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Abstract. In a previous article (see [BFM]) the authors studied a model of nonlinear membrane where the external surface loading

induces a density of bending moment. Due to the special form of the applied surface forces, the emerging Cosserat vector, resulting

from the 3D-2D dimension reduction, was restricted to a class of two dimensional functions. In this paper the full 3D dependence of

the Cosserat vector is analyzed via Γ-convergence techniques.
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1. Introduction.

In a previous article (see [BFM]) the authors studied a model of nonlinear membrane where the external
surface loading induces a density of bending moment. Due to the special form of the applied surface forces,
the emerging Cosserat vector, result of the 3D-2D dimension reduction, was restricted to a class of two
dimensional functions. In this paper we analyze the more general case where the Cosserat vector depends
also on the thickness variable. In order to detail our main result, relating it with the one in [BFM], we will
use the same notations.

Let ω be an open bounded subset of R2 and let I be the interval (−1/2, 1/2). Define Ω := ω × I,
Σ± := ω × {±1/2}, Γ := ∂ω × I and, for each ε > 0, Ωε := ω × εI, Σ±ε := ω × {±ε/2}, Γε := ∂ω × εI.

In what follows LN stands for the N -dimensional Lebesgue measure in RN , N = 2, 3, and H2 denotes the
2-dimensional Hausdorff measure in R3. Greek indexes will be used to distinguish the first two components
of a tensor, for instance (xα) and (xα, x3), designates (x1, x2) and (x1, x2, x3), respectively.

We write R3×2 to denote the vector space of 3× 2 real-valued matrices, and for F ∈ R3×2 and b ∈ R3, let
(F |b) denote the 3× 3 matrix whose first two columns are those of F and the last one is b.

Consider the rescaled total energy of a deformation U : x̃ ∈ Ωε 7→ U(x̃) ∈ R3,

1
ε

∫

Ωε

W (DU) dx̃ − < Fε , U >,

where DU = (DαU |D3U) is the strain of the deformation U ∈ W 1,p(Ωε;R3), W satisfies some suitable
growth hypotheses (see (H)) and Fε represents the external loading. The key point in [BFM] is that we used
an external surface loading of the kind (for simplicity we will not consider bulk loads)

Fε :=
1
ε

g( H2bΣ+
ε −H2bΣ−ε ), (1.1)

with g ∈ Lp′(ω;R3) and p′ = p/(p− 1) for a fixed p such that 1 < p < +∞, and where the scaling factor ε−1

enhances the role of the Cosserat vector field as described bellow.



Let W 1,p
Γε

(Ωε;R3) (respectively W 1,p
Γ (Ω;R3)) denote the space of functions in

W 1,p(Ωε;R3) (respectively W 1,p(Ω;R3)) that vanish on Γε (respectively on Γ). Assuming that the defor-
mations of the body satisfy a boundary condition of place on Γε, the equilibrium problem under the load Fε

given in (1.1) can be formulated as the minimization problem

inf
U−x̃∈W 1,p

Γε
(Ωε;R3)

{
1
ε

∫

Ωε

W (DU) dx̃ − < Fε, U >

}
. (1.2)

In the sequel we will assume that the potential W is a Borel function satisfying the following p-growth and
coercivity conditions

(H)
1
C
|ξ|p − C ≤ W (ξ) ≤ C(1 + |ξ|p),

for some C > 0 and for all ξ ∈ R3×3.
The existence of a solution for problem (1.2) may be obtained via the Direct Method of the Calculus of

Variations under the additional hypothesis that W is quasiconvex, i.e. it satisfies

W (ξ) ≤ 1
LN (D)

∫

D

W (ξ + Dψ) dx,

for all ξ ∈ R3×3 and for all ψ ∈ W 1,∞
0 (D;R3), where D is any open bounded domain of R3 such that

L3(∂D) = 0.

In order to transform the problem (1.2) from the thin, varying domain Ωε, into the fixed domain Ω, we

perform the usual change of variables that to each x̃ = (x̃α, x̃3) ∈ Ωε associates x = (xα, x3) =
(
x̃α,

1
ε
x̃3

)
∈

Ω, and define u, u± and u0,ε by

u
(
xα, x3

)
:= U(x̃α, x̃3) , u±(xα) := u

(
xα,±1

2

)
, u0,ε(xα, x3) := (xα, εx3).

Taking into account (1.1), we may rewrite (1.2) as

(Pε) inf
u−u0,ε∈W 1,p

Γ (Ω;R3)

{∫

Ω

W

(
Dαu

∣∣∣ 1
ε
D3u

)
dx − Lε(u)

}
,

where now the work Lε(u) of the external surface loads is given by

Lε(u) :=
∫

ω

g

(
u+ − u−

ε

)
dxα =

∫

ω

g

(∫

I

1
ε
D3uε

)
dxα.

Defining bε :=
1
ε
D3uε, one easily sees that, due to the loading forces, only the weak limit of the mean

bε :=
∫

I

bε plays a role in the limit problem.

