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DEJAN SLEPČEV

Abstract. We consider coarsening in interfacial systems driven by nonlocal
energies. Of particular interest are the nonlocal Cahn–Hilliard equation and
models of biological aggregation. The energies considered cause the system to
separate into phases. The pattern of interfaces evolves under nonlocal surface-
tension-type effects. The typical length scales grow and the pattern coarsens.
We prove a rigorous upper bound on the coarsening rate.

The proof uses the energy-based approach to estimates on rate of coarsen-
ing introduced by Kohn and Otto [10]. To show the required estimates on the
flatness of the energy landscape we develop a geometric approach which is appli-
cable to a wider class of problems, which includes ones based on local, gradient
type energies.

1. Introduction

Our main focus are systems driven by nonlocal energies. Of particular inter-
est are nonlocal Cahn–Hilliard type equations and equations modeling biological
aggregation. Nonlocal Cahn–Hilliard equations that we consider were derived by
Giacomin and Lebowitz [8] as limits of the lattice-gas dynamics modeling phase
segregation in binary alloys. In this setting, they represent a refinement in mod-
eling over the fourth order Cahn–Hilliard equations. The equations modeling
biological aggregation were derived by Topaz, Bertozzi, and Lewis [18].

The mathematical descriptions of these systems are rather similar. Both equa-
tions are gradient flows of the same general energy:

(1) E(u) :=

∫∫
(u(x)− u(y))2K(x− y)dxdy +

∫
W (u(x))dx.

Here K ≥ 0 is the interaction kernel, and W is a double-well potential whose
minima are at 0 and 1. We leave the domain of integration vague at the moment.
Heuristically it is convenient to consider the domains to be RN × RN and RN ,
respectively. However for technical reasons, when stating and proving rigorous
results we will consider the problem on a finite domain.
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The equations we study are gradient flows of the energy, in the appropriate
metrics:

(2) ut −∇ ·
(

µ(u)∇
(

δE

δu

))
= 0.

That is

(3) ut −∇ ·
(

µ(u)∇
(

4

∫
K(y)dy u− 4K ∗ u + W ′(u)

))
= 0.

For both equations the mobility µ is a nonnegative function. More precisely for
the aggregation equation µ(u) = u while for the nonlocal Cahn–Hilliard equation
µ > 0 on [0, 1].

The second term of the energy causes the system to separate into phases, while
the first term penalizes the existence of interfaces. The energy (1) is a nonlocal
counterpart of the energy

(4) Eloc(u) :=

∫
1

2
|∇u(x)|2 + W (u(x))dx.

Roughly speaking, both of the energies measure interfacial area. The longer the
length scale in the system the better the approximation to interfacial area is. This
fact is characterized by the fact that the Γ-limits of appropriately rescaled energies
is the functional measuring perimeter of the set occupied by one of the phases

E
Γ→ const. Eper.

where Eper is defined for BV functions with the range {0, 1}. For Eloc this is the
result of Modica and Mortola [15] (see also [14]), while for E it was proven by
Alberti, Bellettini, Cassandro, and Presutti [1] (see also [2]). Moreover matched
asymptotics arguments (by Giacomin and Lebowitz [9] and by Bertozzi and the
author [4]) show that the sharp-interface limits of the dynamics described by (2) is
the Mullins–Sekerka (MS) equation for the nonlocal Cahn–Hilliard equation and
the Hele–Shaw (HS) equation for the aggregation model.

After the interfaces have formed the system slowly evolves reducing the inter-
facial area. During this process the length scales that characterize the coarseness
of a configuration grow. We are interested in the rate at which these length scales
grow — the rate of coarsening. The fact that the sharp interface limits, (MS) and
(HS), are both invariant under the scaling x → λx, t → λ3t suggests that the
typical length scale grow as t1/3. We prove a weak formulation of this statement,
following the technique of Kohn and Otto [10], who proved the result for gradient
flows of local energies (4). We use the energy as the measure of the coarseness
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of the system. In particular let E be the energy density, that is the energy per
unit volume. Note that E has units of 1/length. We show a weak version of the
statement

E & t−1/3.

This provides an upper bound on rate of coarsening as it shows that the interfacial
area cannot decay faster than the given rate.

Outline. In the remainder of the introduction we discuss the gradient-flow
structure of the equations, and the framework for obtaining rigorous result on
coarsening rates introduced by Kohn and Otto. We also introduce the two ap-
plications we have in mind in more detail. In Section 2 we list the assumptions
needed and give the precise formulation of the result. In Section 3 we present the
proof of the main result. The main technical ingredient, the interpolation inequal-
ities, are proved in Section 4. The approach we take in proving the interpolation
inequality is general; essentially the same proof covers both types of mobilities and
both nonlocal and local energies. We illustrate the application to local energies in
Subsection 4.1.

1.1. Gradient flow structure. We now introduce the geometric structure of the
equation (2). It is based on formal Riemannian viewpoint developed by Otto [16].
The equation (2) can be understood as a gradient flow of the energy (1) on the
manifold of configurations. Since the equation is in divergence form it preserves
the integral of u over the space. Thus the solution of the equation is a path on
the manifold of functions with the same integral.

At each point the tangent space is the set of possible perturbations, all of which
have mean zero. The local metric is defined as follows: Let s1, s2 be two tangent
vectors at u. Then

(5) gu(s1, s2) =

∫
µ(u)∇p1 · ∇p2

where
−∇ · (µ(u)∇pi) = si for i = 1, 2.

The equation (2) is the gradient flow of energy (1) with respect to the metric (5),
that is for every tangent vector s

g(ut, s) = −δE

δu
[s].

