
(XpDG DG) ( )| > ( )| : (28)
DG, DG (xpP P [E + (xpP )| P
(xp ) = 5
paye _ (€PN + (P9) [ paye _ (P + (P9) [P
(_C )u = - 92 ) ( )v = - 9 )

(29)
there.

Let us briefly recall what was proved in [19] for the scheme (19)-(27). We



showed that the scheme (19)-(27) is consistent and we obtained the follow-
ing hp-error estimates in the assumption that the true solution of (4)-(7) is
bounded. We denote by pP% and ¢”% the solution of the (19)-(27).

Assume that:

e For the h- analysis:
Let the solution of (4)—(7) belongs to H*'([0,T]) N H2(2), where s; > 3/2
and sy > 3.

e For the r- analysis (with respect to the polynomial degree):
Let the solution of (4)—(7) belongs to H*'([0,T]) N H**(2), where s; > 3/2
and s, > 5.

Remark: We would like to note that the above assumptions make sense, since
the solution of the Keller-Segel system (1) is very regular before blow-up time.

Theorem 1 (L*(H') and L*(L?) error estimates). Let the solution p, ¢, u
and v of the Keller-Segel system (4)-(7) satisfy the assumption stated in (3).
Furthermore, we assume that penalty parameters o,, 0., 0y, 0, are sufficiently

large. Then there ewists constants C, and C,, independent of h and r, such
that

167 = o] e oy HIV =P uirazon+( [ ZMH

hmin(rp—i—l sp)—1 hmin(rc-l—l,sc)—l hmin(ru—l—l,su)—l hmin(rv-i—l,su)—l

S Cﬂ( T/SJP 2 + 705672 + 7"5"72 + ,,451,72 )
DG 2
HC - CHLoo([o,T];L?(Q))JF|||V(C “Olle2qoeae (/ Z —d 0,

hmin(rp+1,sp)71 h}min(chrl,sc)fl hmln (ru+1,su)—1 hmln (ro+1,85)—1

+ + + )
Sc—2 Su—2 Sy—2 ’
r.c T Ty’

S CC( Tsp—2
p

where (15, Tey Ty, Ty) > 2.

In the same paper, we also showed that the blow up time of the exact solution

is bounded from above by the blow up time of the solution of the discontinuous
Galerkin schemes (19)-(27).

4 Comparison of the discontinuous Galerkin methods applied to
the Keller-Segel chemotaxis model

In this section, we demonstrate the performance of the discontinuous Galerkin
schemes introduced in Section (3) for the classical Keller-Segel model. In all our

10
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tests, we used third order SSP Runge-Kutta method for the time discretization
[24]. We did not apply slope limiter techniques in the experiments.

Let us consider the following initial boundary value problem for the Keller-
Segel system, with chemotactic sensitivity x = 1 and the radially symmetric
bell-shaped initial data,

p(x,y,0) = 1200e 20" +0%) (2, 0) = 600e 00 +¥7) (30)

According to the results in [25,26], both components p and ¢ of the solution are
expected to blow up at the origin in finite time. This situation is especially
challenging, since capturing blowing up solution with shrinking support is
extremely hard.

In all experiments we consider fixed mesh with Az = Ay = 1/51. We use
quadratic and cubic discontinuous polynomial approximations r = 2 and r =
3.

First, let us consider the direct application of the discontinuous Galerkin meth-
ods to the original formulation of the Keller-Segel model (see scheme (9)-(10)).

As it was observed in [19], the blow up time ¢, for the Keller-Segel problem
with initial conditions (30) is ¢, < 1.21-10%. Figure (1), quadratic polynomial
approximation is used, shows the solution at time before blow up. Even at
early times, the solution shows severe numerical instabilities. On Figure (1)
(bottom) it can be seen that the top of the solution splits into two parts. The
same severe numerical instabilities can be observed on the figures (2), where
a cubic discontinuous polynomial approximation is used.