In [BFM], to describe the limit problem we proved that the Γ-limit with respect to the weak topology of
the corresponding stored energy

Eε(u, b̄) :=

{∫
Ω

W (Dαu | 1εD3u) dx if 1
ε

∫
I
D3u(xα, x3) dx3 = b(xα),

+∞ otherwise,

with (u, b) ∈ W 1,p(Ω;R3)× Lp(ω;R3), has the form

E(u, b̄) :=

{∫
ω
Q∗W (Dαu | b̄)dxα , if (u, b̄) ∈ V × Lp(ω;R3),

+∞ otherwise,
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where V := {u ∈ W 1,p(Ω;R3) | D3u(x) = 0 a.e. in x ∈ Ω}, and where Q∗W introduced in [BFM] by the
equality (A.1) (see Appendix), coincides with the cross-quasiconvex envelop of W , used in [FKP] (see also
[LDR] ; the detailed argument may be found in the Appendix), precisely

Q∗W (F |b) = inf
(ϕ,ψ)

{∫

Q′
W (F + Dαϕ|b + ψ) dxα : ϕ ∈ W 1,p

0 (Q′;R3), ψ ∈ Lp
0(Q

′;R3)
}

, (1.3)

for F ∈ R3×2 and b ∈ R3, where Q := (−1/2, 1/2)3, Q′ := (−1/2, 1/2)2, Lp
0(Q

′;R3) is the subspace of
Lp(Q′;R3) of functions with null mean. In view of the upper bound in (H), it can be shown that (1.3)
remains unchanged if the condition ϕ ∈ W 1,p

0 (Q′;R3) is replaced by ϕ ∈ W 1,p
# (Q′;R3), the subscript # in

W 1,p
# (Q′;R3) indicating the subspace of Q′-periodic functions in W 1,p(Q′;R3).

We remark that the description of the limit energy in terms of the 2D deformation u(xα) and adittionally
of the mean Cosserat vector b̄(xα), the bending moment, given in [BFM] is more precise than the one given
in the usual membrane models. However, this still does not give insight into the limit energy in the case
where the Cosserat vector field b may also depend on the x3 variable. In this note we seek to characterize
the Γ-limit of the sequence of internal energy functionals independently of the applied forces. We study
the asymptotic behavior of the sequence with respect to u and to the Cosserat vector b, instead of its
mean with respect to the thickness of the membrane, the bending moment b. Precisely, in Theorem 2.3
we present an integral representation of the Γ-limit, with respect to the weak topology, of the functional
Iε : W 1,p(Ω;R3)× Lp(Ω;R3) → R defined by

Iε(u, b) :=

{∫
Ω

W (Dαu | 1εD3u) dx if 1
εD3u = b,

+∞ otherwise.
(1.4)

In spite of the particular case analyzed in Proposition 2.4 (see also Remark 2.5), we conjecture that, in
general, the limit functional is non local. This is an interesting open problem.

In Section 2 we state the main result whose proof is developed in Section 3.

2. Main result.

As it is usual, we localize the functionals Iε introduced in (1.4). Representing by A(ω) the family of all
open subsets of ω, define Iε : W 1,p(Ω;R3)× Lp(Ω;R3)×A(ω) → R by

Iε(u, b, A) :=

{∫
A×I

W (Dαu | 1εD3u) dx if 1
εD3u = b on A× I,

+∞ otherwise.

We are interested in the integral representation of the following functional, defined for (u, b, A) ∈
V × Lp(Ω;R3)×A(ω) by

I(u, b, A) := inf
{

lim inf
n

∫

A×I

W (Dαun |λn D3un) dx | un ⇀ u in w - W 1,p(A× I;R3),

λn → +∞, λnD3un ⇀ b in w - Lp(A× I;R3)
}

.

(2.1)

Finding an integral representation of I independent of the sequence {λn} corresponds to determining the
Γ-limit of the sequence {Iε} introduced above, with respect to the weak topology of W 1,p(Ω;R3)×Lp(Ω;R3).

Fix a countable dense family {θi}i∈N in Lp′(I;R3), where p′ is the conjugate exponent of p. For every
k ∈ N and (F, b) ∈ R3×2 × Lp(I;R3) define Q := (−1/2, 1/2)3, Q′ := (−1/2, 1/2)2,

Q∞W (F |b) := sup
k
QkW (F |b) (2.2)
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where

QkW (F |b) := inf
(ϕ,λ)

{∫

Q

W (F + Dαϕ| λ D3ϕ) dx | λ > 0 , ϕ ∈ W 1,p(Q;R3), ϕ(·, x3) is

Q′ periodic a.e. x3 ∈ I ,

∣∣∣∣
∫

Q

λD3ϕ θi dx−
∫

I

b θi dx3

∣∣∣∣ <
1
k

, ∀ i = 1, · · · , k
}

.