Considering the configuration space as a manifold enables us to, in a way, mea-
sure the steepness of the energy landscape, which in turn provides bounds on the
speed of the dynamics.
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In particular the local metric gives a rise to a global metric on the manifold.
Given a regular enough path, v(s) for say s ∈ [0, 1] on the manifold we can measure
its length

length(v) =

∫ 1

0

√
gv(s)(v′, v′) ds.

We can then define the global metric on the manifold: Let the distance of u1 and
u2 be

d(u1, u2) = inf{length(v) : v is a path connecting u1 and u2}.
It turns out that when µ = const. then d(u1, u2) is a multiple of the H−1 norm,

while for µ(u) = u the distance becomes the Wasserstein metric.

1.2. Kohn–Otto framework. Kohn and Otto [10] introduced an approach to
obtaining information on the flatness of the energy landscape, and consequently
on the rate of coarsening. The approach is robust and has been applied to studies
of coarsening in epitaxial growth, mean-field models, thin-liquid films and other
systems [6, 7, 5, 11, 12, 17]. See also [13] for a related result.

We first present it in abstract setting used in [17], which applies to gradient
flows. Consider energy E on a Riemannian manifold (M, g). The metric g intro-
duces a global distance on M, we denote it by d.

Proposition 1. Let h∗ ∈M. Let h : R+ →M be a solution of

(6) ht = −gradE(h).

and h(0) = h0.
Assume that for some α ≥ 0 the interpolation inequality

(7) E(h) dist(h, h∗)α ≥ 1 for all h ∈M with E(h) ≤ ε

holds. Then for σ ∈ (1, 1 + 2
α
)

(8)

∫ T

0

E(h(t))σ dt &
∫ T

0

(t−
α

α+2 )σ dt

provided T � dist(h0, h
∗)α+2 and E(h(0)) ≤ ε.

Remark 1. The precise meaning of & and � is the following: For all σ ∈
(1, 1 + 2

α
) there exists a constant C = C(α, σ) such that ∀δ > 0 ∃Cδ = C(α, σ, δ):

(9)

∫ T

0

E(h(t))σ dt ≥ (1− δ)C

∫ T

0

(t−
α

α+2 )σ dt

provided T ≥ Cδ dist(h0, h
∗)α+2.
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Proof of the Proposition is based on ODE arguments of [10] and can be found
in [17].

1.3. Nonlocal Cahn–Hilliard Equation. The equation (2) is a rescaled version
of the model by Giacomin and Lebowitz [8, 9]. We introduce it in original variables
below and, for completeness, present the rescaling needed.

The free energy is given by

E =
1

4

∫
Ω

∫
RN

K(x− y)(ρ(x)− ρ(y))2dxdy +

∫
Ω

fc(ρ(x))dx.

Here K ≥ 0 is a smooth kernel with symmetry K(x) = K(−x). Giacomin and
Lebowitz assume that K is compactly supported, with support contained in Ω.
This assumption is physically quite reasonable, but it is not necessary from math-
ematical point of view. The function fc is a double well potential, symmetric
about 1

2
with minima at 1

2
±m. The mobility function σ is assumed to be smooth,

symmetric about 1
2
, positive on (0, 1),

(GL1) σ(0) = 0 and σ(1) = 0.

Let

f(ρ) = fc(ρ) +

∫
RN K(x)dx

2

(
ρ− 1

2

)2

.

Giacomin and Lebowitz assume that for some c > 0 and for all ρ ∈ (0, 1)

(GL2)
1

c
≤ σ(ρ)f ′′(ρ) ≤ c.

This assumption is needed for existence/uniqueness theory they use (it makes
the equation uniformly parabolic), but is not directly required for the coarsening
estimates.

Under the assumptions above Giacomin and Lebowitz show that for initial
datum 0 < ρ0 < 1, there exists a unique weak solution ρ ∈ L2([0, T ], H1(Ω)) with
ρt ∈ L2([0, T ], H−1(Ω)) for any T > 0. Furthermore 0 < ρ < 1.
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Rescaling. We rescale the dependent variable, the potential, and the mobility
so that the wells of the new potential are 0 and 1. Let

u =
1

2m

(
ρ− 1

2

)
+

1

2

Wm(u) =
1

4m2
fc(ρ) =

1

4m2
fc

(
2m(u− 1

2
) +

1

2

)
µm(u) = σ(ρ) = σ

(
2m(u− 1

2
) +

1

2

)
.

Under this rescaling u solves (2), and is hence a gradient flow of (1).

1.4. Biological Aggregation. Topaz, Bertozzi, and Lewis [18] introduced a
model of biological aggregation that emerges due to ”social forces” between indi-
viduals. That is the individuals are attracted to other individuals of their species,
but avoid overcrowding. The population is modeled by its density u. The velocity
of individuals is modeled as

v = va + vr = ∇(K ∗ u)−∇g(u)

where va = ∇(K ∗ u) is the term attraction to other individuals which are being
sensed through the kernel K. The term modeling repulsion, vr, is given by a local
operator vr = −∇g(u), where g is an increasing function. The continuity equation
then reads:

ut +∇ · (u v) = ut +∇ · (u∇(K ∗ u− g(u))) = 0.

From biological perspective it is reasonable to assume that g′(0) = 0 and g is
strictly convex. However, it is sufficient to assume that

the function g′(z)−
∫

RN

K(x)dx has exactly one zero on R+,

g′(0) <

∫
RN

K(x)dx and lim inf
z→∞

g′(z)−
∫

RN

K(x)dx > 0.