Next, we consider application of the discontinuous Galerkin methods with the
standard upwind fluxes for the reformulated Keller-Segel system (see scheme
(14)-(17)). We can see from the Figure (3) that the negative values appeared in
the solution even before the blow up time. At the time near the blow up time,
see Figure (3) (right, top)- Figure (3) (bottom), the solution shows oscillations.
Compared to the results obtained by scheme (9)-(10), these oscillations are
not so severe and are now related to the numerical approximations of the
convective terms: the numerical fluxes in scheme (14)-(17) (“standard” upwind
numerical fluxes) are based on the approximate of the Riemann problem solver,
which is not available for the system under consideration. As a consequence,
Scheme 2 does not reconstruct the solution accurately. Similar results are
shown on Figure (4), where the cubic polynomial approximations are used.

Finally, Figure (5) shows the performance of the new discontinuous Galerkin
methods (19)-(27). Again we consider quadratic and cubic discontinuous poly-
nomial approximations respectively. The obtained numerical solution has no

11



10000 —

8000 —
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4000 —

2000 —

—2000 =
0.5

Fig. 1. original formulation: h = 1/51,7 = 2; t = 1.5- 10> (left, top), t = 3.0-107°
(right, top) and ¢ = 4.5 - 10~ (bottom)

negative values and is oscillation free.

5 Haptotaxis Model of the Tumor Invasion into Healthy Tissue

In this section, we will consider the application of the new discontinuous
Galerkin methods (see scheme (19)-(27) for the Keller-Segel model) to the
simulation of the haptotaxis model of tumor invasion into healthy tissue, pro-
posed in [3], [9,10].

12
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8000 —

6000 —

4000 —

2000 —

Fig. 2. h = 1/5l,r = 3 : t = 1.5- 1075 (top, left), t = 3.0 - 10~ (top,right),
t=3.6-10"" (bottom)

The term haptotaxis originated with S.B. Carter in 1965: “... the movement
of a cell is controlled by the relative strengths of its peripheral adhesions, and
that movements directed in this way, together with the influence of patterns of
adhesion on cell shape are responsible for the arrangement of cells into complex
and ordered tissues” [9]. Cell movement in inflammation, tumor invasion, and
other migrations are the result of haptotactic responses of cells to differential
adhesion strengths [9,10].

The development of a primary solid tumor (e.g., a carcinoma) begins with a
single normal cell becoming transformed, as a result of mutations in certain
key genes. The next stage is that the primary tumor induces the formation of

13
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-30 —

—40 —

0.5

Fig. 3. h=1/51,r =2:¢=6.0-10"5 (left, top), ¢ near t;, = 1.21-10~* (right, top),
zoom view of the figure on the right (bottom)

a local vascular network and creates its own blood supply. After this stage,
the tumor invasion occurs: first, cancer cells escape from the primary tumor;
second, the cells locally degrade the surrounding tissue and continue migration.

The haptotaxis model of tumor invasion in 2D is the system of the nonlinear
convection-reaction-diffusion equations:

pi+ V- (x(c)pVe) = d,Ap +p(x,y,w)p — ¢(z,y,w)p =0,  (31)
¢+ alx,y)me =0, (32)

my — dpyAm — 0(z,y)p+ B(x,y)m =0, (33)

wy — dypAw — y(x,y)e + e(x, y)w + v(z,y, p)w = 0,, (34)

14
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—40—

Fig. 4. h = 1/51,7 =3 : t = 6.0 - 1075 (left), ¢ near ¢, = 1.21 - 10~* (right), zoom
view of the figure on the right (bottom)

subject to the Neumann boundary conditions:

Vp-n=Ve-n=Vm-n=Vw-n=0, (z,y)c€ 0,

where we have the following variables in (31)-(34):

p(x,y,t) is the density of tumor cells (cancerous cells)
c(x,y,t) is the density of extracellular matrix macromolecules
m(z,y,t) is the concentration of matrix degradative enzyme
w(x,y,t) is the concentration of the oxygen

15



2.5+

Fig. 5. h = 1/51,r =2 : t = 6.0 - 107> (left, top) , ¢ near ¢, = 1.21 - 10~* (right,
top); r=3:t=6.0-10"" (left, bottom) , ¢ near ¢, = 1.21 - 10~* (right, bottom)

The rest of the parameters in (31)-(34) will be specified in the numerical
experiments below.