(2.3)

Remark 2.1. Let us emphasize that Q∞W (F, ·) is a functional defined in Lp(I,R3). We conjecture that,
in general, this functional is non local in the sense that it does not exist any integrand W̃ so that

Q∞W (F, b) =
∫

I

W̃ (F, b(x3)) dx3. (2.4)

Notice that (2.4) would imply that Q∞W (F, b(·)) is completely determined by its restriction to constant
functions. In fact, this is the case if the initial energy density W is cross-quasiconvex (see Proposition 2.4
bellow). Finding an explicit counter example to (2.4) is a challenging problem.

The main theorem of this paper is

Theorem 2.2. Let W be a Borel function satisfying hypothesis (H). Then

I(u, b, A) =
∫

A

Q∞W (Dαu(xα)|b(xα, ·)) dxα

for every (u, b) ∈ V × Lp(Ω;R3).

Remark 2.3. We observe that, in view of (H), we may assume, without loss of generality, that W is
quasiconvex. As we will see in Proposition 2.6, denoting the quasiconvex envelop of W by QW (see [D] for
the definition), we get

Q∞W (F |b) = Q∞(QW )(F |b).
Also in (2.2) the definition of I(u, b, A) remains unchanged if we replace the integrand W by QW (see
Proposition 2.7). Therefore, since a quasiconvex function with p-growth is p-Lipschitz (see [M]), in the sequel
we may assume that

|W (ξ)−W (ξ′)| ≤ C (1 + |ξ|p−1 + |ξ′|p−1)|ξ − ξ′| (2.5)

for some C > 0 and for all ξ, ξ′ ∈ M3×3.

Proposition 2.4. The following inequality holds

∫

I

Q∗W (F |b(x3)) dx3 ≤ Q∞W (F |b) ≤
∫

I

W (F |b(x3)) dx3,

for (F, b) ∈ R3×2 × Lp(I;R3). Consequently, if W is cross-quasiconvex (Q∗W = W ) then

Q∞W (F |b) =
∫

I

W (F |b(x3)) dx3.

Proof. To see that Q∞W (F |b) ≤ ∫
I
W (F |b(x3)) dx3, it suffices to take ϕ(x3) :=

1
λ

∫ x3

0

b(s) ds as test

function in the definition (2.3).
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To prove the other inequality, let k ∈ N and let (ϕ, λ) denote an arbitrary admissible pair for the infimum
in (2.3). Since Q∗W is given by (1.3), we have

QkW (F |b) = inf
(ϕ,λ)

∫

Q

W (F + Dαϕ| λ D3ϕ) dx

= inf
(ϕ,λ)

∫

I

[∫

Q′
W

(
F + Dαϕ(xα, x3)

∣∣∣ λ

∫

Q′
D3ϕ dyα +

(
λD3ϕ− λ

∫

Q′
D3ϕ dyα

))
dxα

]
dx3

≥ inf
(ϕ,λ)

∫

I

Q∗W
(

F
∣∣∣ λ

∫

Q′
D3ϕ

)
dx3

≥ inf
c∈Lp(I;R3)

∫

I

Q∗W (F | c) dx3,

(2.6)
where c satisfies ∣∣∣∣

∫

I

c θi dx3 −
∫

I

b θi dx3

∣∣∣∣ ≤
1
k

, ∀ i = 1 · · · k. (2.7)

Using (2.6) and (2.7), we associate to each k a function ck ∈ Lp(I;R3) satisfying

QkW (F |b) ≥
∫

I

Q∗W (F | ck) dx3 − 1
k

(2.8)

and ∣∣∣∣
∫

I

ck θi dx3 −
∫

I

b θi dx3

∣∣∣∣ ≤
1
k

, ∀ i = 1 · · · k. (2.9)

In view of hypothesis (H) the cross-quasiconvex envelope of W , Q∗W , is also coercive (see [BFM] or
[LDR]) and therefore {ck} is a bounded in Lp(Ω;R3) and, in view of (2.9), it converges weakly in Lp(Ω;R3)
to b. From the definition of Q∞W , from the convexity of Q∗W with respect to its second variable and from
the lower semicontinuity of convex functionals, one obtains, from (2.8)

Q∞W (F |b) ≥ lim inf
k

∫

I

Q∗W (F | ck) dx3 ≥
∫

I

Q∗W (F | b) dx3,

and this completes the proof.

Remark 2.5. If W is cross-quasiconvex, then we conclude, from Theorem 2.2 and Proposition 2.4, that

I(u, b, A) =
∫

A×I

W (Dαu(xα)|b(x)) dx.

We end this section by proving the two properties mentioned in Remark 2.3 and related to the invariance
of the asymptotic energy with respect to the quasiconvexification of the bulk energy.

Proposition 2.6. Let QW represent the quasiconvex envelop of W . Then

Q∞W (F |b) = Q∞(QW )(F |b). (2.10)

Proof. In order to obtain (2.10) it is enough to prove that for each k ∈ N
QkW (F |b) = Qk(QW )(F |b).