(BA)

Under this assumption u solves (3) for some double well potential W . More
precisely: Let G(z) :=

∫ z

0
g(s)ds and W̃ (z) := G(z) − 1

2

∫
RN K(x)dx z2. The

condition (BA) implies that W̃ is concave at 0, and has exactly one inflection
point. Thus we can define

W (z) := 4

(
W̃ (z)−

(
min
s>0

W̃ (s)

s

)
z

)
.
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Then W is a double well potential on [0,∞) with one well at 0. It follows that

ut −∇ ·
(

u∇
(∫

RN

K(y)dyu−K ∗ u +
1

4
W ′(u)

))
= 0.

which after scaling the time by factor 4 is the equation (3).
On the level of the model, the equation provides information on why herds (or

other animal groups) form, why they have an almost constant density, why they
have sharp boundaries and how they evolve. Numerical simulations conducted in
1D in [18] also observe the coarsening phenomenon. The primary driving force for
coarsening in 1D is the nonlocal interaction via kernel K, as there there are no
surface-tension like effect. The rate of coarsening depends on the decay of K at
∞. Nevertheless the rigorous bounds we prove still apply and are in fact optimal
for certain kernels.

2. Statement of the result

When thinking about coarsening we have in mind an infinite domain on which
coarsening persists for all time. However building the theory for such solutions
poses major challenges. We instead consider domains of finite size and prove
results that are independent of the domain size. In particular we consider the
domain Ω = [0, Λ]N . We investigate the dynamics of periodic configurations
on RN with period cell Ω. Thus we consider Ω with the topology of the torus
RN/(ΛZ)N . In particular the distances on Ω are measured on the torus, and are
thus may be different from the ones measured in RN .

Throughout the paper we use the following, somewhat nonstandard, notation.
For U ⊆ Ω, and a function u

−
∫

U

f(x)dx :=
1

|Ω|

∫
U

f(x)dx and ‖U‖ :=
|U |
|Ω|

.

Let P be the maximal interval containing 1 on which µ > 0:

P = {z : z ≤ 1, µ|[z,1] > 0} ∪ {z : z ≥ 1, µ|[1,z] > 0}.
The configuration space is

M := L1(Ω, P ).

The configurations u are functions defined on Ω, but when convenient we will also
consider them as being periodic functions of RN .

To a configuration, u, we associate energy density

(10) E(u) := −
∫

Ω

∫
RN

(u(x)− u(y))2K(x− y)dxdy +−
∫

Ω

W (u(x))dx.
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If the expression is not defined we say that the energy density is infinite. Condi-
tions on the interaction kernel, K, and the double-well potential, W are described
below.

We assume the following of the interaction kernel K:

(K1) K is nonnegative and K ∈ L1(RN) ∩ C2(RN).

(K2) K(x) = K(−x) for all x ∈ RN . (This condition insures the symmetry of
the interaction term in (10) with respect to x and y.)

(K3) K(0) > 0.

(K4) K ∈ W 2,1(RN) and ‖K‖C2(RN ) < ∞.

The last condition is only needed for the existence theory, [4].
The condition (K3) is not essential either, but significantly simplifies parts of

the presentation. In particular it enables us to associate a length scale to a kernel
in the following way: For r > 0 let

(11) κ(x) :=
1

|B(0, 1)|
χB(0,1)(x) and κr(x) :=

1

rN
κ
(x

r

)
where χU is the characteristic function of the set U . Given r > 0 let hK(r) :=
sup{c : K ≥ cκr}. Note that by assumption (K3), hK(r) > 0 for r small. It is
not hard to prove that hK(r) → 0 as r → 0 and also as r → ∞. Consider the
location of the maximum of hK(r). If there is more than one maximum we pick
the first one. More precisely let

(12) rK := min{rmax | hK(rmax) = max
r>0

hK(r)}.

From this point on, we write HK for hK(rK).
We now turn to conditions on the potential W . Condition on growth of W are

only needed if P is infinite. To be able to precisely state when is a value of u close
to one of the equilibria, we need to fix the average:

a := −
∫

Ω

u(x, 0)dx.

This is relevant when a is itself close to one of the equilibria. To simplify the
presentation, from here onwards, we restrict our attention only to

(13) 0 < a ≤ 1

2
.

We assume:

(W1) W is a nonnegative continuous function.
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(W2) W (0) = W (1) = 0 and W > 0 on P\{0, 1}.
(W3) At least linear growth at ±∞: There exists a constant hW such that

W (z) ≥ hW (z − 1) for all z ∈ P ∩ (9
8
,∞) and W (z) ≥ hW |z| for all

z ∈ P ∩ (−∞,−a
4
). We can furthermore require

hW ≤ W (z) for all z ∈
[
a

4
,
7

8

]
.

We now state the main result; first in a general form. The classes of solutions
of (3) studied in [9] and [4] satisfy the conditions of the theorem and thus the
bounds on coarsening hold. These results are presented in Corollary 3.

Theorem 2. Let Ω = [0, Λ]N . Assume that conditions (K1)-(K3) and (W1)-
W3) hold and that mobility µ(z) ≡ z or that µ ∈ C(P, (0, cµ]). Suppose that
u ∈ Cweak([0,∞, L1(Ω, P )) is a weak solution of

ut +∇ · J = 0

for some flux J ∈ L1(Ω, RN). Assume further that lim supt→0+ E(u( · , t)) � 1
and (13) holds. Assume that energy dissipation inequality holds: For almost all
0 ≤ t1 < t2

(14)

∫ t2

t1

∫
Ω

1

µ(u)
|J |2dxdt ≤ −(E(u(t2))− E(u(t1)).

In the case µ(z) 6≡ z we also need the regularity assumption that u(t) ∈ L2(Ω) for
all t ≥ 0 and that the range of u( · , 0) is contained in P . Then for all σ ∈ (1, 2)
there exists a constant C = C(σ, a,HK , rK , cµ) such that for all T � 1

(15)

∫ T

0

E(u(t))σdt ≥ C

∫ T

0

(
t−

1
3

)σ

dt.

