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Abstract

We derive error estimates for a fully discrete scheme using primal discontinuous
Galerkin discretization in space and backward Euler discretization in time. The
estimates in the energy norm are optimal with respect to the mesh size and subop-
timal with respect to the polynomial degree. The proposed scheme is of high order
as polynomial approximations of pressure and concentration can take any value.
In addition, the method can handle different types of boundary conditions and is
well-suited for unstructured meshes.
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1 Introduction

A high order numerical method for solving miscible displacement is introduced
and analyzed in this paper. Miscible displacement occurs in important appli-
cations such as remediation of contaminated groundwater and production of
oil from petroleum reservoirs. The physical model that describes the miscible
displacement phenomena arises from the natural law of conservation of mass.
This law is applied to each component of the fluid mixture. Thus, the math-
ematical model consists of a coupled system of partial differential equations:
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a pressure equation and a concentration equation for each component. Since
the components of the fluid mixture may react with each other, the numer-
ical method must accurately solve the laws of conservation. In particular, it
is important to solve the continuity equation that describes the flow phenom-
ena with high accuracy. In this work, we propose a fully discrete scheme that
is locally mass conservative. The approximations of pressure and concentra-
tion at each time step are discontinuous piecewise polynomials of different
degrees. We show convergence of the numerical method with respect to both
the mesh size and the polynomial degree. The flexibility inherent to discon-
tinuous approximation spaces allows the use of complicated geometries and
unstructured meshes. The primal discontinuous Galerkin method, analyzed in
this paper, encompasses the nonsymmetric interior penalty Galerkin (NIPG)
method, the symmetric interior penalty Galerkin (SIPG) and the incomplete
interior penalty Galerkin (IIPG) method introduced for elliptic problems re-
spectively by Riviere, Girault and Wheeler [16], Wheeler [24] and Dawson, Sun
and Wheeler [3]. Discontinuous Galerkin methods have been recently popular
in modeling complex flow and transport problems in porous media. The reader
can refer to [20,5,8,12] for some applications.

Several methods for solving the miscible displacement have been analyzed.
When classical continuous finite element approximations were used for both
the pressure and the concentration equations, optimal convergence rates were
proven in the dispersion-free case and nearly optimal convergence rates in the
dispersion case, under somewhat idealized circumstances (Ewing and Wheeler
[6]). However, this procedure did not handle the transport-dominated problem
arising from the concentration equation. Strong improvement in the accuracy
of the approximation of the concentration was obtained by considering inte-
rior penalty Galerkin methods that could be based on continuous piecewise
polynomial spaces (Wheeler and Darlow [25]) or on discontinuous piecewise
polynomial spaces (Douglas, Wheeler, Darlow and Kendall [9]): the pressure
equation was solved with a standard Galerkin method and penalty terms in-
volving the jumps in the normal derivative were introduced in the concentra-
tion equation.

Since only the velocity enters the equation for the concentration, a natural pro-
cedure for solving the pressure equation is the mixed finite element method
which is locally mass conservative. The concentration equation can be handled
in different ways. First, Douglas, Ewing and Wheeler [10,11] approximated the
concentration by a standard continuous finite element method. Alternatively,
the concentration equation can be solved by a modified method of characteris-
tics (MMOC), which combines the time derivative and the advection terms as
a directional derivative. Ewing, Russell and Wheeler [14] introduced and ana-
lyzed this method, optimal L? error estimates were proven and efficient time
stepping techniques were used [22]. Improved error estimates for the MMOC
were shown by Dawson, Russell and Wheeler [2]. Russell [21] used a combina-



tion of a continuous finite element method and the method of characteristics
for the concentration equation and approximated the pressure with a standard
continuous finite element method. As in the above cases, time stepping was
done along the characteristics.

More recently, primal discontinuous Galerkin methods were applied and an-
alyzed for solving the miscible displacement problem using a semi-discrete
approach. The system of equations is discretized in space only. The work
of Sun, Riviere and Wheeler [18] studies a combined mixed method for the
pressure equation with NIPG for concentration equation. In [19], Sun and
Wheeler analyze the NIPG method applied a discontinuous Galerkin scheme
introduced in [15]: both pressure and concentration are approximated by the
NIPG method. However, the convergence result is valid only for particular
boundary conditions, namely Neumann boundary condition for the pressure.
Our numerical scheme is fully discrete and valid for both Dirichlet and Neu-
mann boundary conditions for the pressure and Dirichlet, Neuman and mixed
boundary conditions for the concentration.

The outline of the paper is as follows. Section 2 contains the system of partial
differential equations and assumptions on the data. The coupled discontinuous
Galerkin scheme is formulated in Section 3. Existence and convergence of the
numerical solution are obtained in Section 4. Extensions of the scheme to
several types of boundary conditions are presented in Section 5. Concluding
remarks end this paper.

2 Model Problem and Notation

Consider the miscible displacement of one incompressible fluid by another in
a porous medium 2 C IR? and over the time interval (0,7). Let p denote
the pressure in the fluid mixture and let ¢ denote the concentration (fraction
volume) of the displaced fluid in the fluid mixture. The partial differential
equations describing this type of flow are:

K )
-V (@Zp) = fla in € x (O’T)’ (1)
u= —@Vp, in Qx(0,7), (2)
(p% + V- (uc— Dw)Ve) = fo, in Qx(0,7T), (3)



subject to the following boundary conditions:

P = Pgir ON 1—1D X [07 T]7 (4)
u-n=ug on Iyx]I0,T], (5)
c=cqr on 00 x[0,T], (6)

where I'p U I’y is a partition of the boundary 02. Equation (1), refered to as
the pressure equation, is coupled with equation (3) through the viscosity of
the fluid mixture. Equation (3), refered to as the concentration equation, is
coupled with equation (1) through the fluid velocity (2) and the dispersion-
diffusion tensor D(u):

T

Uy
D(u) = (au||ullz + dm)I + (i — at)m.