Since W ≥ QW it follows that QkW (F |b) ≥ Qk(QW )(F |b). To obtain the opposite inequality we use
the Relaxation Theorem (see [AF]) to guarantee, for a fixed pair (ϕ, λ) admissible for Qk(QW )(F |b)), the
existence of a sequence {ϕn} weakly converging in W 1,p(Q;R3) to ϕ and satisfying

∫

Q

QW (F + Dαϕ| λ D3ϕ) dx = lim
n

∫

Q

W (F + Dαϕn| λ D3ϕn) dx.
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Making use of hypothesis (H) and of the Decomposition Lemma (see [FMP]), up to a subsequence (not
relabeled) we may write ϕn = vn + wn, where vn ⇀ ϕ weakly in W 1,p(Q;R3), {|∇vn|p} is equi-integrable
and the Lebesgue measure of {wn 6= 0} converges to zero. It follows that

∫

Q

QW (F + Dαϕ| λ D3ϕ) dx ≥ lim sup
n

∫

Q

W (F + Dαvn| λ D3vn) dx

.
For each j ∈ N, let ψj ∈ C∞c (Q′, [0, 1]) be a cutt-off function such that ψj → 1 in Lp(Q′;R3) and define

vj,n := ψjvn + (1 − ψj)ϕ. We have vj,n(·, x3) Q′periodic and, due to the equi-integrability of {|∇vn|p} and
hypothesis (H), we easily obtain that

lim sup
j

lim sup
n

∫

Q

W (F + Dαvj,n| λ D3vj,n) dx ≤
∫

Q

QW (F + Dαϕ| λ D3ϕ) dx (2.11)

and

lim
j

lim
n

∣∣∣∣
∫

Q

λD3vj,n θi dx−
∫

I

b θi dx3

∣∣∣∣ =
∣∣∣∣
∫

Q

λD3ϕ θi dx−
∫

I

b θi dx3

∣∣∣∣ <
1
k

, ∀ i = 1, · · · , k. (2.12)

In view of (2.11) and (2.12) we may find a sequence n = n(j) such that

lim sup
j

∫

Q

W (F + Dαvj,n(j)| λ D3vj,n(j)) dx ≤
∫

Q

QW (F + Dαϕ| λ D3ϕ) dx (2.13)

and ∣∣∣∣
∫

Q

λD3vj,n(j) θi dx−
∫

I

b θi dx3

∣∣∣∣ <
1
k

, ∀ i = 1, · · · , k.

Since all vj,n(j) are admissible for QkW (F |b), we deduce from (2.13) that

∫

Q

QW (F + Dαϕ| λ D3ϕ) dx ≥ QkW (F |b) (2.14)

and, taking the infimum in all the admissible pairs (ϕ, λ) on the left hand side of (2.14), we obtain
Qk(QW )(F |b) ≥ QkW (F |b), and this completes the proof.

Proposition 2.7. The infimum in (2.2) remains unchanged if W is replaced by its quasiconvex envelope
QW .

Proof. Fix (u, b, A) ∈ V × Lp(A× I;R3)×A(ω) and define

Ĩ(u, b, A) := inf
{

lim inf
n

∫

A×I

QW (Dαun |λn D3un) dx | un ⇀ u in w - W 1,p(A× I;R3),

λn → +∞, λnD3un ⇀ b, in w - Lp(A× I;R3)
}

.

We show that Ĩ(u, b, A) = I(u, b, A).
Since QW ≤ W it follows that I(u, b, A) ≥ Ĩ(u, b, A).
We prove the opposite inequality. For fixed δ > 0, let un ⇀ u weakly in W 1,p(A × I;R3) and

λn D3un ⇀ b weakly in Lp(A× I;R3) be such that

Ĩ(u, b, A) ≥ lim
n

∫

A×I

QW
(
Dαun

∣∣∣λnD3un

)
dx− δ. (2.15)
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Using, as in Proposition 2.6, the Relaxation Theorem (see [AF]), for each n there exists a sequence {un,k}
converging to un weakly in W 1,p(A× I;R3) such that

∫

A×I

QW
(
Dαun

∣∣∣λnD3un

)
dx = lim

k

∫

A×I

W
(
Dαun,k

∣∣∣λnD3un,k

)
dx. (2.16)

From (2.15) and (2.16) we have

Ĩ(u, b, A) ≥ lim
n

lim
k

∫

A×I

W
(
Dαun,k

∣∣∣λnD3un,k

)
dx− δ (2.17)

with
lim
n

lim
k
‖un,k − u‖Lp(A×I;R3) = 0 (2.18)

and, for the weak topology of Lp(A× I;R3),

lim
n

lim
k

λnD3un,k = b. (2.19)

In view of hypothesis (H) we have

sup
n,k

(‖λn D3un,k‖Lp(A×I;R3) + ‖un,k‖W 1,p(A×I;R3)

)
< +∞. (2.20)

Since the weak topology is metrizable in bounded sets of Lp(A × I;R3), (2.17), (2.18), (2.19) and (2.20)
yield the existence of a diagonal sequence {un,kn} satisfying un,kn → u in Lp(A × I;R3) (and weakly in
W 1,p(A× I;R3)), λn D3un,kn ⇀ b weakly in Lp(A× I;R3), and realizing the double limit in the right hand
side of (2.17). Consequently we have

Ĩ(u, b, A) ≥ lim
n

∫

A×I

W
(
Dαun,kn

∣∣∣λn D3un,kn

)
dx− δ

≥ I(u, b, A)− δ.

