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Abstract. In this work a dual-mixed approximation of a nonlinear generalized Stokes problem is
studied. The problem is analyzed in Sobolev spaces which arise naturally in the problem formulation.
Existence and uniqueness results are given and error estimates are derived. It is shown that both
lowest-order and higher-order mixed finite elements are suitable for the approximation method.
Numerical experiments that support the theoretical results are presented.
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1 Introduction

In this article we investigate the solution of a nonlinear generalized Stokes problem using a dual-
mixed formulation. The nonlinear generalized Stokes problem arises in modeling flows of, for exam-
ple, biological fluids, lubricants, paints, polymeric fluids, where the fluid viscosity is assumed to be
a nonlinear function of the fluid’s velocity gradient tensor. The generalized Stokes problem is given
by: Find (u, p) such that

−∇ · (ν(|∇u|)∇u) +∇p = f in Ω , (1.1)
∇ · u = 0 in Ω , (1.2)

u = uΓ on Γ , (1.3)

where Ω is a bounded open subset of Rn with Lipschitz continuous boundary Γ. The fluid velocity
is denoted by u, and ∇u := (∇u)ij = ∂ui/∂xj is the tensor gradient of u. Here and throughout
the paper we use the following notation: for tensors σ = (σij), τ = (τij), σ : τ =

∑
i,j σijτij ,

|σ|2 = σ : σ. The pressure is denoted by p, and f describes the external forces on the fluid. The
function ν describes the nonlinear kinematic viscosity of the fluid.
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Some classical examples of ν are given by:

Power Law

ν(|d(u)|) = ν0 |d(u)|r−2 , ν0 > 0, 1 < r < 2, (1.4)

where d(u) = 1
2(∇u +∇uT) denotes the fluid deformation tensor. The power law model has been

used to model the viscosity of many polymeric solutions and melts over a considerable range of shear
rates [18].

Ladyzhenskaya Law[21]:

ν(|∇u|) = (ν0 + ν1 |∇u|)r−2 , ν0 ≥ 0, ν1 > 0, r > 1 , (1.5)

which has been used in modeling fluids with large stresses.

Carreau Law:

ν(|d(u)|) = ν0

(
1 + |d(u)|2

)(r−2)/2
, ν0 > 0, r ≥ 1 , (1.6)

used in modeling visco-plastic flows and creeping flow of metals.

General descriptions of (1.1) are often written in terms of the tensor σ = ν(|∇u|)∇u:

−∇ · σ +∇p = f in Ω . (1.7)

The work in this paper extends the investigations of [4, 22, 15]. In [4] Baranger, Najib, and Sandri
provided an analysis for the existence and uniqueness of the modeling equations in appropriate
Sobolev spaces and gave an error analysis of a finite element approximation method applied to the
primitive variables (σ, p, u). Manouzi and Farhloul in [22] reformulated the modeling equations into
a saddle point problem and used a mixed formulation to study the existence and uniqueness of the
solution, again in appropriate Sobolev spaces. An error analysis for the finite element approximation
was also given. In both [4] and [22] the analysis used the assumption that the equation describing
σ in terms of d(u) or ∇u was invertible to give d(u) or ∇u as a function of σ.

Recent work by Gatica in [13] and Gatica, Heuer, and Meddahi in [14] provided a general theory for
solvability and Galerkin approximations of a class of nonlinear twofold saddle point problems posed
in Hilbert spaces. In [15], Gatica, González, and Meddahi reformulated the modeling equations
for a nonlinear generalized Stokes flow as a twofold saddle point problem, using the tensor ψ
in place of σ (ψ = σ − pI) and introducing an additional variable for ∇u. In doing so, their
formulation used the constitutive equation for σ as a function of ∇u and reduced the regulatity
requirement for the velocity. Advantages of this approach include: (i) more flexibility in choosing
the approximating finite element space for u, (ii) Dirichlet boundary conditions for u become natural
boundary conditions and are easily incorporated into the variational formulations, (iii) avoids the
assumption of expressing ∇u was a function of σ. A disadvantage in this formulation is that
additional unknowns are introduced. The analysis of this approach was only studied in a Hilbert
space setting.

In this paper we recast the formulation described in [15] in appropriate Sobolev spaces. Because
of the nonlinearity in (1.7), this problem is more appropriately studied in Sobolev spaces which
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should result in tighter error estimates for the approximate solution. This extends the work of [22]
by avoiding the assumption of expressing ∇u as a function of σ. In addition, we show that higher-
order approximating spaces can be used in the mixed finite element method for this formulation
and give the associated a priori error estimates.

A description of the notation used in this paper, the mathematical problem, and the dual-mixed
variational formulation is given in Section 2. Existence and uniqueness of the variational formulation
is studied in Section 3. In Section 4 the finite element approximation is presented and analyzed.
Numerical results are given in Section 5.

2 Mathematical Setting

Here and throughout the rest of this paper we consider the case where 1 < r < 2. We denote the
unitary conjugate of r by r′, satisfying r−1 + r′−1 = 1. Used in the analysis below are the following
function spaces and norms.

T := (Lr(Ω))n×n = {τ = (τij); τij ∈ Lr(Ω) ; i, j = 1, . . . , n } ,

with norm ‖τ‖T :=
(∫

Ω |τ |
r dΩ

)1/r.

T
′
:=
(
Lr′(Ω)

)n×n
and T

′
div :=

{
τ ∈ T ′

; div τ ∈
(
Lr′(Ω)

)n }
,

with norm ‖τ‖
T
′
div

:=
(∫

Ω(|τ |r′ + |div τ |r′) dΩ
)1/r′

. Let U := (Lr(Ω))n, and P := Lr′(Ω).

For a Banach space X, X∗ denotes its dual space with associated norm ‖ · ‖X∗ . Note that T ∗ = T
′
,

and
(
T

′
)∗

= T . The norm and seminorm associated with the Sobolev space Wm,r(Ω) will be
denoted by ‖ · ‖m,r,Ω and | · |m,r,Ω, respectively, and the infinity norm will be denoted by ‖ · ‖∞.

Motivated by (1.4),(1.5),(1.6), we will assume that the extra stress tensor is a function of the velocity
gradient, i.e.

σ := g(∇u) = ν(|∇u|)∇u . (2.1)

Specifically, we assume

A1: g : T → T ∗ is a bounded, continuous, strictly monotone operator [24];

and that there exist constants Ĉ1 and Ĉ2 such that, for s, t,w ∈ T ,

A2:
∫

Ω
(g(s)− g(t)) : (s− t) dΩ ≥ Ĉ1

(∫
Ω
|g(s)− g(t)||s− t| dΩ +

‖s− t‖2
T

‖s‖2−r
T + ‖t‖2−r

T

)
, (2.2)

A3:
∫

Ω
(g(s)− g(t)) : w dΩ ≤ Ĉ2

∥∥∥∥ |s− t|
|s|+ |t|

∥∥∥∥ 2−r
r

∞

(∫
Ω
|g(s)− g(t)||s− t| dΩ

)1/r′

‖w‖T , (2.3)

with the convention that g(s) = 0 if s = 0 and |s(x)− t(x)|/(|s(x)|+ |t(x)|) = 0 if s(x) = t(x) = 0.
Properties A1–A3 have been established for power law and Carreau law fluids [3]. (For the case of
a power law fluid monotonicity is also shown in [26, 7].) For Ladyzhenskaya law fluids, the analysis
in [26] is easily extended to show that A1–A3 hold.
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Remark 2.1 From (1.2) it follows that uΓ must satisfy the compatibility condition∫
Γ

uΓ · n dΓ = 0 ,

where n denotes the outward pointing unit normal vector to Ω.