The coefficient d,, is the molecular diffusivity, oy and oy are the longitudinal
and transverse dispersivities, ||u||; is the Euclidean norm of the velocity and
I is the identity matrix. Assumptions on the coefficients are made below.

e Assumption H1. The function p~! is positive, bounded below and above by
w1 and 71 respectively and it is also Lipschitz continuous.

\V/tl, to € IR,

) M(;)‘ < prlty — tof. (M)

e Assumption H2. The matrix K is symmetric positive definite and uniformly
bounded above and below. There are positive constants k, k such that:

Vr € R?, ka'z <2'Kz <kr'la. (8)

e Assumption H3. The diffusion coefficient is strictly positive and the disper-
sivities are bounded.

Vz € R?, 0<qz)<ay, 0<or)<ag, and 0<d<d,.

Under assumption H3 it was shown that D(u) is uniformly positive definite
in © and Lipschitz continuous [19]:

vu € R?, Vz €R? da"z <a2'D(u), 9)
Vu,v € R?, ||D(u) = D(v)ll, < ka [Ju — o], (10)

where ky = (7o + 6a7)2%/2.
e Assumption H4. The matrix D(u) is uniformly bounded above.

Vu € R?, Vz € R* 27 D(u)r < da'z. (11)

We propose a discontinuous finite element discretization of (1)-(6). For this,
we introduce a non-degenerate quasi-uniform subdivision of {2, made of either



triangles or quadrilaterals. The quasi-uniformity assumption is only needed
for the p-version, i.e. for deriving error estimates in terms of the polynomial
degree. As usual, the maximum diameter over all mesh elements is denoted
by h. The set of interior edges is denoted by I'y. To each edge e in I'y,, we
associate a unit normal vector n.. For a boundary edge, n. is chosen so that
it coincides with the outward normal. The discrete space of discontinuous
piecewise polynomials of degree r > 1 is denoted by D, (&):

D, (&) = {v e L*(Q) :VE € &, : v|p € P.(E)}.

For any function v € D, (&), we denote the jump and average over a given
edge e by [v] and {v} respectively. Assuming that n, is outward to E!, we can
write:

Ve = 0E, NOE2, [v]le =v|g —vlm, {v}]e=0.50|p: + 0.50|g2,
VezaEelﬂaQ, [U”eZ’U|Eé, {U}|e=’U|Eé.

Let N be a positive integer and let At = T/N be the time step. Denote
t' = iAt for 0 < 7 < N. Define the space

D?fh ={v= (Ui)ogigN © YO<i< N v e€D.(E)}.

We also denote by M the constant that only depends on the maximum number
of neighbors that one mesh element can have so that the following inequality
holds. Let A be any quantity depending on E! or EZ:

Vi=12 () A(E)"*< @( > A(E))2. (12)

eEI‘h EEEh

(3 AEN < VM(Y AE)Y (13)

ecl'p Ecé&y,

Let H*(O) be the usual Sobolev space on O C R¢,d > 1 with norm || - ||y.0-
We also define the broken norm:

olllka=( X llv

Ec&y,

5 \1/2

We now recall well-known trace results used in the error analysis in this paper.

Lemma 1 There is a constant M, independent of h such that if E is a triangle
or quadrilateral:

Vv € H*(E), s > 1,Ye C OF, [|vlly, < Meh™"(|lollp s+ h[[Volloz), (14)
Vv € H(E), s > 2,Ve C OF, ||Vv - nlly, < Mh (| Volly 5 + b [V?0, ).

0,E

(15)



Lemma 2 Let E be a mesh element. Let g : N — N be a function defined by
g(k) = (k+1)(k+2) if E is a triangle, and by g(k) = k* if E is a quadrilateral.
There is a constant M, independent of h and k such that:

k
Vo € Be(B), Ve € O, [olly, < M) ) o, (16)

In the case of the triangle, if O denotes the smallest angle and |e| denotes
the length of the edge e, an exact expression for M; is given by:

h
M, = /2cotg—
le|

The proofs of these results can be found in the literature: see Theorem 3.10
in [1] for Lemma 1, see Theorem 3 in [23] and the proof of Theorem 9 in [4]
for the case of triangle for Lemma 2 and Lemma 2.1 in [17] for the case of
quadrilateral for Lemma 2.

3 Scheme

At each discrete time #*, we will approximate the pressure p(t’,-) and concen-
tration ¢(t’,-) by discontinuous piecewise polynomials P* and C* of degree 7,
and r, respectively. For the p-version, we assume that the degrees are related
in the following fashion. There exist positive constants dg, d; such that

5o < £ < 4. (17)
Tp

Before formulating the scheme, we introduce additional notation. Let ¢ be a
parameter that takes the value —1, 0 or 1. By changing the value of ¢, we
will obtain the NIPG, SIPG or IIPG method. Let 0, and o, be two positive
parameters, called penalty parameters.
Our numerical method is the following: find P = (P*)o<icy € D}, and
C = (Ci)OSiSN € Dg,h such that
Initial Concentration

Vv € Dy, (En), / C% = / cv. (18)
Pressure Equation
VO<i<N—1, VzeD (&), / ___KVPH*l.V
S1sSs zZ p( h) E;h E’ucu—l o