By weak solution we mean that for all φ ∈ C∞
c (Ω× [0,∞))∫∫

[0,∞)×Ω

uφt + J · ∇φ dxdt +

∫
Ω

u(x, 0)φ(x, 0)dx = 0.

Recall that we consider Ω with the topology of a torus, which means that the test
functions used in the definition of a weak solution are also defined on the torus;
in other words they are periodic.
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By Cweak we mean continuous with respect to weak topology of the target space.
Together with the form of the equation this implies that∫

Ω

u(x, t)dx = const.

Note that the dissipation inequality (14) is an equality if u is a classical solution
of the gradient flow (2), when J = −µ(u)∇ δE

δu
.

Corollary 3. Let Ω = [0, Λ]N . Assume that conditions (K1)-(K4) and (W1)-W3)
hold. Assume either of the following holds

(i) µ(z) ≡ z, W ∈ C2([0,∞)) with W ′′ > −4
∫

RN K(y)dy on R+, and u is the
solution of (3) in the sense of [4] with u( · , 0) ∈ L∞(Ω).

(ii) µ(z) ≤ cµ for all z, conditions (GL1) and (GL2) hold, and u is a solution
of (3) in the sense of [9]. Furthermore assume that the range of u( · , 0) is
contained in the interior of P .

(iii) 0 < µ(z) ≤ cµ for all z, (GL2) holds on R and u is a solution of (3) in
the sense of [9]. Furthermore assume that u( · , 0) ∈ L∞(Ω).

Assume that lim supt→0+ E(u( · , t)) � 1 and (13) holds. Then for all σ ∈ (1, 2)
there exists a constant C = C(σ, a,HK , rK , cµ) such that for all T � 1

(16)

∫ T

0

E(u(t))σdt ≥ C

∫ T

0

(
t−

1
3

)σ

dt.

Proof. (of corollary) In the first case the conditions of W imply that associated
g(z) :=

∫
RN K(x)dx + 1

4
W ′(z) is an increasing function. This in turn implies

that the conditions under which Bertozzi and the author [4] proved existence
of solutions of (3) hold. Properties of solutions ensuring that assumptions of
Theorem 2 were also established. This implies the claim of the corollary.

For case (ii) the existence theory needed for Theorem 2 to apply was established
by Giacomin and Lebowitz [9].

The case (iii) is in principle simpler than the case (ii), and includes the constant
mobility case. The only technical issue is that the L∞ bounds used in [9] follow
from condition (GL1). In our case appropriate bounds can be established, for
example as in [4]. �

3. Proof of Theorem 2

We seek to apply the framework of the Proposition 1. However the configuration
space, M, is not a true Riemannian manifold and the only remnant of the gradient



COARSENING IN NONLOCAL INTERFACIAL SYSTEMS 11

flow structure is the energy dissipation inequality (14). Nevertheless arguments
of the proof of the proposition, can be adapted to include this setting. We define
the ”geodesic distance” on M as follows: Given u0, u1 ∈ M let us first define a
representation of admissible paths between u0 and u1:

A(u0, u1) :=
{

(u, J) : u : [0, 1] →M, J ∈ L1(Ω× [0, 1], RN) such that

ut +∇ · J = 0 on Ω× [0, 1] weakly,

u ∈ Cweak([0, 1], L1(Ω)) and u(0) = u0, u(1) = u1, and∫ 1

0

∫
Ω

1

µ(u(x, t))
|J(x, t)|2dxdt < ∞

}
.

We define

(17) d2(u0, u1) := inf
(u,J)∈A

∫ 1

0

∫
Ω

1

µ(u(x, t))
|J(x, t)|2dxdt.

Here 0
0

= 0. We note that d may, in general, be infinite. It follows from the defi-
nition that d satisfies the triangle inequality. This can be shown by concatenating
the appropriate test flows (with optimally rescaled times).

Let u be as in the statement of the theorem. We define

(18) L(t) := d(u(t), a) L(t) :=
1√
|Ω|

d(u(t), a).

In the case µ(u) = u it follows from the characterization of d given below in (19),
that L(t) is finite for all t. In the other case, from the assumption on range of u0

follows that L(0) is finite. To see this it is enough to consider the test pair (ũ, J̃)
with ũ(s) = u0 + s(a−u0) for s ∈ [0, 1] and J̃ = ∇p where p solves −∆p = a−u0.
The fact that L(t) is finite for all t then follows from the argument for continuity
of L given in Lemma 4.

Let

E(t) := E(u(t)).

From (14) we have that E is nonincreasing almost everywhere. We now modify
E on set of measure 0 to insure that it is nonincreasing

Enew(t) = min{lim inf
s→t−

E(s), E(t)}.
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Inspecting the proof of Proposition 1 from [17] shows that in addition to the
interpolation inequality, one only needs the inequality(

dL

dE

)2

≤ − dt

dE

(since E is nonincreasing, L can be considered as a function of E) which follows
from the more familiar form of the dissipation inequality(

dL

dt

)2

≤ −dE

dt

where both inequalities are to be understood as a comparison of measures (with
given densities). The latter inequality in turn follows form the assumption (14).
We prove these claims in Lemmas 4 and 5.

To be able to prove the interpolation inequalities we need a more workable form
of d. In the case µ(u) = u the distance d is nothing else than the Wasserstein
distance. This was shown by Benamou and Brenier [3] (see also Section 8.1 in
Villani’s book [19]):
(19)

dW (u0, u1)
2 = inf

{∫∫
Ω×Ω

|x− y|2dπ(x, y)
∣∣∣ ∫

Ω

dπ(·, y) = u0,

∫
Ω

dπ(x, ·) = u1

}
.

The distance above, |x− y|, is taken on torus Ω.
In the case µ(u) ≤ cµ first note that from the definition of the distance (17)

follows that the distance corresponding to µ(u) is greater than the distance cor-
responding to constant mobility cµ. Thus

Lµ ≥ Lcµ =
1

cµ

L1.