In order to obtain the dual-mixed formulation, introduce two new variables, φ and ψ.

φ := ∇u , (2.4)
ψ := σ − pI , the total stress tensor, (2.5)

= g(φ) − pI , using (2.1) . (2.6)

With the definition of ψ a variational form for (1.1) can be written as

−
∫

Ω
v · divψ dΩ =

∫
Ω

v · f dΩ , for v ∈ T . (2.7)

Note that from the definition of φ we have that, for sufficiently smooth functions,

0 = −
∫

Ω
φ : τ dΩ +

∫
Ω
∇u : τ dΩ

= −
∫

Ω
φ : τ dΩ +

∫
Γ
(τ · n) · uΓ dΓ −

∫
Ω

u · div τ dΩ (2.8)

where the integral over Γ is the duality pairing of (W−1/r′,r′(Γ))n and (W 1−1/r,r(Γ))n with respect
to the (L2(Ω))n inner product. The incompressibility condition div u = 0 is equivalent to

tr(φ) = 0 , (2.9)

where we use tr(φ) to denote the trace of φ.

Combining (1.4), (2.8), and (2.7) a variational formulation to (1.4), (2.8), and (2.7) is: Given
f ∈

(
Lr′(Ω)

)n
, uΓ ∈

(
W 1−1/r , r(Γ)

)n
, determine (φ,ψ, p,u) ∈ T × T

′
div × P × U such that∫

Ω
g(φ) : ς dΩ −

∫
Ω
ψ : ς dΩ −

∫
Ω
p tr(ς) dΩ = 0 ,∀ς ∈ T , (2.10)

−
∫

Ω
τ : φ dΩ −

∫
Ω
q tr(φ) dΩ −

∫
Ω

u · div τ dΩ = −
∫

Γ
(τ · n) · uΓ dΓ ,

∀(τ , q) ∈ T ′
div × P , (2.11)

−
∫

Ω
v · divψ dΩ =

∫
Ω

v · f dΩ ,∀v ∈ U . (2.12)

Note that equations (2.10)-(2.12) do not uniquely define a solution; as adding (0, cI,−c,0) to a
solution (φ,ψ, p,u), also satisfies (2.10)-(2.12) for any c ∈ R. In order to guarantee uniqueness we
proceed as in [2, 6, 15] and impose, via a Lagrange multiplier, the constraint

∫
Ω tr(ψ) dΩ = 0.
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The variational formulation may then be restated as: Given f ∈
(
Lr′(Ω)

)n
, uΓ ∈

(
W 1−1/r , r(Γ)

)n
,

determine (φ,ψ, p,u, λ) ∈ T × T
′
div × P × U × R such that∫

Ω
g(φ) : ς dΩ −

∫
Ω
ψ : ς dΩ −

∫
Ω
p tr(ς) dΩ = 0 ,∀ς ∈ T , (2.13)

−
∫

Ω
τ : φ dΩ −

∫
Ω
q tr(φ) dΩ −

∫
Ω

u · div τ dΩ + λ

∫
Ω
tr(τ ) dΩ

= −
∫

Γ
(τ · n) · uΓ dΓ ,∀(τ , q) ∈ T ′

div × P , (2.14)

−
∫

Ω
v · divψ dΩ + η

∫
Ω
tr(ψ) dΩ =

∫
Ω

v · f dΩ ,∀(v, η) ∈ U × R . (2.15)

Remark 2.2 As commented in [15], the value of the Lagrange multiplier λ is 0, as can be seen
from the choice of τ = I and q = −1. However, it is included in the variational formulation so that
the formulation has a twofold saddle point structure.

To formally rewrite (2.13)-(2.15) as a twofold saddle point problem define the following operators:

A : T −→ T
′
, B : T −→ (T

′
div × P )∗ , C : T

′
div × P −→ (U × R)∗ .

[A(φ) , ς] :=
∫

Ω
g(φ) : ς dΩ , (2.16)

[B(φ) , (τ , q)] := −
∫

Ω
τ : φ dΩ −

∫
Ω
q tr(φ) dΩ , (2.17)

[C(ψ, p) , (v, η)] := −
∫

Ω
v · divψ dΩ + η

∫
Ω
tr(ψ) dΩ . (2.18)

The modeling equations can then be written in the form

[A(φ) , ς] + [ς , B∗(ψ, p)] = 0 ,∀ς ∈ T , (2.19)

[B(φ) , (τ , q)] + [(τ , q) , C∗(u, λ)] = −
∫

Γ
(τ · n) · uΓ dΓ ,∀(τ , q) ∈ T ′

div × P , (2.20)

[C(ψ, p) , (v, η)] =
∫

Ω
v · f dΩ ,∀(v, η) ∈ U × R , (2.21)

where B∗ and C∗ denote the respective adjoint operators of B and C, respectively.

3 Solvability of the Continuous Formulation

In this section we discuss the existence and uniqueness of a solution to (2.19)-(2.21). The proof of this
result requires specific properties of the A, B, and C operators (including suitable inf-sup conditions
for B and C), the general theory of saddle point problems, and monotone operator theory. We
remark that direct applications of Hölder’s inequality establishes that [B(·), (·, ·)] : T×(T

′
div×P ) → R

and [C(·, ·), (·, ·)] : (T
′
div × P ) × (U × R) → R are bounded (componentwise) linear functionals.
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Additionally, the assumptions A1-A3 discussed in Section 2 imply that A(φ) defines a bounded,
continuous, strictly monotone operator on a reflexive Banach space. Before presenting the proof
of solvability in Theorem 3.1, we present several technical lemmas that establish the appropriate
inf-sup conditions for B and C.

3.1 Inf-sup Condition for B

Define the null space for the operator C, Z1, as

Z1 :=
{

(τ , q) ∈ T ′
div × P : [C(τ , q) , (v, η)] = 0 , ∀(v, η) ∈ U × R

}
,

=
{

(τ , q) ∈ T ′
div × P : div τ = 0 in Ω, and

∫
Ω
tr(τ ) dΩ = 0

}
. (3.1)

Note that for (τ , q) ∈ Z1, ‖τ‖T
′
div

= ‖τ‖T ′ . Helpful in establishing the inf-sup condition for B is
the following lemma.

Lemma 3.1 (See Lemma 3.1 in [2] for Hilbert space setting.) For τ ∈ T ′
div satisfying

∫
Ω tr(τ ) dΩ =

0, let τ 0 = τ − 1
n tr(τ )I. Then, there exists C, depending only Ω, such that

‖τ‖Lr′ ≤ C
(
‖τ 0‖Lr′ + ‖div τ‖W−1,r′

)
. (3.2)

Proof : Now, there exists a non-zero function ϕ ∈ Lr(Ω) such that

‖tr(τ )‖Lr′ (Ω) ‖ϕ‖Lr(Ω) =
∫

Ω
tr(τ )ϕdΩ . (3.3)

Since
∫
Ω tr(τ ) dΩ = 0, we can assume

∫
Ω ϕdΩ = 0 (shift ϕ by its average). From [12], pg. 116,

given ϕ ∈ Lr(Ω), 1 < r < ∞ with
∫
Ω ϕdΩ = 0, then there exists v ∈ W 1,r

0 (Ω) and a constant C
such that

div v = ϕ in Ω and ‖v‖W 1,r(Ω) ≤ C‖ϕ‖Lr(Ω) . (3.4)

From (3.3) and (3.4),

1
nC

‖tr(τ )‖Lr′ (Ω) ‖v‖W 1,r(Ω) ≤ 1
n

∫
Ω
tr(τ ) div v dΩ =

1
n

∫
Ω
tr(τ ) I : ∇v dΩ

=
∫

Ω
(τ − τ 0) : ∇v dΩ (using the defn. of τ 0)

= −
∫

Ω
(τ 0 : ∇v + div τ · v) dΩ

≤
(
‖τ 0‖Lr′ (Ω) + ‖div τ‖W−1,r′ (Ω)

)
‖v‖W 1,r(Ω) .