+0, -3 / (—— CM KVP+ .} z- Y / o) KVPi“-nez
GEFhUFD BEF ecl'p r
+e Y /{ (C 1) KVz-n 3Pt +e > / c KV,z-nePi+1
ecl’y, ecl'p dlI‘
_/ hz+ Z / Z / sz'nepdir-
ecl'n ecl'p ecl'p Cdlr
(19)
Concentration Equation
. 1+1 % CZJrl i+1
W0 <i<N-L, WweD, (&), [ o(C-C) 3 / LAY
i+1 i+l cH i+l
+ Z/ UHvCe VU—Z/{ G KVP n )
E€é&, eely,
- / Cdir JEVP
ecl'p CdlI‘
Cz+1
- ¥ / (DWUHHVCH n o]+ ¥ / LKV e} [P
ecl', UI'pUl'y ecl'y, C
te Z / Cdir KV - nePH—l +e Z /{D UZ_H)VU n }[CH—l]
CEFD € /’l’(cdll‘) eEFh
( ¢) z—|—1 Cdlr . .
+o, Z [ l[v]=¢ Z KVU NePdir
e€cl, U'pUl'y | | ecl'p CdlI‘
+o. Y glre) / dlrv+/ fov+ > /cdlrudlrv (20)
ecl'pUl'y | ecl'n
with the definition of the discrete velocity U*! given by
. K .
Ut =————vpth 21
p(CH) (21)

We obtain a nonlinear system of equations that can writen in short as
Vz € D, (En), Yw €D, (&), 0<i<N, L(P,C'zv)=0.

It is easy to check that the scheme (18)-(20) is consistent, i.e. if the solution
of (1)-(6) is smooth enough, then it satisfies

Vz € D, (), Y €D, (&), 0<i<N, L, c;zv)=0, (22)

where ¢ = ¢(t',-) and p* = p(t, -).



4 Existence and Convergence of the Discrete Solution

In this section, we prove the existence and show convergence of the numerical
solution by the use of the second Schauder’s theorem (see theorem 6.44 in [7]).
Let p and ¢ be approximations of p and ¢. We assume that

pe L®0,T,W=(Q)), &eL®0,T,L°Q), & e L®0,T,[*Q)).
(23)
We will denote 5'(-) = p(t',-) and & (-) = ¢(t',-). We assume that there are
constants k,, K, > 2 such that

VO<i<N, Vt>0, p'(t)e H*”(Q), c(t)e H*(Q).

We also assume that the following hp-type approximation results hold

VO<i<N =t b <MM ( 24

> 1S 1Y, ||p p ||Hs(n) = s ||p ||H~p(sz), ( )
p

hmin(rc—f—l,nc)fs

VO<i<N, ||& —cl|lu@<M 1l mmeqy,  (25)

Ke—S$
/rC

where M is a constant independent of h,7,,7. and At. In addition, in the
case of the p-version, we assume that x,, K. > 3. In th rest of the paper, the
variable M will denote a generic constant independent of h, r, r, and At, that
takes different values at different places.

Next we prove existence and convergence of the solution using a technique
found in [13]. Let us define the following subset of the broken Sobolev space:

W= {(TP, ¢) € D], x DY, - ¢° =&, and there exist positive constants

K, K, ..., Kg Aty independent of h such that for At < Aty and 0 < < N-1:

1 i1 i1 Lo )2
(5~ K0 e =2 - 5 ¢ =
i+l xitl)))2 ﬂ Kﬂ KA
+l¢ Y € Koo + K —; + KuAL,
Tpp rete
' ) h2ro h2re
g = 5| < Koy + Kogg )
Tp TC

Clearly the subset W is closed, convex and non-empty since it contains the
element (ﬁz, éi)OSiSN-

Lemma 3 Forany (¢, @) in W, if At is small enough (namely At = O(h/r.) <



1/Ky), there exist positive constant My, My, M3 for any 1 <i < N
th h'l‘

|6 =], < Ml(rg 2+ s T A, (26)
16|02 < Mz, (27)
111l < Ms. (28)

The constants My, My are independent of h, rp, r. and At but depend on
Ki,...,K4. The constant Ms is independent of h,rp, 7. and At but depends
on Ky, Kg. In addition, the constant My depends on 6.

PROOF. We remark that (28) is a simple consequence of the definition of
W. We now prove (26), which will yield (27). From the definition of the space
W, we have for 0 < < N —1:

) 2 ) )
|¢z+1 ~L+1HOQ z_MLHOQ'i_AtHMZ-H_6“—1‘“%
h2rp h27‘c 3 it 9
< AtKy = + ARy + KA + AtKy |6 —& -
Tp )

We fix n € {1,...,N}. Summing from ¢ = 0 to 7 = n — 1 and noting that
Y} At < T, we obtain:

9 n—1 ) )
w"—wmﬁ—WW—*Hvam}jM&ﬂ—ﬁ“m%
21"p 27 2

< KT KT + K(TAP + ALK, Z |6 =&
Tp c

0,0 °

From Gronwall’s lemma, if At < 1/Kj, there is a constant M independent of
h and At such that

N-1
16" — &g, + At Z 1167 = &[T

h2rp h2rc
o M -+ MA2.
Tp

<|¢* e

Since ¢° = &, we obtain (26). Besides, from (17) and choosing At = O(%),

we conclude that b
6" = &g < M-

c
Using an inverse inequality, we have

16" = & lloq < Mrch™" |¢" — &[lgq < M.