Thus it is enough to establish the interpolation inequality for L = L1. But
for mobility equal to one, the distance is the H−1 norm. More precisely, for
u0, u1 ∈ M ∩ L2(Ω),

∫
Ω

u1 − u0dx = 0 and hence we can consider the following
representation of the H−1 norm

d(u0, u1)
2 = ‖u0 − u1‖2

H−1 =

∫
Ω

|∇p|2dx

where p ∈ H2(Ω) (p is periodic by topology of Ω) is a solution of

−∆p = u1 − u0.
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Proof of this claim is straightforward, it relies on convexity in J of the action
functional on the right hand side of (17), and the observation that J = ∇p, along
with u(t) = u0 + t(u1 − u0), minimizes the action functional. One can also show
that for u ∈M∩ L2(Ω)

(20) L(u) = max
ξ∈H1(Ω), ξ 6≡const.

−
∫

Ω
(u− a)ξdx√
−
∫

Ω
|∇ξ|2dx

.

by using Cauchy-Schwarz inequality to show that ξ = p (with u1 = u and u2 = a)
is the maximizing function. Given that u(t) ∈M∩L2(Ω) for all t we can use this
characterization.

To complete the proof of the theorem now only need the interpolation inequal-
ities established in Section 4.

Lemma 4. Assume that u satisfies the conditions of Theorem 2 and L is defined
in (18). Then L is a continuous function and for almost all t ≥ 0 and h > 0(

L(u(t + h))− L(u(t))

h

)2

≤ −E(u(t + h))− E(u(t))

h
.

Proof. By the assumptions of the theorem u is a distributional solution of

ut +∇ · J = 0 on Ω× [t, t + h].

Moreover it follows from assumption (14) for all t ≥ 0 and all h > 0∫ t+h

t

∫
Ω

1

µ(u)
|J |2dxdt ≤ lim sup

s→0+
E(u(s)) < ∞.

Note that it was also assumed that u ∈ Cweak([t, t + h], L1(Ω)). Thus (u, J), after
appropriate rescaling in time, belongs to A(u(t), u(t+h)). By triangle inequality,

(
L(u(t + h))− L(u(t))

)2 ≤ inf
(ũ,J̃)∈A(u(t),u(t+h))

∫ 1

0

∫
Ω

1

µ(ũ(x, s))
|J̃(x, s)|2 dx ds

≤ h

∫ h

0

∫
Ω

1

µ(u(x, t + s))
|J |2dxds.

Thus L is a continuous function. Dividing the above by h2 and using (14) gives
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that for almost all t ≥ 0 and h > 0:(
L(u(t + h))− L(u(t))

h

)2

≤ 1

h

∫ h

0

∫
Ω

1

µ(u(x, t + s))
|J |2dxds

≤ −E(u(t + h))− E(u(t))

h
.

�

For a function e on R let us define e(t+) := lims→t+ e(s) and e(t−) := lims→t− e(s).

Lemma 5. Let e be a nonnegative, nonincreasing function on [0,∞). Let l be a
continuous function on [0,∞), such that

(21)

(
l(t2)− l(t1)

t2 − t1

)2

≤ −e(t2)− e(t1)

t2 − t1
for almost all t2 > t1 ≥ 0.

Then l(t) is an absolutely continuous function on [0,∞) and for all τ2 > τ1 ≥ 0∫ τ2

τ1

(
dl

dt

)2

dt ≤ e(τ1+)− e(τ2−).

Furthermore, consider t(e) := sup{t : e(t) ≥ e}, the ”inverse” of the function e
and l(e) := l(t(e)). Then(

l(e2)− l(e1)

e2 − e1

)2

≤ −t(e2)− t(e1)

e2 − e1

for all e(0) ≥ e1 > e2 ≥ 0.

Consequently l is an absolutely continuous function of e and for all e(0) ≥ e1 >
e2 ≥ 0 ∫ e1

e2

(
dl

de

)2

de ≤ t(e2+)− t(e1−).

Proof. If e(0) = 0 the proof is trivial. So assume e(0) > 0. Continuity of l implies
that (

l(t2)− l(t1)

t2 − t1

)2

≤ −e(t2−)− e(t1+)

t2 − t1
all t2 > t1 ≥ 0.

Let ε > 0. Let δ := ε2/e(0). Let [xi, yi] for i = 1, . . . ,m be a family of disjoint
intervals on [0,∞) of total length less than δ:

m∑
i=1

yi − xi < δ.
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Then
m∑

i=1

|l(yi)− l(xi)| ≤
m∑

i=1

√
e(xi)− e(yi)

√
yi − xi

≤

√√√√ m∑
i=1

e(xi)− e(yi)

√√√√ m∑
i=1

yi − xi

≤
√

e(0)
√

δ = ε.

So l is absolutely continuous.
To prove the second claim note that for any h > 0∫ τ2

τ1

(
l(t + h)− l(t)

h

)2

dt ≤
∫ τ2

τ1

e(t+)− e(t + h−)

h
dt

≤ 1

h

(∫ τ1+h

τ1

e(t+)dt−
∫ τ2+h

τ2

e(t−)dt

)
.

By taking the lim infh→0 and using the Fatou’s lemma we obtain∫ τ2

τ1

(
dl

dt

)2

dt ≤ e(τ1+)− e(τ2+).

Now use this claim on interval (τ1, τ2 − ε) and take the limit as ε → 0.

To prove the remaining claims, note that

(l(t(e2))− l(t(e1)))
2 ≤ (e(t(e2)−)− e(t(e1+))(t(e2)− t(e1)).