Lemma 3.2 There exists a constant c1 > 0 such that

inf
(τ ,q)∈Z1

sup
φ∈T

[B(φ) , (τ , q)]
‖φ‖T ‖(τ , q)‖T

′
div×P

≥ c1 . (3.5)
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Proof : The inf-sup condition is established using the approach in [15] (and the references therein)
for the Hilbert space case, in which two cases are considered and suitable choices of trial functions
are constructed to form a lower bound on the supremum. We briefly illustrate the adjustments to
the general Sobolev case and refer the reader to [9] for the complete proof.
Case 1.: ‖q‖P ≤ ‖τ‖

T
′
div

.
Let

τ 0 = τ − 1
n
tr(τ )I, and φ = −|τ 0|r′/r−1 τ 0/‖τ 0‖r′−1

T ′ . (3.6)

Note that φ ∈ T , and ‖φ‖T = 1. Then, using Lemma 3.1 and the fact that tr(τ 0) = 0, there exists
a constant C > 0 such that

[B(φ), (τ , q)]
‖φ‖T

≥ C‖(τ , q)‖
T
′
div×P

(3.7)

for (τ , q) ∈ Z1.
Case 2.: ‖q‖P ≥ ‖τ‖

T
′
div

.
Let

φ =
−|qI + τ |r′/r−1 (qI + τ )

‖qI + τ‖r′−1
T ′

. (3.8)

Again, φ ∈ T , and ‖φ‖T = 1. This choice of φ implies that there exists a C > 0 such that, for
(τ , q) ∈ Z1,

[B(φ), (τ , q)]
‖φ‖T

≥ C‖(τ , q)‖
T
′
div×P

.

3.2 Inf-sup Condition for C

The following lemma is an extension of Lemma 2.1 of [15] to the general Sobolev case and is helpful
in establishing the inf-sup condition for C.

Lemma 3.3 Let 0T
′
div :=

{
τ ∈ T ′

div :
∫
Ω tr(τ ) dΩ = 0

}
. Then, there exists C > 0 such that for

any u ∈ U

sup
τ̂∈ 0T

′
div

τ̂ 6=0

∫
Ω u · divτ̂ dΩ
‖τ̂‖

T
′
div

≥ C sup
τ∈T

′
div

τ 6=0

∫
Ω u · divτ dΩ
‖τ‖

T
′
div

. (3.9)

Proof : For τ ∈ T
′
div, let τ 0 = τ − 1

n|Ω|
(∫

Ω tr(τ )) dΩ
)
I. Then, τ 0 ∈ 0T

′
div, and divτ = divτ 0.

Let

ς := |τ 0|r
′/r− 1τ 0 +

sgn
(
(
∫
Ω tr(τ ) dΩ) (

∫
Ω |τ 0|r

′/r− 1τ 0 dΩ)
)

n |Ω|

(∫
Ω
|τ 0|r

′/r− 1τ 0 dΩ
)

I .

Note that as

‖|τ 0|r
′/r− 1τ 0‖Lr =

(∫
Ω
|τ 0|r

′
dΩ
)1/r

= ‖τ 0‖r′/r

Lr′ ,
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and ∣∣∣∣∫
Ω
|τ 0|r

′/r− 1tr(τ 0) dΩ
∣∣∣∣ ≤ √

n

∫
Ω
|τ 0|r

′/r 1 dΩ ≤ C ‖τ 0‖r′/r

Lr′ .

Thus
‖ς‖Lr ≤ C‖τ 0‖r′/r

Lr′ . (3.10)

We have that
‖τ‖Lr′ = sup

σ∈Lr

(τ , σ)
‖σ‖Lr

. (3.11)

Now, using τ 0 ∈ 0T
′
div,

(τ , ς) =
∫

Ω
|τ 0|r

′
dΩ +

1
n|Ω|

(∫
Ω
tr(τ ) dΩ

)(∫
Ω
|τ 0|r

′/r− 1 tr(τ 0) dΩ
)

+
∣∣∣∣ 1
n|Ω|

(∫
Ω
tr(τ ) dΩ

)(∫
Ω
|τ 0|r

′/r− 1 tr(τ 0) dΩ
)∣∣∣∣

≥ ‖τ 0‖r′

Lr′ . (3.12)

Therefore, from (3.10), (3.11), and (3.12) we have that ‖τ‖Lr′ ≥ C ‖τ 0‖Lr′ . Combining the above
we obtain ∫

Ω u · divτ dΩ
‖τ‖

T
′
div

=

∫
Ω u · divτ 0 dΩ
‖τ‖

T
′
div

≤ C

∫
Ω u · divτ 0 dΩ
‖τ 0‖T

′
div

,

from which (3.9) then follows.

Lemma 3.4 There exists a constant c2 > 0 such that

inf
(u,λ)∈U×R

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

‖(u, λ)‖U×R
≥ c2 . (3.13)

Proof : As in the case of Lemma 3.2, the structure of the proof mirrors that in [15] and considers
two cases:
Case 1.: |λ| ≥ ‖u‖U .
For this case we have

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

≥ [C(λI, 0) , (u, λ)]
‖λI‖

T
′
div

=
nλ2 |Ω|

|λ|nr′/2 |Ω|1/r′
≥ C‖(u, λ)‖U×R . (3.14)

Case 2.: |λ| ≤ ‖u‖U .
Using Lemma 3.3,

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

≥ sup
τ 0∈ 0T

′
div

−
∫
Ω u · divτ 0 dΩ
‖τ 0‖T

′
div

≥ C sup
τ∈T

′
div

−
∫
Ω u · divτ dΩ
‖τ‖

T
′
div

. (3.15)

Choose w ∈ (Lr′(Ω))n such that ‖u‖Lr ‖w‖Lr′ =
∫
Ω u · w dΩ , and let τ satisfy div τ = w in Ω

with
‖τ‖

T
′
div
≤ C ‖w‖Lr′ ,
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(see [12] pg. 116). Then,

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

≥ C
−
∫
Ω u · div(−τ ) dΩ
‖ − τ‖

T
′
div

≥ C

∫
Ω u ·w dΩ
‖w‖Lr′

≥ C‖u‖U ≥ C‖(u, λ)‖U×R . (3.16)

3.3 Existence, Uniqueness, and A Priori Estimates

Before proceeding to the proof of existence and uniqueness, we state two known results that will be
utilized:

Lemma 3.5 ([17], Remark 4.2, pg. 61) Let (X, ‖ · ‖X) and (M, ‖ · ‖M ) be two reflexive Banach
spaces. Let (X ′, ‖ · ‖X′) and (M ′, ‖ · ‖M ′) be their corresponding dual spaces. Let B : X → M ′

be a linear continuous operator and B′ : M ′′ → X the dual operator of B. Let V = ker(B) be
the kernel of B; we denote by V o ⊂ X ′ the polar set of V : V o = {x′ ∈ X ′ , [x′, v] = 0 , ∀v ∈ V }
and Ḃ : (X/V ) → M ′ the quotient operator associated with B. The following three properties are
equivalent:
(i) ∃β > 0, such that

inf
q∈M

sup
v∈X

[Bv, q]
‖q‖M ‖v‖X

≥ β ,

(ii) B′ is an isomorphism from M ′′ onto V o and

‖B′q‖ ≥ β‖q‖M ′′ ∀q ∈M ′′ ,

(iii) Ḃ is an isomorphism from (X/V ) onto M ′ and

‖Ḃv̇‖ ≥ β‖v̇‖(X/V ) ∀v̇ ∈ (X/V ) .