This implies that
18" |co,0 < M + [|E" oo < Mo,



which with (23) yields gives the result (27). O

We now define an operator F that acts on elements in W.

v(,"ba ¢) € W’ ‘7:(1»0, ¢) = (wL’ ¢L):

where
(w%, ¢7) = (¢°, ¢°), (29)
and for 0 <i < N —1, 9" € D, (&,) and ¢} € D, (&) such that

Vz € D,,(En), Z / ¢Z+1 KVWH Vz+op, wz—l—l

Ecé&,

eEF Ul'p

- [t ¢z+1 Wit n e - 3 / ey KV nes

ecl'y, ecl'p Cdu
e ¥ [l KVz i+ ¥ / ey Kz e
ecl’y, ¢Z+1 ecl'p cdlr
_/ f12+ Z / Z / KVZ * NePdir-
ecl'n e€l'p ecl'p Cdu
(30)
1 ¢%+1 )
Vo € D, (&), / (0 = o) +E; ey Kvw
z+1 7+1 ¢Z+1 1+1
+ 3 [ DEve o ¥ / (o KU nej
Ecé&, ecl'y,
o Z / Cdir KV’l[JH_l
ecl’'p Cdu
i+1
_ Z /{D Cz—l—l ¢z+1 ne} +e Z /{ d) 1 KV - ne}w]z—kl
€€l U'pUl'y e€T, (¢*1)
te Z / (Cdlr KV - newz—}—l +e Z /{D <z+1 \VIR ne}[gb’H]
e€Tp H Cdu) ecly,
T =e ) / — K VU - NePair
eEI‘hUFDUFN eclp cdlr
+0c Z g( /Cdlrv +/ fov + Z /cdlrudlrv (31)
ec'pUl'N | ecl'y
where K
+1 i+1
= e (82)

First, we show that F is well-defined by proving existence and uniqueness of

(¢L7 d)L)

10



Lemma 4 There exists a unique solution (¥, @) € DN X DN that satisfies

(29)-(31).

PROOF. Since the problem (29)-(31) is linear and finite-dimensional, it suf-
fices to show uniqueness of the solution. Let (t;,, ¢;;) and (¥, ¢;,) be two
solutions and let (¢, ¢) denote their differences. Then, the pair (v, @) satisfies
(29)-(31) with zero data f; = pair = Ugir = cair = f2 = 0 and ¢} = 0. Clearly,
we have (%, #°) = (0,0). Fix i € {0,..., N — 1} and choose the test function
z =" in (30).

1

: K1/2v_i+1 2 +o (P) 7e+171|12
|\|7M(¢Z+1)1/2 Ve ton D el 11115

ecl',Ul'p

—(1-¢) Y / {(—— ¢“+1 SEVE = (1-0) 3 /

ecl'y, eclp V€ Cdlr

Kv,&i-}-l.ne,(/_]i-f-l =0.

If € = 1, we directly have that 1"t = 0. Otherwise, using assumption H1
and trace and inverse inequalities, we can bound the last two terms of the
left-hand side of the equation above by

I —
2

=i 1 —.
KPPV |fo+M Y0 Pk

p(git)12 ’ eel’purp 1€

which implies that ¢*t! =0 if the penalty value oy, is large enough. Next, we
choose the test function v = ¢! in (31). The equation reduces to:

112
| e + DAV B+ o > gy,
ecl',UI'pUI'N | ‘
_ Z /{D CZ—H v¢z+1 ne} ¢z+1]+6 Z /{D Cz—l—l V¢z+1 e}[¢z+1] — 0.
ecl',UI'pU'n ecl’y,

As above, the last two terms in the left-hand side of the equation above can
be bounded by

1 -
—\HD(C’“)”QVW“||\OQ+M > B ||I[¢”1]||3,e-

ecl', UI'pUI'y

Therefore, if the penalty value o, is chosen large enough, we obtain ¢! =
0. O

We now show that the range of F is included in the space W. The same
technique can be used to show that F is continuous.

Theorem 5

Vi, 0) e W, F(b,d)eW

11



PROOF. Let (¢, ¢) € W, (¢, d,) = F(¢, @) and denote
VOSi<N, m=q¢ =90 =p' —p ¢ =0, - X =c -0

From the consistency equations (22), we have

S [ K Vet S “”f@ﬁ“m]

Eeg, 'E M (¢*+1) e€l,Ul'p €]

- Y [ KV g - ¥ [

“NeZ — Z /udlrz

ecl’y, ecTp Cdlr el
e D /{ i) KVz-n}[pt]+e )] / KVZ nep
ecl’y, ¢ e€Tp cdlr
_/ f1Z N —¢ Z / KVZ * NePdir
“ e€l'p Cdlr
= — KVt .Vz— o Q(Tp) /[9i+1][z]
E‘Ze; é ,LL C'H'l ' eel"hZUI‘D |6| €
+ Z /{ H—l KVHZJrl ne -|- Z / C Kv0i+1 Nz
ecl'y, e€lp dlI‘
¢ z /{ i+1) KVz- ne}[e”'l —& Z / KVZ cn !
eth C ecl'p Cdlr
1 1 .
) KV V- / — VKVt n} [z
E;ﬁ/E ,U ¢Z+1 ,u(cz—i—l)) ;h { ¢z+1 M(CZ+1)) }[ ]
1 )
— _ K M ~1+1 ]
+e eezl“h /{ ¢z+1 u(c’+1)) Vz-ne}p™] (33)

Subtracting equation (33) from (30) and choosing z = 7¢*!, we obtain:

% g( ) %
— s KV [fa 0, Y [1caaal(r

=7
(¢z+1)1/2 ecl'p,Ul'p | |
(1-e) > /{ 1y KV Tn  r T+ (1—¢) Z/ KVTi+1'TLe)Ti+1

e€T), ¢ e€l'p Cdlr
-3 / = KV+ . vt — g Tp /[91+1 [

gee, ' B /‘ ¢ ethuFD

VO + Y / KVHi+1 e T
ecl'y, ecl'p cdlr
= /{ ) T O —e Y / KVTZ'Jr1 et

ecl'y, ecl'p € CdlI‘

12



1 1

~i+1 i+1 ~i+1
E‘; /E ucﬁ’“ WGk oV eezl“h/{ (671) u(ci“))Kvp+
1 i
+€eezF:h /{ ¢z+1 B ,u(ci+1))sz'ne}[p .
=Ty 4+ T (34)