Observing that e(t(e2)−) ≥ e2 and e(t(e1)+) ≤ e1 yields the desired inequality.
The claims then follow from the arguments presented above. �

4. Interpolation inequalities

In this section we prove the interpolation inequalities needed. As shown in
Section 3 we only need to consider the L corresponding Wasserstein distance (19)
and to H−1 norm (20).

The proof we present is general and extends to local energies, which we discuss
in Subsection 4.1. It also captures the improved constants established in [5], see



16 DEJAN SLEPČEV

Remark 2. It is based on simple geometric heuristic. Consider function ũ with
range {0, 1}, and κr ∗ ũ, its average over ball of radius r. Then for r small∫

|ũ− κr ∗ ũ|dx

contains information about the interfacial area, while for r large it carries infor-
mation on the distance d(ũ, a). This allows us to interpolate between energy and
the distance. We divided the proof into steps and present the motivation at their
beginning.

Theorem 6 (Interpolation inequality). Let 0 < a ≤ 1
2
. Assume K satisfies

conditions (K1)-(K3) and W satisfies (W1)-(W3). There exists a constant C =
C(a, hW , rK , HK) > 0 such that for all Λ > 0 and all configurations u ∈ M for

which E(u) < a
64

(
hW

1+hW

)
HK, and in the H−1 case also E(u) < 1

2N+2
ahW

20
HK, the

following holds

(22) E(u)L(u) ≥ C.

The constant C = c(N)rK

(
hW

1+hW

)
a3/2HK.

Proof. Step 1: Reduction. Let κrK
be as defined by (11) and (12). We use the

notation κr := κrK
. To make the distinction between energies, let EK and Eκr

be the energy densities corresponding to kernels K and κr respectively. Note that
EK ≥ HKEκr . So it is enough to show the above claim for κr, with rK = r and
HK = 1. Therefore from here on we only consider K = κr.

Step 2: u is separated into phases. We show that any low-energy-density
configuration, u, has significant portion of the mass on the set where values of u
are close to 1. More precisely:

Claim. Let A := {x : u(x) ≥ 7
8
} and ũ := χA. For future reference let

A := {x : u(x) < a
4
} and let I be the interfacial region, I := Ω\(A∪A). Assume

E(u) < 3
32

ahW . Then

(23) ‖A‖ =
|A|
|Ω|

= −
∫

Ω

ũ(x)dx >
1

2
−
∫

Ω

u(x)dx =
a

2
and ‖A‖ ≤ 2a.

Proof. Due to assumption (W3)

E(u) ≥ hW

(∥∥∥∥{a

4
< u ≤ 7

8

}∥∥∥∥+

∥∥∥∥{9

8
< u

}∥∥∥∥)



COARSENING IN NONLOCAL INTERFACIAL SYSTEMS 17

Consequently

a = −
∫

Ω

udx = −
∫
{u≤a

4
}
udx +−

∫
{a

4
<u≤ 7

8
}
udx +−

∫
{ 7

8
<u≤ 9

8
}
udx +−

∫
{ 9

8
<u}

udx

≤ a

4
+

7

8

∥∥∥∥{a

4
< u ≤ 7

8

}∥∥∥∥+
9

8
−
∫

Ω

ũdx +

∥∥∥∥{9

8
< u

}∥∥∥∥+
1

hW

−
∫
{ 9

8
<u}

W (u)dx

≤ a

4
+

E

hW

+
9

8
−
∫

Ω

ũdx +
E

hW

<
a

4
+

3a

16
+

9

8
−
∫

Ω

ũdx.

Therefore −
∫

Ω
ũdx > a

2
.

To prove the second claim, note

a = −
∫

Ω

u(x)dx ≥ 7

8
‖A‖+−

∫
{−a

4
≤a<0}

u(x)dx +−
∫
{u<−a

4
}
u(x)dx

≥ 7

8
‖A‖ − a

4
− 1

hW

−
∫

Ω

W (u(x))dx

≥ 7

8
‖A‖ − a

4
− E

hW

≥ 7

8
‖A‖ − a

2
.

�

Step 3: Energy bounds a measure of interfacial area.
Claim:

−
∫

Ω

|ũ− κr ∗ ũ|dx ≤
(

16

9
+

2

hW

)
E.

Heuristically, the expression on the left-hand side measures r times the area of
the boundary of {ũ = 1}, while neglecting features of size less than r.
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Proof. We use the following notation for the sum of sets X + Y := {x + y | x ∈
X, y ∈ Y }. Using that ũ takes only values 0 and 1 we obtain:

−
∫

Ω

∣∣∣ũ(x)−
∫

RN

κr(x− y)ũ(y)dy
∣∣∣dx

= −
∫

Ω

∫
RN

|ũ(x)− ũ(y)|κr(x− y)dydx

≤ 1

|Ω|

[ ∫
A

∫
A+ΛZN

+

∫
A

∫
A+ΛZN

|ũ(x)− ũ(y)|2κr(x− y)dydx+∫
I

∫
RN

+

∫
Ω

∫
I+ΛZN

κr(x− y)dydx
]

≤
(

3

4

)−2

−
∫

Ω

∫
RN

|u(x)− u(y)|2κr(x− y)dydx + 2

∥∥∥∥{a

4
≤ u ≤ 7

8

}∥∥∥∥
≤
(

16

9
+

2

hW

)
E.

�

Step 4. Claim. φ : (0,∞) → [0,∞) defined by

φ(s) := −
∫

Ω

|ũ− ũ ∗ κs|dx

is subadditive.

One should note that some other possible measures of surface area (for example
the volume of appropriate tubular neighborhood) do not have this property in
general and may have a superlinear growth (for appropriate range of r).

Proof. Let s = p + q for some p, q > 0. As in Step 3 we have

φ(s) = −
∫

Ω

∫
RN

|ũ(x)− ũ(y)|κs(y)dydx.