Lemma 3.6 ([24], Theorem 9.45, pg. 361, Browder-Minty) Let X be a real, reflexive Banach
space and let T : X → X ′ be bounded, continuous, coercive and monotone. Then for any g ∈ X ′

there exists a solution u of the equation T (u) = g; i.e., T (X) = X ′.

The main result of this section is now presented.

Theorem 3.1 There exists a unique solution (φ,ψ, p,u, λ) ∈ T × T
′
div × P × U × R satisfying

(2.19)–(2.21).

Proof : Following the approach in [10], from Lemmas 3.4 and 3.5 (i) and (iii), with the associations
X = T

′
div × P , M = U × R, B : X → M ′ defined by B((τ , q)) := [C(τ , q), (·, ·)], V = ker B = Z1,

we have that there exists (ψ̇, ṗ) ∈ (T
′
div × P )/Z1 such that

[C(ψ̇, ṗ), (v, η)] =
∫

Ω
v · f dΩ, ∀ (v, η) ∈ U × R

9



with ‖(ψ̇, ṗ)‖
(T

′
div×P )/Z1

≤ (1/c2)‖f‖0,r′ . As the cosets in (T
′
div × P )/Z1 are closed, we can choose

(ψ0, p0) ∈ (ψ̇, ṗ) such that

‖ψ0‖T
′
div

+ ‖p0‖P = ‖(ψ0, p0)‖T
′
div×P

= ‖(ψ̇, ṗ)‖
(T

′
div×P )/Z1

≤ (1/c2)‖f‖0,r′ . (3.17)

Let ψ = ψ̃+ψ0 and p = p̃+ p0. Then solving (2.19)–(2.21) is equivalent to: find (φ, ψ̃, p̃) ∈ T ×Z1

such that

[A(φ) , ς] + [ς , B∗(ψ̃, p̃)] = −[ς , B∗(ψ0, p0)] , ∀ς ∈ T , (3.18)

[B(φ) , (τ , q)] = −
∫

Γ
(τ · n) · uΓ dΓ , ∀(τ , q) ∈ Z1 . (3.19)

Introduce a subspace of T defined by

Z2 := {ς ∈ T : [ς, B∗(τ , q)] = 0 , ∀(τ , q) ∈ Z1} = {ς ∈ T : [B(ς), (τ , q)] = 0 , ∀(τ , q) ∈ Z1} .

Now, from Lemmas 3.2 and 3.5 (i) and (iii), through the same argument as above now with associ-
ations X = T , M = Z1, B : X → M ′ defined by B(ς) := [B(ς), (·, ·)], V = ker B = Z2, there is a
φ0 ∈ T such that

[B(φ0) , (τ , q)] = −
∫

Γ
(τ · n) · uΓ dΓ ,∀(τ , q) ∈ Z1 ,

with
‖φ0‖T ≤

1
c1
‖uΓ‖1−1/r,r,Γ . (3.20)

Then, solving (3.18)–(3.19) is equivalent to: find φ̃ ∈ Z2 such that

[A(φ̃ + φ0) , ς] = −[ς , B∗(ψ0, p0)] , ∀ς ∈ Z2 . (3.21)

Lemma 3.6 and the assumptions A1–A3 guarantee the existence of a φ̃ satisfying (3.21). Uniqueness
of φ̃ is implied by assumption A2, and this uniquely determines φ = φ̃ + φ0. Thus, Lemma 3.2
and (2.19) imply there exist unique (ψ̃, p̃) ∈ Z1 that satisfies

[ς , B∗(ψ̃, p̃)] = −[ς , B∗(ψ0, p0)] − [A(φ̃ + φ0) , ς] , ∀ς ∈ T . (3.22)

This uniquely determines ψ and p. Then Lemma 3.4 and (2.20) imply there exists a unique (u, λ) ∈
U × R such that

[(τ , q) , C∗(u, λ)] = −
∫

Γ
(τ · n) · uΓ dΓ − [B(φ) , (τ , q)] , ∀(τ , q) ∈ T ′

div × P , (3.23)

which completes the proof.

Corollary 3.1 The solution (φ,ψ, p,u, λ) ∈ T × T
′
div × P × U × R to (2.19)–(2.21) satisfies

‖φ‖T + ‖u‖U + |λ| ≤ C
(
‖uΓ‖1−1/r,r,Γ + ‖f‖r′/r

0,r′,Ω

)
, (3.24)

‖ψ‖
T
′
div

+ ‖p‖P ≤ C
(
‖uΓ‖1/r′

1−1/r,r,Γ + ‖f‖0,r′,Ω + ‖f‖1/r
0,r′,Ω

)
, (3.25)

for some constant C > 0.
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Proof : Let φ = φ0 + φ̃,ψ = ψ0 + ψ̃, p = p0 + p̃,u, and λ be as in the proof of Theorem 3.1. From
(2.2) we have that

Ĉ1

(
‖φ̃+ φ0‖r

T +
∫

Ω
|g(φ̃+ φ0)||φ̃+ φ0| dΩ

)
≤
∫

Ω
g(φ̃+ φ0) : (φ̃+ φ0) dΩ . (3.26)

Using (2.16) and (3.26) with ς = φ̃ we have

[A(φ), φ̃] =
∫

Ω
g(φ̃+ φ0) : φ̃ dΩ =

∫
Ω

g(φ̃+ φ0) : (φ̃+ φ0) dΩ +
∫

Ω
g(φ̃+ φ0) : φ0 dΩ

≥ Ĉ1

(
‖φ̃+ φ0‖r

T +
∫

Ω
|g(φ̃+ φ0)||φ̃+ φ0| dΩ

)
− Ĉ2

(∫
Ω
|g(φ̃+ φ0)||φ̃+ φ0| dΩ

)1/r′

‖φ0‖T

≥ Ĉ1‖φ̃+ φ0‖r
T +

(
Ĉ1 −

ε1Ĉ2

r′

)∫
Ω
|g(φ̃+ φ0)||φ̃+ φ0| dΩ− Ĉ2

rε1
‖φ0‖r

T . (3.27)

Now we also have from (3.21), using Young’s inequality and the triangle inequality,

[A(φ̃+ φ0), φ̃] = −[B(φ̃), (ψ0, p0)] =
∫

Ω
ψ0 : φ̃ dΩ +

∫
Ω
p0 tr(φ̃) dΩ

≤ ‖ψ0‖T ′‖φ̃‖T +
√
n ‖p0‖P ‖φ̃‖T

≤ 2ε2
r
‖φ̃‖r

T +
1
r′ε2

(
‖ψ0‖r′

T ′ +
√
n ‖p0‖r′

P

)
≤ 2ε2

r

(
‖φ̃+ φ0‖r

T + ‖φ0‖r
T

)
+

1
r′ε2

(
‖ψ0‖r′

T ′ +
√
n ‖p0‖r′

P

)
. (3.28)

Combining (3.27) and (3.28), we have(
Ĉ1 −

2ε2
r

)
‖φ‖r

T +

(
Ĉ1 −

ε1Ĉ2

r′

)∫
Ω
|g(φ)||φ| dΩ

≤

(
Ĉ2

rε1
+

2ε2
r

)
‖φ0‖r

T +
1
r′ε2

(
‖ψ0‖r′

T ′ +
√
n ‖p0‖r′

P

)
. (3.29)