Next, we bound each term in the right-hand side of (34) using techniques
standard for discontinuous Galerkin methods. In what follows, the quantities
g; are positive real numbers to be defined later. Using Assumptions H1 and
H?2 and Cauchy-Schwarz inequality, we have

[ri+

0,e

T <(-om Y [{K:vr
ecl'y,

We now fix an interior edge e and denote E! and E? two elements sharing the
edge e. Using (12) and the trace inequality (16), we have:

> |{xevr
ecl'y,

[ <D0 %(|‘K%VTi+1|Eé

1 .
5 ’L+1
064_Hl(2‘77 |E3

O&)

0,e

< T S |

+ | KVt

)

0,E! o,Eg) 0,e

Mig(ry i+l l i+1 3 i+l 2
< (3 M) iy 2(znw IO LS ias WD

Cel—‘h

|

MMtg T‘p H

<(X —

eEI‘h

%( ) HK%VTZ'HH E)l.
Ee&y, 0,

Therefore, we have the following bound on 77:

3(z ) kMM

M 1 i g\r i 2
1 < KO [[fo+ (1 —e)? Z ”) [+, - 39)

Similarly, using (13) and (16), we have for T:

,6(7)2E M M? > ¢

H Lo itl))[2
T < SIIK2VT T |[go + (1 —¢)
| | 2 0,2 ££ o ‘

e| H[ i+1)

. (36)

0,e

The term T3 is bounded using assumption H1 and (8), Cauchy-Schwarz and
Young’s inequalities:

miad S v, v

Ecgy,

lj/ 2 X3
:g\HK?VT 6.+ MIIIVOTH[G g

0,E

13

[

‘ne [T

i+1]



Using the trace inequality (14), we have for the term 7}:

‘T4‘ < 8 Z g(’rp) 02’—1—1

ecl',UI'p |€|

[, + Mo(ry) > (0

€&p

+ Hvel“

0, E)
(37)

01

The terms Ty and Ty are bounded in a similar way as the terms 77 and T5,
except that the trace inequality (15) is used instead of (16).

T5| < mk

0,e [T

Mfﬁﬂ% i+1 1/2 i1 1/2 2 |[r2pi+1 1/2
s@—M MH (Z [vo 7+ X w2 v, )
e€l’y, Ec&p
< i+1] i+1 2 || \o2gi+1
< (|ve st h||V=0 38
eezl"h ‘e| [ 0,e g(rp) H H OE) ( )
Similarly we have for term 7 we have:
|T6 S ik [T.
M2M2E 2 2
< (Z t 4hﬂ G z+1] e 1/2 (( z Hvezﬂ 0E)1/2+( Z B2 Hvzezﬂ 0E)1/2)
ecl'y, Ecgy, ’
<% 1) M i+1 2 || \2pi+1
+ — \Y% + h*||V<0 39
= eezr |6| [ Ho, g(rp) E;Eh(H 0,E H OE) (39)

The terms 7% and Ty are handled in the same way as terms 77 and 75, with the
exception that the trace inequality (14) is used to handle the approximation

error term.

Ty| < (k) zH{szTm}H [0]

0,e

< LNIKPYP g+ M) 3 (07 [

EEE,

s TV

L) (40)

Similarly, for term Ty, we have:

T < LK B+ Mo(r) S (72 [0+ 9o, )
Eeé&p, ’ ’

Using (7), (8), Cauchy-Schwarz inequality and assumption on p*™! (23), w
have:
¢z+1 z—|—1

|T9| < Ur HV"“L-HH K%V’TH_I

0,E | 0,E
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S He HVAJLHH (k); Z ( Pt — 5”1H0E | K2vritt K3yrit

0+HXH1H0,E | O,E)

w N » ) 2
LQHU{ZVTZ—H‘HOQ+M||sz+1||2 ||¢z+1 ﬂ-l-ng’Q +M||sz+1”go Xz—H s
(42)

The term T}y is a summation term over interior edges. We assume that the
edge e is shared by the elements E! and E?. Thus, we have using (7), (8), (23)
and Cauchy-Schwarz inequality:

(¢i+1 _ 5L+1)|E3

0,e>'

) ||l

i

i+1 i+1
(QSZ - )|Ec} 0,e+

0,e

|T1o] < HV”+1H E% Z ((
ecl'y,

z'—|—1|E1

z+1|
€110,e

[~

)

+(||x

_|_

0,e

Using the trace inequality (14), (16), we have:

R L B o e el o
€€y, G B2 :
MLkHV”HH M,h~/? Z( Vs 0,E1+ Vs 0,E2+h HVXH—I 0,E‘1+h HVXH—I o,Eg) Ti—|—1]H

Op
_82

M IIV +1||
_|_

Mir o, + MIVEH 6 — a2

z+1

+ h? HVXZH

= ( ). (43)

E€&),

0,E 0,E

The term T} vanishes if the approximation p is continuous. Otherwise, we can
bound exactly like the term 75.