Letting δ go to zero, the conclusion follows.

3. Proof of Theorem 2.3.

The following three lemmas are simple adaptations of Lemma 2.1 and Lemma 2.2 presented in [BFM] and
we will omit the proof.

Lemma 3.1. Let W be a Borel function satisfying hypothesis (H). Then the functional defined in (2.1)
satisfies

I(u, b, A) = inf
{

lim inf
n

∫

A×I

W (Dαun |λn D3un) dx | un ⇀ u in w - W 1,p(A× I;R3),

λnD3un ⇀ b, in w - Lp(A× I;R3), un = u on ∂A× I
}

,

(3.1)

for all (u, b, A) ∈ V × Lp(Ω;R3)×A(ω).

Lemma 3.2. Let W be a Borel function satisfying hypothesis (H). Then the following inequality holds

I(u, b, A) ≤ C

(
L2(A) +

∫

A

|Dαu|p dxα +
∫

A×I

|b|p dx

)
, (3.2)

for some constant C > 0 and for all (u, b, A) ∈ V × Lp(Ω;R3)×A(ω).

Lemma 3.3. Let W be a Borel function satisfying hypothesis (H). Then there exists a subsequence of {λn}
(not relabeled), such that for (u, b) ∈ V × Lp(Ω;R3), the set function I(u, b, ·) defined in (2.1) is the trace
on A(ω) of a measure, absolutely continuous with respect to the two dimensional Lebesgue measure L2.

The proof of Theorem 2.3 is a consequence of the two propositions below.
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Proposition 3.4. Let W be a Borel function satisfying hypotheses (H1). Consider the functional defined
in (2.1). Then

I(u, b, A) ≥
∫

A

Q∞W (Dαu(xα)|b(xα, ·)) dxα, (3.3)

for each (u, b) ∈ V × Lp(Ω;R3).

Proof.
Step 1. We prove that for k ∈ N, u(xα) := Fxα + u0 with F ∈ R3×2, u0 ∈ R, b ∈ Lp(I;R3), and for any
two sequences λn → +∞ and ϕn ⇀ 0 in W 1,p(Q;R3), such that λnD3ϕn ⇀ b in Lp(Q′ × I;R3) for
i = 1, · · · , k, then

lim inf
n

∫

Q

W (F + Dαϕn| λn D3ϕn) dx ≥ QkW (F, b).

Fix n ∈ N. By Lemma 3.1 we may assume that ϕn = 0 on ∂Q′× I (see (3.1)). Since
∫

I

λnD3ϕn θi dx3 ⇀ b̄i

in Lp(Q′;R3) for i = 1, · · · , k, there exists nk ∈ N such that for n ≥ nk implies

∣∣∣∣
∫

Q

λnD3ϕn θi dx− b̄i

∣∣∣∣ ≤
1
k

, for all i = 1 · · · k.

Then, for n ≥ nk , λn and ϕn are admissible with respect to the infimum in the right hand side of (2.1), and
so

lim inf
n

∫

Q

W (F + Dαϕn| λn D3ϕn) dx ≥ QkW (F |b).

Taking the supremum in k we get
I(u, b; Q′) ≥ Q∞W (F |b).

Step 2. Now we establish (3.3) in the general case.
Fix (u, b, A) ∈ V×Lp(Ω,R3)×A(ω). Consider {un} and {λn} such that un ⇀ u weakly in W 1,p(A×I;R3),

λn D3un ⇀ b weakly in Lp(A × I;R3), and upon the extraction of a subsequence (not relabeled) we may
assume that

lim inf
n

∫

A×I

W (Dαun |λn D3un) dx = lim
n

∫

A×I

W (Dαun |λn D3un) dx.