Together with (3.17), (3.20) and choices for ε1, ε2 that ensure

Ĉ1 −
2ε2
r
> 0 , and Ĉ1 −

ε1Ĉ2

r′
> 0 ,

we have
‖φ‖T +

∫
Ω
|g(φ)||φ| dΩ ≤ C

(
‖uΓ‖1−1/r,r,Γ + ‖f‖r′/r

0,r′,Ω

)
, (3.30)

for some C > 0. From A3, (3.22), Lemma 3.2 and Lemma 3.5 (i) and (ii), we have that

‖ψ̃‖
T
′
div

+ ‖p̃‖P = ‖(ψ̃, p̃)‖
T
′
div×P

≤ C

(
‖ψ0‖T ′ + ‖p0‖P +

(∫
Ω
|g(φ)||φ| dΩ

)1/r′
)
. (3.31)

Combining (3.17), (3.30), and (3.31) we obtain (3.25). Finally, (3.23), Lemma 3.4 and Lemma 3.5
(i) and (ii) complete the estimate (3.24) by bounding ‖(u, λ)‖U×R with ‖φ‖T and ‖uΓ‖1−1/r,r,Γ.
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4 Finite Element Approximation

Let Ω ⊂ Rn be a polygonal domain and let Th be a triangulation of Ω into triangles (n = 2) or
tetrahedrals (n = 3). Thus

Ω = ∪K , K ∈ Th ,

and assume that there exist constants γ1, γ2 such that

γ1h ≤ hK ≤ γ2ρK (4.1)

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the greatest ball (sphere)
included in K, and h = maxK∈Th

hK . Define the finite-dimensional subspaces Th ⊆ T , T
′
div, h ⊆ T

′
div,

Ph ⊆ P , and Uh ⊆ U . Then the discrete formulation of (2.13)-(2.15) is defined as:

[A(φh) , ςh] + [ςh , B∗(ψh, ph)] = 0 ,∀ςh ∈ Th , (4.2)

[B(φh), (τ h, qh)] + [(τ h, qh),C∗(uh, λh)] = −
∫

Γ
(τ h · n) · uΓ dΓ ,

∀(τ h, qh) ∈ T ′
div,h × Ph , (4.3)

[C(ψh, ph) , (vh, ηh)] =
∫

Ω
vh · f dΩ ,∀(vh, ηh) ∈ Uh × R . (4.4)

The corresponding discrete kernels of B and C are defined similarly. We have

Z1h :=
{

(τ h, qh) ∈ T ′
div,h × Ph : [C(τ h, qh) , (vh, ηh)] = 0 , ∀(vh, ηh) ∈ Uh × R

}
,

and
Z2h := {ςh ∈ Th : [B(ςh), (τ h, qh)] = 0 , ∀(τ h, qh) ∈ Z1h} .

4.1 Existence, Uniqueness, and A Priori Estimates

Theorem 4.1 Let g satisfy (2.2) and (2.3). Let (φ,ψ, p,u, λ) ∈ T ×T ′
div×P ×U ×R solve (2.13)-

(2.15). Assume that
(1) There exists a positive constant c1 such that

inf
(τ h,qh)∈Z1h

sup
ςh∈Th

[B(ςh) , (τ h, qh)]
‖ςh‖T ‖(τ h, qh)‖

T
′
div×P

≥ c1 . (4.5)

(2) There exists a positive constant c2 such that

inf
(uh,λh)∈Uh×R

sup
(τ h,qh)∈T

′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

‖(uh, λh)‖U×R
≥ c2 . (4.6)

Then, for f ∈
(
Lr′(Ω)

)n
and uΓ ∈

(
W 1−1/r , r(Γ)

)n
, there exists a unique solution

(φh,ψh, ph,uh, λh) ∈ Th × T
′
div, h × Ph × Uh × R to the problem (4.2)-(4.4).
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Proof : With the assumptions as stated above, existence and uniqueness of
(φh,ψh, ph,uh, λh) ∈ Th×T

′
div, h×Ph×Uh×R solving (4.2)-(4.4) follows directly from the continuous

solution approach outlined in Section 3 and summarized in Theorem 3.1.

It should be noted that the stability estimates shown in Corollary 3.1 carry over to the discrete case
as well. We now give the abstract a priori error estimate.

Theorem 4.2 Let

E(φ,φh) =
∥∥∥∥ |φ− φh|
|φ|+ |φh|

∥∥∥∥(2−r)/r

∞
. (4.7)

Assume the hypotheses of Theorem 4.1 are satisfied. Also assume that for h sufficiently small, there
is a constant c3 > 0 such that

inf
(τ h,qh)∈T

′
div,h×Ph

sup
(ςh,vh,ηh)∈Th×Uh×R

[B(ςh), (τ h, qh)] + [C(τ h, qh) , (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R ‖(τ h, qh)‖

T
′
div×P

≥ c3 . (4.8)

where ‖(ςh,vh, ηh)‖T×U×R = ‖ςh‖T + ‖vh‖U + ‖ηh‖R. Then

‖φ− φh‖2
T +

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

≤ C

{
inf
ςh∈Th

(
‖φ− ςh‖2

T + E(φ,φh)r ‖φ− ςh‖r
T

)
+ inf

vh∈Uh

‖u− vh‖2
U

+ inf
τ h∈T

′
div, h

‖ψ − τ h‖2
T
′
div

+ inf
qh∈Ph

‖p− qh‖2
P

}
, (4.9)

‖ψ −ψh‖T
′
div

+ ‖p− ph‖P ≤ C

{
inf

τ h∈T
′
div, h

‖ψ − τ h‖T
′
div

+ inf
qh∈Ph

‖p− qh‖P

}

+ E(φ,φh)
(∫

Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

, (4.10)

and
‖u− uh‖U + |λ− λh| ≤ C ‖φ− φh‖T + inf

vh∈Uh

‖u− vh‖U , (4.11)

for some constant C > 0.

Proof : Let (φh,ψh, ph,uh, λh) satisfy (4.2)–(4.4), and note that the continuous solution (φ,ψ, p,u, λ)
also satisfies (4.2)–(4.4). Define the following subspaces:

Z̃1h :=
{

(τ h, qh) ∈ T ′
div,h × Ph : [C(τ h, qh) , (vh, ηh)] =

∫
Ω

vh · f dΩ ,∀(vh, ηh) ∈ Uh × R
}
,

and

Z̃2h :=
{
ςh ∈ Th : [B(ςh), (τ h, qh)]+[(τ h, qh), C∗(uh, λh)] = −

∫
Γ
(τ h·n)·uΓ dΓ ,∀(τ h, qh) ∈ Z̃1h

}
.
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Note that uh ∈ Z̃2h and (ψh, ph) ∈ Z̃1h. From (2.2) and the definition of A (2.16), we have ,

Ĉ1
‖φ− φh‖2

T

‖φ‖2−r
T + ‖φh‖2−r

T

+ Ĉ1

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

≤
∫

Ω
(g(φ)− g(φh)) : (φ− φh) dΩ , (4.12)

and ∫
Ω

(g(φ)− g(φh)) : (φ− φh) dΩ = [A(φ)−A(φh), φ− φh]

= [A(φ)−A(φh), φ− ςh]
+ [A(φ)−A(φh), ςh − φh] . (4.13)

We examine the first term on the RHS of (4.13). For E given by (4.7), note that E(φ,φh) ≤ 1. From
(2.3) and Young’s inequality, we have

[A(φ)−A(φh), φ− ςh] =
∫

Ω
(g(φ)− g(φh)) : (φ− ςh) dΩ

≤ Ĉ2 E(φ,φh)
(∫

Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

‖φ− ςh‖T

≤ Ĉr′
2 ε1
r′

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ +

1
rε1

E(φ,φh)r ‖φ− ςh‖r
T . (4.14)