Tl = ; ‘/e{(ﬂ(c}”l) - /«t(ciﬂ))KVTi+1 -ne [0

/1/ 2 7
< SIEETTH g + Mg(ry) 3 (b7 9“

Ec&,

L+ va+1

P ()

Combining all the bounds (35)-(44) we have the following estimate for the
velocity equation:

3(7)2k M M? 9(T) s sa1q2
B K3v it I _ (1 —¢)2 J2 it1
ST+ (F = -y SR 3 A
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7 6(7)2kM M? g(rp) :
+(z0p, — (1 —g)? 221 [77F
S @ eEEFD le] H |0,e
9(ry) .
< ME2 g+ ° 4 M1+ g(r,) + —— )| VO
R [0+ MO+ 0tr) + NIV
. 1 a2 M|V R .
+M||VEH A (14 ——) [ o ||| Vx| 2
IV 12, ( am” oo S0 VXl

e -

Define the limiting value of the penalty parameter:

— (1 _ 6)248(ﬁ)2EMMt2
w

Assuming that o, > o5, using the approximation results, the fact that ¢
belongs to W and the fact that 1 < r? < g(r) < 6r%, we obtain:

i g\r
197 e+ > 2 i

ecl'p,Ul'p
1 1 h2min('rp+1,np)—2 12 12 thin(rc—i—l,nc)—Z 12
< Mmax( ) (g 19 o IV e 1 o)
1 1 ) 9 h2rp h2rc
+ M M; max(— ) [V +AB).  (45)

(5= +
o0 7“12),% 4 rgnc—4

uk’ o, — o
Next, we consider the concentration equation in the system (22). The same
way as for the pressure equation, the concentration equation can be rewritten

as:
¢ i1 . ¢z+1 "
/'_(‘CVL‘F “1 + Z / - 'V’U
o At ot MCand)
¢z—|—1 )
+ Z / CZH Vo - Z /{ i+1) MLH “Me (V]
Eegh eeI‘h ¢
Cdir
- Kv * NV — /C irUdirV
eeZFD ‘/e 1% (Cdir) eEZI‘:N dir™d
¢z—|—1
— Z /{D Cz+1 Longt] + e Z /{ ) KV - ne}[“ﬁ‘Fl]
ecl'p,UI'pUI'n ecl’y, ¢
= / i SV n e 3 JADE Ve n e
eclp cdlI‘ e€Ty,
to. Y g9(re) /[w+1 W —e Y / Cdir va p— (46)
ecl', U'pUl'n |e| ecl'p Cdll‘
Tc
—0¢ Z g‘ /cdirv—/ fgv
e€lpUl'y el Je Q
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z—|—1

= /Q PAtp / AR /E —— KVt Vv

Peey M Cz—l—l

- / VX Wy + 3 /{ Z:LII)KVHZH 1o} o]

Ee&, ecl'y,

POl et A LARL R I [ CIUAR NI

e€l'p Cdlr e€l,UI'pUl'y

z+1
=) /{ @ KVv-n ot —e Z/ Cdir KVU nf

ecly ecl'p Cdlr

=Y [{D@ V-]

eEI‘h €

o, Z 9|(e‘)/ I [w] + Z / (€1 — DY) VEH! . vy

ecl'p, UI'pUl'y E€&y,
¢Z+1 CH—l -
+ /( & \KVFt -V
Eéh ¢z+1 M(CZ—H)
¢z+1 Ci+1 )
- % [A(m ) KV )
eezl“h / (@) p(cth)

> [P = D) Ve n)

AP
+geezr / {( (¢ = D(u ZH))VU o casl] (47)

Substracting equation (47) from (31), using (32) and choosing z = £, we
obtain:

/QAit(giﬂ_gz’){;iﬂ_i_|||D(<z‘+1)1/2vgi+1|||g,ﬂ+ac Z g(re )“[é-Z—H]“Oe

e€T, Ul'pUl'y le]
¢Z+1 z—|—1 .V +1 d)H—l z—|—1 i+1
EZE b ae ) ¢ XF: L X et
€ ec

— Z/ Cdir KVritt .ne§i+1
eEI‘D € M(Cdir)

H1=0) ¥ [(DEHVET 0} + ¥ [ DE)TET g

ecl'y, ec'pUl'n €
Bl i 3 e
ecl'y, d) e€l'p Cdlr
_/ ¢Atpz+1£z+1+/ dyitleH Z / 1) Kvezﬂ veitt
Ecéy
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z+1
+ Z / z—|—1 z—|—1 Vé-H—l Z /{ Kvez—H ne}[é-z—H]
Ec&y, ecl'y,
Cdir i i i i i
_ Z / d . KV . p et — Z {D(u +1)VX +1 | ne}é +1]
ecl'p € ,U/(Cdlr) ecTp,U'pUl'n €
z+1
+e Z /{ z_|_1 KV§Z+1 ne}[ez—i—l +6 Z/ Cdir KV§Z+1 neez-H
ecl'y, ecl'p V¢ CdlI‘

te Z /{D(qu)Vle . ne}[XH—l]

eel"h €

to, Z g(Tc)/ 1+ Z D(¢*Y) — D(ui1)) Vet . veitt

€]

s G B e
Al T LA
I GG U Rl
=3 i s~ e JKYE )
— ; / {( (¢ - ("“))vgi“-ne}[am]
=851 +...5. (48)

The term Sg contains the numerical error in the time discretization:
p¢+1 — i ¢t -¢ _ 86”1)'
At At ot

We now bound each term in the right-hand side of (48). The term S is
bounded using assumption H1, (8) and (27):

d
151 <

o0 + MMV ]G o (49)

Using H1, (8) and (27), the term Sy is bounded in a similar way as for the

term 77:

Mg(Tp)
g(Tc)

Using H1 and (8) and similarly as for 75, we obtain:

€z+1 Mg (Tp)
eEI‘ 0. g(rc)

= 2 e,

<15 M|V [5 g (50)
ecl’y,

53| <

leaiello VT ][5.0- (51)
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Using assumption (11), the term S, is bounded in a similar way as for the
term 77:

7(8)2MM2

C—Z ] 7
4] < gllIVEH g0 + (1 = e)* ==+ —|\[5+1| L (2
ecl’y,
The term Sj is bounded in a similar way as for the term 75:
d : 7(d)*M M} 9(re) || i
95| < IV + =t enl’ o (s3)
28 d GE%;JFN le] 0
The term Sg is bounded in a similar way as for the term 77:
i 9(re) + o g(rp) z+1
56| < o< IHVf“HI + M=—"M, [T (54)
28 0,22 (fr‘p) eEZFh ‘e| H | 0, e
The term S7 is bounded in a similar way as for the term 75:
g(re) 2 9(Tp) | is1)2
57| < + M=l cair[|5 T . (585)
28 g( P) eEZFD ‘6| O.e

The terms Sg and Sy are simply bounded using Cauchy-Schwarz’s inequality.