Now let z = x− p
s
y. Using periodicity and the scaling properties of kernel κs one

finds

φ(s) ≤ −
∫

Ω

∫
RN

(|ũ(x)− ũ(z)|+ |ũ(z)− ũ(y)|)κs(y)dydx

= −
∫

Ω

∫
RN

|ũ(x)− ũ(x− p

s
y)|κs(y)dydx +−

∫
Ω

∫
RN

|ũ(z)− ũ(z − q

s
y)|κs(y)dydz
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substitute ỹ = p
s
y in the first integral and ỹ = q

s
y and x = z in the second

= −
∫

Ω

∫
RN

|ũ(x)− ũ(ỹ)|κp(ỹ)dỹdx +−
∫

Ω

∫
RN

|ũ(x)− ũ(ỹ)|κq(ỹ)dỹdx

= φ(p) + φ(q)

�

Step 5. κl ∗ ũ ∼ ũ for some l of size 1
E

. More precisely

Claim. Let µ > 2 be a constant, which we will specify later. If E < a
µ

(
hW

1+hW

)
then for

(24) l =

⌊
a

µ

(
hW

1 + hW

)
1

E

⌋
r =: i r

the following holds

(25) φ(l) = −
∫

Ω

|ũ− κl ∗ ũ| dx <
2

µ
a.

Proof. Assumption on E implies that l > 1
2

a
µ

(
hW

1+hW

)
1
E

r > 0. Subadditivity of

φ established in Step 4. and the bound of Step 3. imply

−
∫

Ω

|ũ−κl ∗ ũ| dx ≤ i−
∫

Ω

|ũ−κr ∗ ũ| dx ≤
⌊

a

µ

(
hW

1 + hW

)
1

E

⌋
2

(
1 +

1

hw

)
E ≤ 2

µ
a.

�

Step 6. If for some l > 1,

κl ∗ ũ ∼ ũ then L & l.

More precisely:
Claim. Set µ = 64. There exists a constant c, depending only on dimension,

N , and on a, such that for any l > 1:

(26) If −
∫

Ω

|ũ− κl ∗ ũ| dx <
2

µ
a then L > cl.

We split the proof of this claim in four parts. First we establish two auxiliary
claims. Then we prove the claim (26) for the Wasserstein metric case and for the
H−1 metric case separately.

Step 6a. Let Al := {x ∈ Ω : ũ ∗ κl > 7
8
}. If

−
∫

Ω

|ũ− κl ∗ ũ| dx <
2

µ
a
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Then

(27) ‖Al‖ >
µ− 32

2µ
a.

By the assumption

2

µ
a > −

∫
Ω

|ũ− κl ∗ ũ| dx ≥ −
∫

A\Al

1

8
dx =

1

8
‖A\Al‖.

From (23) we have ‖A‖ > a
2
. Combining the two inequalities gives

‖Al‖ ≥ ‖A‖ − ‖A\Al‖ >

(
1

2
− 16

µ

)
a.

Remark. From this point on the proof does not require the closeness of ũ
and κl ∗ ũ explicitly, rather it only uses the fact that Al is large, as described by
(27). That is we only need that after ũ is averaged over radius l it still has well
developed interfaces.

Step 6b. Significant subset of Al can be well approximated by balls of radius
l. More precisely:

Claim. Set µ = 64. There exists a finite subset, J , of Al such that for Aball =
∪x∈JB(x, l):

(28)
8

7
‖Aball ∩ A‖ ≥ ‖Aball‖ >

1

2N+2
a.

This claim is has its roots in [5], see also [17]. Let J be a maximal family of
points in Al such that balls in {B(x, l)}x∈J are disjoint. Then Al ⊂ ∪x∈JB(x, 2l),
by definition. Therefore, using (27)

‖Aball‖ ≥
1

2N
‖Al‖ >

1

2N+2
a.

Since J ⊂ Al, for all x ∈ J we have that

7

8
≤ kl ∗ ũ(x) ≤ |B(x, l) ∩ A|

|B(x, l)|
Summing over x ∈ J gives the first inequality.

Step 6c (Wasserstein). Let γ =
(

9
8

)1/N − 1. For set U , and λ ≥ 0 let

Uλ := {x ∈ Ω : dist(x, U) ≤ λ}.



COARSENING IN NONLOCAL INTERFACIAL SYSTEMS 21

Let λ = γl. Using that u ≥ 0 and Lemma 8

L
2

=
dWass(u, a)2

|Ω|
≥ λ2

(
−
∫

Aball

u(x)dx− a‖Aλ
ball‖

)
≥ λ2

(
7

8
‖A ∩ Aball‖ − a

(
1 +

λ

l

)N

‖Aball‖

)

≥ γ2l2
(

49

64
− 1

2
(1 + γ)N

)
‖Aball‖

≥ γ2 1

5

1

2N+2
a l2.

Combining the conclusions of Steps 5 and 6 now proves the interpolation in-
equality (22). In particular

L ≥ c(N)r

(
hW

1 + hW

)
a3/2 1

E
.

Step 6d (H−1) Assume E < 1
20

1
2N+2 ahw. To obtain a lower bound on L, given

by (20), we first build a local test function. For γ > 1 to be determined, let
η : [0,∞) → [0, 1] be defined by

η(z) :=


1 if z ∈ [0, l]
l − z−l

γl−l
if l < z < γl

0 if γl ≤ z.

Let ξ̄(x) := η(|x|). This is the local test function. Assume, for the moment, that
0 ∈ Al. Let û(x) := max

{
u(x),−a

4

}
. Then

(29)

∫
B(0,γl)

|∇ξ̄|2dx = (γN − 1)|B(0, l)| 1

(γ − 1)2l2
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Also∫
B(0,γl)

(û− a)ξ̄dx

≥ 7

8
|A ∩B(0, l)| − a

4

(
|B(0, l)\A|+ (γN − 1)|B(0, l)|

)
− aγN |B(0, l)|

≥

((
7

8

)2

− a

32
− a(γN − 1)

4
− aγN

)
|B(0, l)|

Let us now set γ =
(

8
7

)1/N
. Then

(30)

∫
B(0,γl)

(û− a)ξ̄dx ≥ 3

20
|B(0, l)|.