For the second term on the RHS of (4.13), if ςh ∈ Z̃2h, we have

[A(φ)−A(φh), ςh − φh] = [A(φ), ςh − φh]− [A(φh), ςh − φh]
= −[B(ςh − φh), (ψ, p)] + [B(ςh − φh), (ψh, ph)]
= [B(φh − ςh), (ψ, p)] (as ςh,φh ∈ Z̃2h)
= [B(φh − ςh), (ψ, p)]− [B(φh − ςh), (τ h, qh)] (for (τ h, qh) ∈ Z̃1h)
= [B(φh − ςh), (ψ − τ h, p− qh)]
= [B(φh − φ), (ψ − τ h, p− qh)] + [B(φ− ςh), (ψ − τ h, p− qh)]

= −
∫

Ω
(φh − φ) : (ψ − τ h) dΩ−

∫
Ω
(p− qh)tr(φh − φ) dΩ

−
∫

Ω
(φ− ςh) : (ψ − τ h) dΩ−

∫
Ω
(p− qh)tr(φ− ςh) dΩ

≤ ‖φ− φh‖T ‖ψ − τ h‖T ′ +
√
n‖p− qh‖P ‖φ− φh‖T

+‖φ− ςh‖T ‖ψ − τ h‖T ′ +
√
n‖p− qh‖P ‖φ− ςh‖T

≤ ε2 + ε3
2

‖φ− φh‖2
T +

ε4 + ε5
2

‖φ− ςh‖2
T

+
(

1
2ε2

+
1

2ε4

)
‖ψ − τ h‖2

T ′ +
√
n

(
1

2ε3
+

1
2ε5

)
‖p− qh‖2

P . (4.15)
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Combining (4.12)-(4.15) with ε4 = ε5 = 1 we have(
Ĉ1

‖φ‖2−r
T + ‖φh‖2−r

T

− ε2 + ε3
2

)
‖φ− φh‖2

T

+

(
Ĉ1 −

Ĉr′
2 ε1
r′

)∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

≤ ‖φ− ςh‖2
T +

1
rε1

E(φ,φh)r ‖φ− ςh‖r
T

+
(

1
2ε2

+
1
2

)
‖ψ − τ h‖2

T ′ +
√
n

(
1

2ε3
+

1
2

)
‖p− qh‖2

P . (4.16)

Choosing ε1, ε2, ε3 small enough to ensure(
Ĉ1

‖φ‖2−r
T + ‖φh‖2−r

T

− ε2 + ε3
2

)
> 0 ,

and (
Ĉ1 −

Ĉr′
2 ε1
r′

)
> 0 ,

we have

‖φ− φh‖2
T +

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ ≤ C

{
inf

ςh∈Z̃2h

(
‖φ− ςh‖2

T + E(φ,φh)r ‖φ− ςh‖r
T

)
+ inf

(τ h,qh)∈Z̃1h

(
‖ψ − τ h‖2

T ′ + ‖p− qh‖2
P

)}
. (4.17)

The estimate (4.17) holds for (ςh, τ h, qh) ∈ Z̃2h × Z̃1h ⊆ Th × T
′
div, h × Ph. In order to show that

this estimate holds in all of Th × T
′
div, h × Ph, we employ a lifting argument similar to that in [10].

Define the subspace

W̃h :=
{
ςh ∈ Th : [B(ςh), (τ h, qh)] + [(τ h, qh),C∗(uh, λh)]

= −
∫

Γ
(τ h · n) · uΓ dΓ ∀ (τ h, qh) ∈ T ′

div, h × Ph

}
.

We first show that (4.17) holds for all ςh ∈ Th. Then we show that (4.17) holds for all (τ h, qh) ∈
T

′
div, h × Ph.

Note that ςh ∈ W̃h ⇒ ςh ∈ Z̃2h. Thus, for vh ∈ Uh,

inf
ςh∈Z̃2h

‖φ− ςh‖T ≤ inf
ςh∈W̃h

‖(φ,u)− (ςh,vh)‖T×U . (4.18)

From the inf-sup condition (4.8), there exist operators ΠT : T → Th and ΠU : U → Uh such that

[B(ς −ΠT ς), (τ h, qh)] + [C(τ h, qh), (v −ΠUv, λh)] = 0 , ∀ (τ h, qh) ∈ T ′
div, h × Ph , (4.19)
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and
‖(ΠT ς,ΠUv)‖T×U ≤ C̃‖(ς,v)‖T×U , ∀ (ς,v) ∈ T × U . (4.20)

Now, let (ςh,vh) ∈ Th × Uh and set φ̃ := ςh − ΠT (ςh − φ) and ũ := vh − ΠU (vh − u). Note that
(φ̃, ũ) ∈ Th × Uh. Then for all (τ h, qh) ∈ T ′

div, h × Ph,

[B(φ̃), (τ h, qh)] + [C(τ h, qh), (ũ, λh)] = [B(φ), (τ h, qh)] + [C(τ h, qh), (u, λh)]

= −
∫

Γ
(τ h · n) · uΓ dΓ, . (4.21)

Thus φ̃ ∈ W̃h. Now, using (4.20), we have

‖(φ̃, ũ)− (ςh,vh)‖T×U = ‖(ΠT (φ− ςh),ΠU (u− vh))‖T×U

≤ C̃‖(φ− ςh,u− vh)‖T×U . (4.22)

Thus we have

inf
ςh∈Z̃2h

‖φ− ςh‖T ≤ inf
(ςh,vh)∈W̃h×Uh

‖(φ,u)− (ςh,vh)‖T×U

≤ inf
(ςh,vh)∈Th×Uh

‖(φ,u)− (φ̃, ũ)‖T×U

≤ inf
(ςh,vh)∈Th×Uh

(
‖(φ,u)− (ςh,vh)‖T×U + ‖(φ̃, ũ)− (ςh,vh)‖T×U

)
≤ (1 + C̃) inf

(ςh,vh)∈Th×Uh

‖(φ,u)− (ςh,vh)‖T×U , (4.23)

which lifts the best approximation of φ from Z̃2h to Th.
Now, we must also show

inf
(τ h,qh)∈Z̃1h

‖(ψ, p)− (τ h, qh)‖
T
′
div×P

≤ C inf
(τ h,qh)∈T

′
div, h×Ph

‖(ψ, p)− (τ h, qh)‖
T
′
div×P

. (4.24)

From (4.6), we have the existence of operators ΠT ′ : T
′
div → T

′
div, h and ΠP : P → Ph such that

[C(τ −ΠT ′τ , q −ΠP q), (vh, ηh)] = 0 , ∀ (vh, ηh) ∈ Uh × R , (4.25)

and
‖(ΠT

′τ ,ΠP q)‖T
′
div×P

≤ C̃‖(τ , q)‖
T
′
div×P

. (4.26)

Now for (τ h, qh) ∈ T
′
div, h × Ph, let ψ̃ := τ h − ΠT ′ (τ h − ψ) and p̃ := qh − ΠP (qh − p). Note that

(ψ̃, p̃) ∈ T ′
div, h × Ph. Then for all (vh, ηh) ∈ Uh × R we have

[C(ψ̃, p̃), (vh, ηh)] = [C(ψ, p), (vh, ηh)] =
∫

Ω
vh · f , dΩ . (4.27)