2
Ssl < 7 €7 e, + 30 o (56)
5ol < e i+ 3 i (57)
The term Sy is bounded in a snnllar way as for the term Tj:
d i i j
[S10l < S lIVETH G0 + Ml NIV (58)
The term Syi; is bounded like the term T3:
d 2 =2 irlp)(2
[Sul < o o+ Md[[[VX™ g (59)

The term Sy is bounded exactly like the term 75:
M|| Ci+1||2

g(re)
$1a] < g(re)

el [fz]

> ([0, a9,

(60)

The term Si3 is bounded like the term Tg:
a2

|Sl3| >~ 0, g(Tc)HCdir oo(

§z+1

> (veref e [

0.5))"
(61)
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The term Si4 is bounded like the terms 75 and 1y with assumption H4:

(v
g(rc)

Sul<% % ).

eclp,U'pUI'n

2 (el e |9,

\e| 0,E

(62)

The term Si5 is bounded similarly as the term 7%:

d ; ; ~
[S15] < SgIIIVETH (o0 + Mg(re)lle™ s (X (R
E

€&y,

A WS\ G )
(63)

The term Si¢ is bounded exactly like the term Tg:

d .
[S16] < S5 llIVE Il + Myg(re)llcallsa( 3 (2

Ecé&y,

0o+ 90, 00
(64)

The term Si7 is bounded like the term T7:

|S17| < IHV

o+ Mg(r)d (Y (h7?]

Ecgy,

Xz+1 H + HVXZ+1|

<= ) (69)

The term Si5 is bounded like the term Tj:

sul< %y e g X 0]

ecl'p,UI'pUI'y Ee&y,

e LA )

(66)

Consider the term Si9 using the assumptions H1, H3 and that (¢, ¢) € W we
have:

Sio < kkafil| VEH [loo Y | eIV =5t
Ecéy,

+hka [ VE oopirl IV oo Do IVEH o, (ll67 -

Ecgy,

o, + [IV6" 10,z

.

C_l 7 ~1 7 ~q i
< o IVETIG + MIVET ANV (@ =5 )lls + 11[V6[[o)
+M(VE LIV (167 = @ HIs + 11X 1D

Before bounding the term Sy we remark that

¢i+1 Ci+1

W) R

1 ) ) .
| <Rl )l )
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Therefore we have

d .
Son < /1 VE 1
FMTF L+ 6 o) 2167 = 4 + IR,

The term Sy; is bounded similarly to the term T7i:

. 2 . ) ) .
Saal < 7 R+ MIVFH (L + e ol —
BEFh ’
M y .
+U”sz+1”c2>o(1 + ||Cz—|—1||oo)2 Z (‘ X'L—HH + h2 HVXZ—HHOE)
Ecé&y,

Consider the term Syy, using the assumptions H1 and H3 we have:

kkg ~i ; 7 ~ %
Sor < 7 lIVE oot > Il IV =5 mlloe + 1IVO 5 lloe)
ecl',UI'pUI'n
kk2 ~i 3 % ~
S IVElen > NE Mo (IV@™ — 5 o)
CEFhUFDUFN
ka i ; i i i ;
— lve Moot VP ™Moo S ME M oe (167 = &) m,lloe + l1x e)
ecl', UI'pUl'y
kk‘? ~q 7 7 7 ~
e O gtV e 3 I e (1667 = ) maloe + I+ s o)
eclpUI'pUl'y
Oc¢ g(re i+17)(2 Mg(rp)HVcH'lH 1 ~itly|[(2
<= 2 1€ 115.e 2|V =]
18 GEFhUFDUFN ‘ | 0, g(,’nc) !
M||VCZ+1||OO 2 2 ~1 7 7 ~1
e (VOIS + 2V E) + MIVET IV e — @G
g9(re) Ecé&,
M| Ve S VP15 i i
+ > (IXIE + R IVXETIR)-

9(re) E€E,

The term Sy3 is bounded like the term 77, :

d , . . 2 . 2
Saal < g lIVETH 5+ Mg(re) Mot o) 3o (72 6]+ Vo] )
Ecg ’ ’

€&p

(67)

The term Ss4 is bounded like the term 77 :

d .
Saal < g lIVEH[G+ Mg (re) 3 (h72 ). (68)

Ecé&y

2
i+1 H H i+1 H
X + 0,E
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Combining the bounds (50)-(68), we obtain:

2At H¢1/2£z+1 H¢1/2£z %Z‘vaﬂ—lmg,g
c 7(8)2MM2 ( T, ; 7(3)2MM2 AT
+<%—(1— )ZTt) Z e ‘§+1]H ( Tt)eepzum% ‘[§+1] :
9(rp) g( ») ; g(re)
SM<M3<1+9(TC)>+||CM||2 L LT M 7 Ol +M2>e€FhUFD 72) |
fz+1H0Q+MAt2 pi+1|‘z,9+M|X1ﬂHon