Define the sequence of measures µn :=
(∫

I

W (Dαun |λn D3un) dx3

)
L2bA. Since {µn} is bounded, up to a

further subsequence (not relabeled) it converges weakly-? to some measure µ. Represent by ρ the absolutely
continuous part of µ with respect to the 2-dimensional Lebesgue measure. To prove (3.3) it suffices to show
that, for a.e. x0 ∈ A and for an arbitrary fixed k ∈ N,

ρ(x0) ≥ QkW (Dαu(x0), b(x0, ·)) (3.4)

Let b̄i(xα) :=
∫

I

b(xα, x3) θi(x3) dx3, i = 1, · · · , k. It is known that, for a.e. x0 ∈ A,

ρ(x0) = lim
ε→0

µ(x0 + εQ′)
ε2

exists and is finite, (3.5)

lim
ε→0

1
εp+2

∫

x0+εQ′
|u(xα)− u(x0)−∇u(x0)(xα − x0)|p dxα = 0, (3.6)

lim
ε→0

1
ε2

∫

x0+εQ′
|b̄i(xα)− b̄i(x0)|p dxα = 0, i = 1, · · · , k. (3.7)
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Let x0 satisfy (3.5), (3.6) and (3.7). Let {ε} represent a sequence converging to zero such that, for all ε,

µ(∂(x0 + εQ′)) = 0. (3.8)

Using (3.5), the definition of µ and (3.8), we have

ρ(x0) = lim
ε→0

lim
n

1
ε2

∫

(x0+εQ′)×I

W (Dαun |λn D3un) dx

= lim
ε→0

lim
n

∫

Q

W (Dαun(x0 + εyα, y3) |λn D3un(x0 + εyα, y3)) dy

= lim
ε→0

lim
n

∫

Q

W (Dαun,ε |ελn D3un,ε) dy,

(3.9)

where un,ε(y) :=
un(x0 + εyα, y3)− u(x0)

ε
.

Since un → u in Lp(A× I;R3), (3.6) yields

lim
ε→0

lim
n
‖un,ε(·)−∇u(x0) · ‖Lp(Q;R3) = 0. (3.10)

We also have for all ϕ ∈ Lp′(Q′;R3), and as λn

∫

I

D3un θi dx3 ⇀ b̄i, i = 1, · · · , k, weakly in Lp(A;R3),

lim
ε→0

lim
n

∫

Q

ελn D3un,ε(y) ϕ(yα) θi(y3)dy = lim
ε→0

lim
n

1
ε2

∫

(x0+εQ′)×I

λnD3un(x)ϕ
(

xα − x0

ε

)
θi(x3)dx

= lim
ε→0

1
ε2

∫

x0+εQ′
b̄i(xα) ϕ

(
xα − x0

ε

)
dxα

= b̄i(x0)
∫

Q′
ϕ(yα) dyα,

(3.11)
where we have used (3.7).

By means of a standard diagonalization process, from (3.9), (3.10) and (3.11), we construct ũj := uεj ,nj

and λ̃j := εjλnj such that

λ̃j → +∞ , ũj(y) → Dαu(x0)y in Lp(Q;R3) , λ̃j

∫

I

D3ũj θi dy3 ⇀ b̄i(x0) weakly in Lp(Q′;R3)

and
ρ(x0) = lim

k

∫

Q

W (Dαũj |λ̃j D3ũj) dy. (3.12)

Since by Step 1 we have

lim
j

∫

Q

W (Dαũj |λ̃j D3ũj) dy ≥ QkW (Dαu(x0)|b̄(x0)),

(3.4) follows from (3.12) and from the arbitrariness of {un} and {λn}.

Proposition 3.5. Let W be a Borel function satisfying hypothesis (H). Consider the functional defined in
(2.1). Then

I(u, b, A) ≤
∫

A

Q∞W (Dαu(xα)|b(xα, ·)) dxα,
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for each (u, b, A) ∈ V × Lp(Ω,R3)×A(ω)

Proof.
Step 1. First we consider the case where u(xα) := Fxα+u0, with F ∈ R3×2 and u0 ∈ R3, and b ∈ Lp(I;R3).
Clearly it suffices to consider the case where sup

k
QkW (F |b) < +∞. Since QkW (F |b) is nondecreasing in k,

we have that sup
k
QkW (F |b) = lim

k
QkW (F |b). Using the definition of QkW (F |b) there exist {tk} and {ϕk},

satisfying ϕk ∈ W 1,p(Q;R3), ϕk(·, x3) is Q′ periodic a.e. in x3 ∈ I,

∣∣∣∣
∫

Q

tkD3ϕ
k θi dx−

∫

I

b θi dx3

∣∣∣∣ ≤
1
k

,

for all i = 1 · · · k, and

QkW (F, b) ≤
∫

Q

W (F + Dαϕk | tkD3ϕ
k) dx < QkW (F, b) +

1
k

. (3.13)

Let λn → +∞. Using the Q′-periodicity of ϕk, we define ϕk
n : R2 × I → R3 by ϕk

n(x) :=
tk
λn

ϕk

(
λn

tk
xα, x3

)
.