So (ψ̃, p̃) ∈ Z̃1h. Now, using (4.26) we have

‖(ψ̃, p̃)− (τ h, qh)‖
T
′
div×P

= ‖(ΠT ′ (ψ − τ h),ΠP (p− qh)‖
T
′
div×P

≤ C̃‖(ψ − τ h, p− qh)‖
T
′
div×P

. (4.28)
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Thus

inf
(τ h,qh)∈Z̃1h

‖(ψ, p)− (τ h, qh)‖
T
′
div×P

≤ inf
(τ h,qh)∈T

′
div, h×Ph

‖(ψ, p)− (ψ̃, p̃)‖
T
′
div×P

≤ inf
(τ h,qh)∈T

′
div, h×Ph

(
‖(ψ, p)− (τ h, qh)‖

T
′
div×P

+ ‖(ψ̃, p̃)− (τ h, qh)‖
T
′
div×P

)
≤ (1 + C̃) inf

(τ h,qh)∈T
′
div, h×Ph

‖(ψ, p)− (τ h, qh)‖
T
′
div×P

. (4.29)

This lifts the best approximation of (ψ, p) from Z̃1h to T
′
div × P . Thus, from (4.17), (4.23), and

(4.29) we have

‖φ− φh‖2
T +

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

≤ C

{
inf
ςh∈Th

(
‖φ− ςh‖2

T + E(φ,φh)r ‖φ− ςh‖r
T

)
+ inf

vh∈Uh

‖u− vh‖2
U

+ inf
τ h∈T

′
div, h

‖ψ − τ h‖2
T
′
div

+ inf
qh∈Ph

‖p− qh‖2
P

}
. (4.30)

The proof of the remaining estimates will be outlined below, the reader is referred to [9] for complete
details. To obtain the a priori estimate for ψ and p, we use with the discrete inf-sup condition
satisfied by B. It can be shown that, for (τh, qh) ∈ Z̃1h,

c1

(
‖ψh − τ h‖T

′
div

+ ‖ph − qh‖P

)
≤ sup
ςh∈Th

∫
Ω (g(φh)− g(φ)) : ςh dΩ

‖ςh‖T
+ ‖ψ − τ h‖T ′ +

√
n‖p− qh‖P . (4.31)

The first term on the RHS of (4.31) can be handled using (2.3) and the definition of E :

sup
ςh∈Th

∫
Ω (g(φh)− g(φ)) : ςh dΩ

‖ςh‖T
≤ Ĉ2 E(φ,φh)

(∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

. (4.32)

Combining (4.31), (4.32), and an application of the triangle inequality imply

‖ψ −ψh‖T
′
div

+ ‖p− ph‖P ≤ C

{
inf

(τ h,qh)∈Z̃1h

(
‖ψ − τ h‖T ′ + ‖p− qh‖P

)}
+ Ĉ2 E(φ,φh)

(∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

. (4.33)

Now the previously described argument to lift the best approximations of (τ h, qh) from Z̃1h to
T

′
div, h × Ph can be applied here. Thus we have, from (4.33)

‖ψ −ψh‖T
′
div

+ ‖p− ph‖P ≤ C

{
inf

τ h∈T
′
div, h

‖ψ − τ h‖T
′
div

+ inf
qh∈Ph

‖p− qh‖P

}

+ Ĉ2 E(φ,φh)
(∫

Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

. (4.34)
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From the discrete inf-sup condition for C, (4.30), and the triangle inequality we have

‖u− uh‖U + |λ− λh| ≤ C ‖φ− φh‖T + inf
vh∈Uh

‖u− vh‖U .

Thus the estimates (4.9)–(4.11) are proven.

Remark 4.1 Note that E(φ,φh) ≤ 1. In addition, if 1/(|φ|+ |φh|) ≤ C for some constant C > 0,
then

E(φ,φh) ≤ min
{

1, C ‖φ− φh‖(2−r)/r
∞

}
.

Furthermore, if ‖φ− φh‖∞ ∼ ‖φ− φh‖T , the estimates (4.9)–(4.11) may be written as

‖φ− φh‖T + ‖ψ −ψh‖T
′
div

+ ‖p− ph‖P + ‖u− uh‖U + |λ− λh|

≤ C

{
inf
ςh∈Th

‖φ− ςh‖T + inf
vh∈Uh

‖u− vh‖U

+ inf
τ h∈T

′
div, h

‖ψ − τ h‖T
′
div

+ inf
qh∈Ph

‖p− qh‖P

}
. (4.35)

4.2 Approximation Using Raviart-Thomas Elements and Discontinuous Piece-
wise Polynomials

In this section we consider Ω ⊂ R2 and show that the approximating spaces of discontinuous piece-
wise polynomials and Raviart-Thomas elements are suitable for problem (2.13)-(2.15). Specifically,
we show that these spaces satisfy the inf-sup conditions (4.5) and (4.6) and then show that the error
estimate given in Theorem 4.2 holds.

4.2.1 Discrete Inf-Sup Conditions for B and C

Let K ∈ Th and let Pk(K) be the set of all polynomials in the variables x1, x2 of degree less than
or equal to k defined on the triangle K. Let RTk(K) be the 2-vector of Raviart-Thomas elements
[23, 25] on K defined by

RTk(K) = (Pk(K))2 +
[
x1

x2

]
Pk(K) .

For k ≥ 0, define the following discrete spaces:

Th :=
{
φ ∈ T : φ|K ∈ (Pk(K))2×2 , ∀K ∈ Th

}
,

T
′
div, h :=

{
ψ ∈ T ′

div : ψ = (ψ1 ψ2)
T|K ∈ (RTk(K))2 ,

(ψi1 ψi2)T|K ∈ RTk(K) , ∀i ∈ {1, 2}, ∀K ∈ Th

}
,

Ph := {p ∈ P : p|K ∈ Pk(K) , ∀K ∈ Th} ,
Uh :=

{
u ∈ U : u|K ∈ (Pk(K))2 , ∀K ∈ Th

}
.
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Remark 4.2 There is no interelement continuity requirement on the spaces Th, Uh, and Ph.

Let s > 1 and let Ik
h :

(
W 1,s(Ω)

)2×2 −→ T
′
div, h be the k-th order Raviart-Thomas interpolation

operator [23, 6, 8], defined by, for row j = 1, 2 of τ ∈ T ′
div,∫

ei

(τ j − Ik
hτ j) · neivk ds = 0, ∀vk ∈ Pk(K) , ∀ei ∈ ∂K, i = 1, 2, 3, ∀K ∈ Th ,∫

K
(τ j − Ik

hτ j) · vk−1 dK = 0, ∀vk−1 ∈ (Pk−1(K))2 , ∀K ∈ Th ,

where nei denotes the outer unit normal vector to edge ei of K. Then, for 0 ≤ m ≤ k + 1, we have

‖τ − Ik
hτ‖0,r′,Ω ≤ Chm|τ |m,r′,Ω , (4.36)

‖div (τ − Ik
hτ )‖0,r′,Ω ≤ Chm|div τ |m,r′,Ω , (4.37)

and, for v ∈ U , ∫
Ω

v · div(τ − Ik
hτ ) dΩ = 0, ∀τ ∈ T ′

div . (4.38)

In the lowest-order case, i.e., k = 0, for (τ h, qh) ∈ Z1h,

φ∗ =
−|qhI + τ h|r

′/r−1 (qhI + τ h)
‖qhI + τ h‖r′−1

T ′

∈ Th . (4.39)

The proof of the discrete inf-sup condition for B then follows as in the continuous case. However,
for higher-order approximations, φ∗ defined by (4.39) for (τ h, qh) ∈ Z1h is not a polynomial and
hence not in Th. In these cases a suitable projection of φ∗ is required. Let Π : T → Th = (Pk)2×2

denote the L2 projection operator, defined by Π(φ∗) := φh, where∫
Ω
φ∗ : τ h dΩ =

∫
Ω
φh : τ h dΩ ∀τ h ∈ Th.