+M(9( )(1+d) 41+

12 )(IIVé”lI|§o||Vpi+1||§O+IIV15"+1I|§o(1+||ci“||oo)2)) X 5.0

1
g(TC)
Y )(n R, + leanlZ + M) 6 2

p 3 = ~i i i ~i '
M (@ +9(re) (48— @+ 2 (1 oo PRV L VE 202 ) [V x

g(rc)

M (I g ro+ =) (16 I leanl2)+ (14— IV ) 198+ |
g(re) (re)
> h .
+Md el
pres e [
M s (I el + 19612, ) 19°07 1

CMVET 20+ %)H\V(W“ IR

M ([ FE VP + 195 2 (1 + 6 1) )67 = &2

The error ||p**]p.q is bounded using a Taylor expansion with integral remain-
der:
aéH_l 1 i+l 82 ~i+1

&=t — At — t—t
¢=2 o Tal ! )8t2

dt,
which yields

||pi+1||0,ﬂ < M”&tt||Loo(ti’ti+1,L2(Q)).
Define

21(d)2M M2 21(d)*M M?
T )
Under the condition o, > ¢, using the approximation result, the bound (45),
the fact that 1 < r! < g(r) < 672, we obtain the following estimate:

0, = max ((1 —¢)?

2

> % g\Tc
2 4 veipe Y I

ecTp,U'pUl'n | |

Y
At At

H 1/2¢i
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2r 2r
2 h4™» here
+ Ko—— + K3
0, 2
P

< max(1, - %)( +K4At). (69)

L i+1
? C_l, 2(0_6 _ o_* é’ |
Equations (45) and (69) imply that (¢, ¢) belongs to W.

2Kkc—4
Tc ¢

From Lemma 3 and Theorem 5, we have that the set (W) is bounded. Using
similar techniques as in Lemma 4 and Theorem 5 it can be show that operator
F is continuous. Since we are in finite dimension, it follows that the operator

F is compact. Therefore, by Schauder’s second fixed point theorem there is a
solution v, ¢) € W such that

(¥, ¢) = F (¢, ).

This fixed point solution is the solution to (18)-(20). Using the definition of
the space W, the approximation results (24), (25) and Lemma 3, we obtain
the following a prior: error estimates.

Theorem 6 Let (P,C) be a solution to (18)-(20). Assume that the solution
(p,¢) to (1)-(6) belongs to L*°(0,T; H**(2)) x L>*(0,T; H"(S2)). Assume that

the penalty parameters satisfy:

48(1)*k M M?
* 2 t
o, =(1—¢) o

91(d)2M M2 21(d)2 N M?
72 0% GZ:maX((l_E)Q ()4d - ()d t).

Then, there exists a constant M independent of h,rp,r. and At such that

1<i<N, HCi—c"

oo T AEINCT =NV +||P =l
) j:l

Tp Te

ng(TZ)—_Q-l-h—_Q—i-At). (70)
p

Ke
TC

5 Extensions

The method can be slightly modified to consider several other boundary con-
ditions. For instance, we may have
Case 1:
c=cqr on VY(z,t)€oxJ,
u-n=ug V(x,t) €00 xJ,
Case 2:
c=cgr on I'pxJ,
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u-n=ug V(x,t) €N xJ,
Du)Ve-n=0, TnxJ
In Case 1, the pressure and concentration equations become:
Pressure Equation

V0<i<N-1, VzeD, (&), 3 /E —  __KVP".Vzt0, ¥ 2 (rp) / (P[]

peg, /B () cery el
- Y [y KR ) +e ¥ [ K Ve (P
ecly, ecl’y,
_/flz+ Z /udII‘Z (71)
ecoN €
Concentration Equation
" Cz—l—l 1
<1< — ¢ { Pt
Wi N-1, WoeD, (&), [ (- +E§/ L KV
] % CZ+1 %
+ 2/ DUV - vy — Z/{ cr KVP nd )
Ecéy, ecl'y,
CH—I )
— Y [{DUHHYVeHE ] 46 S / U K Vv nad [P
ecl',UAN “ € eel'y, C
+e Y [{DW)Vo-n}C* ] 4o, Y 9(re) Jle 1 =
ecl'y, e, UoNY ‘|
g(re)
+Uc Z Cqir¥ + fQU + Z CdirUdir?, (72)
eco ‘ / / EBQ/e

In Case 2, the pressure equation is the same as in case 1, but the concentration
equation becomes:
Concentration Equation

N (2 7 CZ+1 7
W <i<N-1, VoeD, (&), [ (C*-C) 3 / L KT
sz—f—l )
+ 3 / DUHYVCH Ty — 3 / e KVP nb
Ee&y, ecl’y, C
- Z /CH_ludirv
ecl'n €
i+1 i+1 CH—I i+1
S /{DU Ve ne}[v]—i-EZ/{ iy KV [P
ecl'p,Ul'p ecl'y, Cj
+e ¥ / (DU™")Vv - 1, }[C]
ecl'y,
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to, Z g(re) /E[Cz'—i-l][v] _

ecTp,U'pUl'n |€|

Te
+0e Y g|(e\) /ecdirv +/Qf21) + 2 [ catiaint, (73)

e€l'p eclny ¥ €

The analysis can be modified to accomodate those different boundary condi-
tions.

6 Conclusions

We study the application of primal discontinuous Galerkin methods, namely
NIPG, IIPG, SIPG, and backward Euler discretization to solve the miscible
displacement problem. We give explicit expressions of the limiting values of the
penalty parameters above which the method is stable and convergent. They
depend in particular of the trace constants. In the case of NIPG, any penalty
values can be used for the pressure equation whereas a minimum penalty value
is required for the concentration equation.
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