For fixed k we have ϕk
n ∈ W 1,p(A × I;R3) and, as n goes to +∞, by the Riemann-Lebesgue Lemma we

get

ϕk
n ⇀ 0, λn

∫

I

D3ϕ
k
nθi dx3 = tk

∫

I

D3ϕ
k

(
λn

tk
xα, x3

)
θi dx3 ⇀ tk

∫

I

∫

Q′
D3ϕ

k(yα, x3) θi dyα dx3 =: b̄i + rk
i ,

(3.14)
weakly in W 1,p(A× I;R3) and weakly in Lp(A;R3) respectively, with |rk

i | ≤ 1/k, for all i = 1, · · · , k, and

lim
n

∫

A×I

W (F + Dαϕk
n | λnD3ϕ

k
n) = L2(A)

∫

Q

W (F + Dαϕk | tkD3ϕ
k). (3.15)

In view of the coercivity hypothesis (H) and since the weak topology is metrizable on bounded sets, using
a diagonal argument, (3.14) and (3.15) allow us to construct a sequence {λnk

} and {ϕk
nk
}, satisfying ϕk

nk
⇀ 0

in W 1,p(A× I;R3), λnk

∫

I

D3ϕ
k
nk

θi dx3 ⇀

∫

I

b θi dx3 in Lp(A;R3) for all i ∈ N (so that λnk
D3ϕ

k
nk

⇀ b in

Lp(A× I;R3)) and lim
k

∫

A×I

W (F + Dαϕk
nk
| λnk

D3ϕ
k
nk

) = L2(A) sup
k
QkW (F, b). Consequently

I(u, b, A) ≤ L2(A) sup
k
QkW (F, b) = L2(A)Q∞W (F, b).

Step 2. We prove the claim for u and b for which there exists a finite and measurable partition {Aj}j=1,···,m
of A such that u is affine and b independent of xα in each Aj . For each j we have, using Step 1,

I(u, b, Aj) ≤ L2(Aj) Q∞W (Dαu, b).

By Lemma 3.3 I(u, b, ·) is a measure, thus

I(u, b, A) =
m∑

j=1

I(u, b, Aj) ≤
m∑

j=1

L2(Aj) Q∞W (Dαu, b) =
∫

A

Q∞W (Dαu, b) dxα.

Step 3. We prove the claim for an arbitrary (u, b, A) ∈ W 1,p(ω;R3)× Lp(Ω;R3)×A(ω).
For (u, b) ∈ V × Lp(A × I;R3) let {(un, bn)} be a sequence piecewisely defined like in the previous step

and strongly converging in W 1,p(A× I;R3)×Lp(A× I;R3) to (u, b). For the construction of such a sequence
we may assume, by a density argument, that u and b are C∞0 functions, so that we can apply, with minor
adaptation the classical Approximation Theorem (see, for instance, [EK]).
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The lower semicontinuity of (u, b) ∈ V × Lp(A × I;R3) 7→ I(u, b, A) with respect to the weak topology
yields, together with Step 2,

I(u, b, A) ≤ lim inf
n

I(un, bn, A) ≤ lim inf
n

∫

A

Q∞W (Dαun, bn) dxα. (3.16)

To complete the proof it is enough to remark that

lim inf
n

∫

A

Q∞W (Dαun, bn) dxα ≤
∫

A

Q∞W (Dαu, b) dxα,

which is a consequence of the growth conditions (3.2) and of the continuity of

(F, b) ∈ R3×2 × Lp(I;R3) 7→ Q∞W (F, b). (3.17)

Indeed, to prove the continuity of (3.17), let λ ∈ R and k ∈ N be fixed and define

Qλ
kW (F |b) := inf

ϕ

{ ∫

Q

W (F + Dαϕ| λ D3ϕ) dx | ϕ ∈ W 1,p(Q;R3), ϕ(·, x3) is

Q′ periodic a.e. x3 ∈ I
∣∣∣
∫

Q

λD3ϕ θi dx−
∫

I

b θi dx3

∣∣∣ ≤ 1
k

, ∀ i = 1 · · · k
}

.

For (F, b), (F ′, b′) ∈ R3×2 × Lp(I;R3), consider Qλ
kW (F |b) and Qλ

kW (F ′|b′). For any infimizing sequence

{ϕn} in the definition of Qλ
kW (F |b), consider the sequence ψn := ϕn +

∫ x3

0
(b′(s)− b(s)) ds

λ
of admissible

functions in the definition of Qλ
kW (F ′|b′), since

Dαψn = Dαϕn , D3ψn = D3ϕn +
b′ − b

λ
, (3.18)

we get

∣∣∣
∫

Q

λD3ϕn θi dx−
∫

I

b θi dx3

∣∣∣ =
∣∣∣
∫

Q

λD3ψn θi dx−
∫

I

b′ θi dx3

∣∣∣, ∀ i = 1 · · · k, ∀ n ∈ N.