Now let us construct the (global) test function on Ω. Let

ξ(x) = sup
y∈J

ξ̄(x− y).

Using (29), (23), and (28) one obtains

(31) −
∫

Ω

|∇ξ|2dx ≤ γN − 1

(γ − 1)2l2
‖Aball‖ ≤

a

(γ − 1)2l2
.

Using that balls of radius l centered at points in J are disjoint we obtain

−
∫

Ω

(u− a)ξdx ≥ −
∫

Ω

(û− a)ξdx +−
∫
{u<−a

4
}
udx

≥ 3

20
‖Aball‖ −

1

hW

−
∫

Ω

W (u)dx

≥ 3

20

1

2N+2
a− E

hw

≥ 1

10

1

2N+2
a.

Here we used the assumption E < 1
20

1
2N+2 ahw. Therefore

L ≥
−
∫

Ω
(u− a)ξdx√
−
∫

Ω
|∇ξ|2dx

≥ c̃(N)
√

al.
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The definition of l now implies

L ≥ c(N)r

(
hW

1 + hW

)
a3/2 1

E

which proves the interpolation inequality. �

Remark 2. In the case N = 2, one can obtain a sharper result with respect to
scaling in a (as a → 0+) by considering more carefully constructed test functions.
This was done for the Mullins–Sekerka evolution by Conti, Niethammer, and Otto
in [5]. In particular if γ is taken of size a−1/2, and on [l, cl], we replace the linear
η by the optimal one, η(z) = (ln γl − ln z)/ ln γ. By using such test function one
obtains that

L ≥ c(N)r

(
hW

1 + hW

)
a3/2| ln a|1/2 1

E
.

4.1. Interpolation inequalities for the local energy. Let us now consider the
case of the local energy density:

(32) E(u) := −
∫

Ω

1

2
|∇u(x)|2 + W (u(x))dx.

The method developed in the proof of Theorem 6 applies to the local energy
with minor modifications.

Corollary 7 (Interpolation inequality). Let 0 < a ≤ 1
2
. Assume W satisfies

(W1)-(W3). There exists a constant C = C(a, hW ) > 0 such that for all Λ > 0

and all configurations u ∈ M for which E(u) < a
64

(
hW

1+hW

)
, and in the H−1 case

also E(u) < 1
2N+2

ahW

20
, the following holds

(33) E(u)L(u) ≥ C.

The constant C = c(N)
(

hW

1+hW

)
a3/2.

Proof. Note that Step 1 is not needed, while the estimate of Step 2 only used the
W term which is the same for both the local and the nonlocal energy. The main
fact we need to check is statement of Step 3, which we prove below for r2 = 1

2
.

Steps 4, 5, and 6 do not require any modifications.
To prove that

−
∫

Ω

|ũ− κr ∗ ũ|dx ≤
(

16

9
+

2

hW

)
E
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with r2 = 1
2

we begin as in Step 3 of Theorem 6:

−
∫

Ω

∣∣∣ũ(x)−
∫

RN

κr(x− y)ũ(y)dy
∣∣∣dx

≤
(

3

4

)−2

−
∫

Ω

∫
RN

|u(x)− u(y)|2κr(x− y)dydx + 2

∥∥∥∥{a

4
≤ u ≤ 7

8

}∥∥∥∥
≤ 16

9
−
∫

Ω

1

|B(x, r)|

∫
B(x,r)

|u(x)− u(y)|2dydx +
2

hW

E.

It remains to further estimate the first term:

−
∫

Ω

1

|B(x, r)|

∫
B(x,r)

|u(x)− u(y)|2dydx

≤ −
∫

Ω

1

|B(0, r)|

∫
B(x,r)

|x− y|2
∣∣∣∣∫ 1

0

∇u(x− s(x− y))ds

∣∣∣∣2 dydx

≤ 1

2
−
∫

Ω

1

|B(0, r)|

∫
B(0,r)

∫ 1

0

|∇u(x− sz)|2dsdzdx

≤ 1

2

1

|B(0, r)|

∫
B(0,r)

∫ 1

0

2Edsdz = E.

�

5. Appendix

5.1. A property of Wasserstein distance. The following lemma is analogous
to Lemma 5 in [17]: We state it in large generality, the reason being that we want
to consider Ω with metric from the torus RN/(ΛZ)N . In applications σ is the
Labesgue measure.

Lemma 8. Let (Ω, d, σ) be a metric space endowed with finite measure σ. Let
u ∈ L1(Ω) be a nonnegative function with average a := −

∫
Ω

u(x)dσ(x). Let A ⊂ Ω

measurable, and let Al := {x ∈ Ω : d(x, A) ≤ l}. Then

d2
Wass(u, a) ≥ l2

(∫
A

u(x)dσ(x)− aσ(Al)

)
.

Proof. We use the definition of Wasserstein distance. Let π be an admissible
transportation plan, that is a measure on Ω × Ω with marginals u(x)dσ(x) and
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aσ(y). Then∫
Ω×Ω

|x− y|2dπ(x, y) =

∫
A×(Ω\Al)

|x− y|2dπ(x, y)

≥ l2 π(A× (Ω\Al))

≥ l2(π(A× Ω)− π(Ω× Al))

= l2
(∫

A

u(x)dσ(x)−
∫

Al

adσ(y)

)
= l2

(∫
A

u(x)dσ(x)− aσ(Al)

)
.

�
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