Now let us apply the new discontinuous Galerkin schemes to the haptotaxis
system (31)-(34). As it was done for the Keller-Segel model (1), we introduce
the new variables u := ¢, and v := ¢,. Then the modified haptotaxis system
(31)-(34) will be

let + F(Q)z + G(Q)y = k2AQ + R(Q)a (35)

where Q := (p, ¢, m, w,u,v)T, the fluxes are F(Q) := (x(c)pu,0,0,0,¢,0)T and
G(Q) := (x(¢)pv,0,0,0,0 c)T the reaction term is R(Q) := (—¢(z, y, w)p +

16



QS(Iayaw)pa —a(x,y)mc, 5(1’,y)p—6(I,y)m, fy(x,y)c—l/(x,y,p)w—e(x,y)w,u,v),
kq is given by

1 for QM :=p, Q¥ :=¢, Q® :=m, and QW = w
0 for Q® :=u and Q© :=v.

k'l:

and ky is given by

d, for QW,
dm QW
dy QW,
|0 for Q@ , Q® and Q(6).

ks

The eigenvalues of the Jacobian g—g and % are

M =x@u, X =.. =X =0and A = x(c)v, \§ =... =2 =0 (36)

As for the reformulated Keller-Segel model of chemotaxis (12), the convective
part of the haptotaxis system (35) is hyperbolic. Thus, the one-sided local
speeds can be taken as the largest/smallest eigenvalues of the corresponding
Jacobians.

The new discontinuous Galerkin scheme can then be applied to the system
(35) in a straightforward manner, similar to the application of the scheme
(19)-(27) for the chemotaxis problem.

For the first numerical experiments we consider the following choice of param-
eters:

x(c) =04, d,=0.01, ¢(z,y,w)=0.1,

= =5, d,=0.01, 37
¢(x, y, w) 1 +w’ a ) ( )
§(z,y) =1, pB(z,y)=0.01, d,=0.1,

2p
) = 5a y Y = T ) =1.
v(2,y) v(t,y,p) = s e(r,y)
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Fig. 6. h =1/75,r =3 :t =0 (left), t = 2.0 (right)

The initial data are given by

p(x,y,0) = 5max{0.3 — (z — 3)* — (y — 3)%,0},

57r:v2) , (137ry2)
1n
12 /T

m(z,y,0) = p(z,y,0), w(z,y,0)=4c(z,y,0).

c(x,y,0) = 0.05 cos( (38)

We consider uniform mesh with Az = Ay = 1/75, and we use a cubic discon-
tinuous polynomial approximation. The results are shown on Figures (6)-(9)
for the density of the cancerous cell p.

The figures show the tumor cells invasion of the tissue at different times.
Compared to Keller-Segel chemotaxis model, the solution of the haptotaxis
model does not blow-up. The results obtained here are in good agreement with
the results reported in [11,39]. This confirms the robustness of the proposed
new discontinuous Galerkin method.

Next, we repeat the same experiment with the data stated as before, except
we set diffusion coefficient d, = 0.005, which is 2 times smaller than in the

first experiment. The 3D-view of the results (density p) are shown on Figure
(10).

In the first and second experiments, the diffusion has caused the cell density to
spread out in the domain. But in the second experiment (with lower diffusion
coefficient), the cell density profile develops steeper transition fronts and they
are more compact.

Acknowledgment: I would like to thank Professor Alexander Kurganov for
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Fig. 8. h=1/75,r =3 : t = 7.0 (left), t = 9.0 (right)

the helpful discussions.
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