From the p-Lipschitz condition (2.6) (see Remark 2.3) and Hölder inequality, we obtain

∣∣∣
∫

Q

W (F ′ + Dαψn|λ D3ψn) dx−
∫

Q

W (F + Dαϕn|λ D3ϕn) dx
∣∣∣

≤ C
(
1 + ‖(F ′ + Dαψn|λD3ψn)‖p−1

Lp(Q) + ‖(F + Dαϕn|λD3ϕn)‖p−1
Lp(Q)

) (
|F − F ′|+ ‖b− b′‖Lp(I)

)
,

(3.19)

for a constant C independent of n.
Since Qλ

kW (F |b) ≤ ∫
I
W (F |b) dx3, using hypothesis (H) we conclude from (3.19) that

∣∣∣
∫

Q

W (F ′ + Dαψn|λ D3ψn) dx−
∫

Q

W (F + Dαϕn|λ D3ϕn) dx
∣∣∣

≤ C
(
1 + |F ′|p−1 + |F |p−1 + ‖b′‖p−1

Lp(I) + ‖b‖p−1
Lp(I)

) (
|F − F ′|+ ‖b− b′‖Lp(I)

)
.

(3.20)

Letting n → +∞ in (3.20) we obtain

Qλ
kW (F ′, b′)−Qλ

kW (F, b) ≤ C
(
1 + |F ′|p−1 + |F |p−1 + ‖b′‖p−1

Lp(I) + ‖b‖p−1
Lp(I)

) (
|F − F ′|+ ‖b− b′‖Lp(I)

)
.
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Using the same argument for the pair (F ′, b′) in place of (F, b), we get

|Qλ
kW (F, b)−Qλ

kW (F ′, b′)| ≤ C
(
1 + |F |p−1 + |F ′|p−1 + ‖b‖p−1

Lp(I) + ‖b′‖p−1
Lp(I)

) (
|F − F ′|+ ‖b− b′‖Lp(I)

)
.

Again the independence of C with respect to λ and k allow us to conclude that

|Q∞W (F, b)−Q∞W (F ′, b′)| ≤
(
1 + |F |p−1 + |F ′|p−1 + ‖b‖p−1

Lp(I) + ‖b′‖p−1
Lp(I)

) (
|F − F ′|+ ‖b− b′‖Lp(I)

)
.

Appendix.

We recall the potential Q∗W , as defined in [BFM]. Consider, for every F ∈ R3×2 and b ∈ R3,

Q∗W (F |b) := inf
(ϕ,λ)

{∫

Q

W (F + Dαϕ|λ D3ϕ) dx : λ ∈ R ,

ϕ ∈ W 1,p(Q;R3), ϕ(·, x3) is Q′ -periodic L1 a.e. x3 ∈ I, λ

∫

Q

D3ϕ dx = b

}
,

(A.1)

with Q := (−1/2, 1/2)3, Q′ := (−1/2, 1/2)2.
We prove here that Q∗W coincides with the cross-convex envelope of W , Q̃W , defined by

Q̃W (F, b) := sup
G∈F

{G(F, b) : G ≤ W},

where F is the family of all G : (F, b) ∈ R3×2 ×R3 7→ R that are quasiconvex with respect to F, for fixed b,
and convex with respect to b, for fixed F. The cross-convex envelope of W is also characterized as follows :

Q̃W (F |b) = inf
(ϕ,ψ)

{∫

Q′
W (F + Dαϕ|b + ψ) dxα : ϕ ∈ W 1,p

# (Q′;R3), ψ ∈ Lp
0(Q

′;R3)
}

, (A.2)

for F ∈ R3×2 and b ∈ R3, where the subscript # in W 1,p
# (Q′;R3) indicates the subspace of Q′-periodic

functions of W 1,p(Q′;R3) and Lp
0(Q

′;R3) the subspace of Lp(Q′;R3) formed by the functions with null mean
(see [FKP] and [LDR]).

Proposition A. For all F ∈ R3×2 and b ∈ R3 it holds

Q∗W (F |b) = Q̃W (F |b).

Proof. Since Q̃W is the cross-convex envelope of W and Q∗W is cross-convex (see [BFM, Remark 1.4] ),
one has Q∗W (F |b) ≤ Q̃W (F |b), for all F ∈ R3×2 and b ∈ R3.

To obtain the converse inequality, we consider, for F ∈ R3×2 and b ∈ R3, ϕ ∈ W 1,p(Q;R3) and λ ∈ R,
satisfying ϕ(·, x3) Q′ -periodic L1 a.e. x3 ∈ I, and λ

∫
Q

D3ϕ dx = b. Define ψ := λ D3ϕ−
∫

Q′ λ D3ϕ dxα.
Then, using (A.2) and the convexity of Q̃W (F, ·), we obtain

∫

I

∫

Q′
W (F + Dαϕ|λ D3ϕ) dxα dx3 =

∫

I

∫

Q′
W (F + Dαϕ|

∫

Q′
λ D3ϕ dxα + ψ) dxα dx3

≥
∫

I

Q̃W (F |
∫

Q′
λ D3ϕ dxα) dx3

≥ Q̃W (F |b).

(A.3)
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Taking the infimum in the left hand side of (A.3), we get Q∗W (F |b) ≥ Q̃W (F |b).
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