Lemma 4.1 Let φ ∈ T and φh = Πφ. Then there is a constant C∗ > 0 such that

‖φh‖T ≤ C∗‖φ‖T . (4.40)

Proof: Note that, since Th is the space of 2 × 2 tensors whose components are discontinuous
piecewise polynomials of degree k on each K ∈ Th, we have that,

φh = Πφ =
∑

K∈Th

(Πφ)|K =
∑

K∈Th

Π(φ|K) , (4.41)

where φ|K is the restriction of φ to K. Let φK = φ|K . Let K ∈ Th, and let K̂ denote the reference
element in Th. Let χ represent the affine map from K̂ to K. Then φ̂ = φK ◦χ is the representation
of φK on the reference element K̂.

Let m = dim((Pk(K̂))2×2) and let {Φ̂i}m
i=1 be an L2 orthonormal basis for (Pk(K̂))2×2. Then we

can write

φ̂h(ξ) =
m∑

i=1

φiΦ̂i(ξ)
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where the coefficients φi are given by
φi = (φ̂, Φ̂i) bK (4.42)

where (·, ·) bK represents the L2 inner product over K̂.

Now we have

‖φh‖0,r,K =
(∫

K
|φh|r dK

)1/r

=

(∫
bK |φ̂h|r

|K|
|K̂|

dK̂

)1/r

=

(∫
bK
∣∣∣∣∣

m∑
i=1

φiΦ̂i

∣∣∣∣∣
r

dK̂

)1/r(
|K|
|K̂|

)1/r

≤ m(r−1)/r
m∑

i=1

|φi|‖Φ̂i‖0,r, bK
(
|K|
|K̂|

)1/r

. (4.43)

Now (4.42) implies
|φi| ≤ ‖φ̂‖

0,r, bK‖Φ̂i‖0,r′, bK . (4.44)

We also have

‖φ‖0,r,K =
(∫

K
|φ|r dK

)1/r

=

(∫
bK |φ̂|r |K|

|K̂|
dK̂

)1/r

= ‖φ̂‖
0,r, bK

(
|K|
|K̂|

)1/r

,

which implies

‖φ̂‖
0,r, bK =

(
|K̂|
|K|

)1/r

‖φ‖0,r,K . (4.45)

Combining (4.43)–(4.45), we have

‖φh‖0,r,K ≤ m(r−1)/r
m∑

i=1

|φi|‖Φ̂i‖0,r, bK
(
|K|
|K̂|

)1/r

≤ m1/r′
m∑

i=1

‖φ̂‖
0,r, bK‖Φ̂i‖0,r′, bK‖Φ̂i‖0,r, bK

(
|K|
|K̂|

)1/r

= m1/r′
m∑

i=1

( |K̂|
|K|

)1/r

‖φ‖0,r,K

 ‖Φ̂i‖0,r′, bK‖Φ̂i‖0,r, bK
(
|K|
|K̂|

)1/r

= m1/r′‖φ‖0,r,K

(
m∑

i=1

‖Φ̂i‖0,r′, bK‖Φ̂i‖0,r, bK
)(

|K|
|K̂|

)1/r(
|K̂|
|K|

)1/r

= m1/r′‖φ‖0,r,K

(
m∑

i=1

‖Φ̂i‖0,r′, bK‖Φ̂i‖0,r, bK
)
. (4.46)
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Now ‖Φ̂i‖0,2, bK = 1 and since Pk(K̂) is finite-dimensional, the equivalence of finite dimensional
norms implies there exist constants cr and cr′ such that

‖Φ̂i‖0,r, bK ≤ cr‖Φ̂i‖0,2, bK = cr and ‖Φ̂i‖0,r′, bK ≤ cr′‖Φ̂i‖0,2, bK = cr′

Thus (4.46) implies
‖φh‖0,r,K ≤ C∗ ‖φ‖0,r,K (4.47)

for C∗ = m1+1/r′crcr′ , which is independent of K. Therefore

‖φh‖T =

∑
K∈Th

‖φh‖r
0,r,K

1/r

≤

∑
K∈Th

Cr
∗‖φ‖r

0,r,K

1/r

= C∗

∑
K∈Th

‖φ‖r
0,r,K

1/r

= C∗ ‖φ‖T , (4.48)

and thus the result is shown.

The constant C∗ in Lemma 4.1 depends only on the constants cr and cr′ , as the dimension m of
(Pk)2×2 is fixed for k. The constants cr and cr′ that arise in the norm equivalences depend only
on the dimension of the space (which is m as well) and not on the size of the domain. A result
analogous to Lemma 4.1 holds for the L2 projection from U onto Uh. Let ΠU : U → Uh be denoted
by ΠUu∗ := uh, where ∫

Ω
u∗ ·wh dΩ =

∫
Ω

uh ·wh dΩ ∀wh ∈ Uh.

Corollary 4.1 Let u ∈ U and uh = ΠUu. Then there is a constant C∗∗ > 0 such that

‖uh‖U ≤ C∗∗‖u‖U . (4.49)

Lemma 4.2 For the choices of Th, T
′
div, h, Ph, and Uh above, there exists a positive constant c1

such that
inf

(τ h,qh)∈Z1h

sup
φh∈Th

[B(φh) , (τ h, qh)]
‖φh‖T ‖(τ h, qh)‖

T
′
div×P

≥ c1 .

Proof : Note that for (φh, qh) ∈ Z1h, div τ h = 0 implies τ h|K ∈ (Pk(K))2×2 for all K ∈ Th. We
also have that (τ h + qhI)|K ∈ (Pk(K))2×2 for all K ∈ Th. Thus (τ h, qh) ∈ Z1h implies τ h ∈ Th and
(τ h + qhI) ∈ Th.
Assume that ‖qh‖P ≤ ‖τ h‖T

′
div

. Let τ 0
h = τ h − 1

n tr(τ h)I, and

φ∗ = −|τ 0
h|r

′/r−1 τ 0
h/‖τ 0

h‖r′−1
T ′ .

Then ‖φ∗‖T = 1, and let ςh = Πφ∗. From Lemma 4.1,

‖ςh‖T ≤ C∗‖φ∗‖T = C∗ .
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Also [B(ςh), (τ h, ph)] = [B(φ∗), (τ h, ph)] for all (τ h, qh) ∈ Z1h. Continuing as in (3.7), the result is
shown as in Case 1 of Lemma 3.2, with the inclusion of the constant 1/C∗.
Now assume ‖qh‖P ≥ ‖τ h‖T

′
div

. Let

φ∗ =
−|qhI + τ h|r

′/r−1 (qhI + τ h)
‖qhI + τ h‖r′−1

T ′

.

Again let ςh = Πφ∗ and note that ‖ςh‖0,r ≤ C∗‖φ∗‖T = C∗. Continuing as in the proof of Case 2
of Lemma 3.2, the result is shown.

Lemma 4.3 For the choices of Th, T
′
div, h, Ph, and Uh above, there exists a positive constant c2

such that
inf

(uh,λh)∈Uh×R
sup

(τ h,qh)∈T
′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

‖(uh, λh)‖U×R
≥ c2 . (4.50)

Proof : As in the approach to the proof of Lemma 3.4 and of Theorem 3.1 of [15], we consider two
cases:
Case 1: |λh| ≥ ‖uh‖U .
The choice (τ h, qh) = (λhI, 0) ∈ T

′
div, h × Ph shows the result as in Case 1 of the proof of Lemma

3.4.
Case 2: |λh| ≤ ‖uh‖U .
Note that Lemma 3.3 applies to the subspace T

′
div, h ⊂ T

′
div, thus we have

sup
(τ h,qh)∈T

′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

≥ C sup
τ∈T

′
div,h

−
∫
Ω uh · div τ h dΩ
‖τ h‖T

′
div,h

. (4.51)

The proof then proceeds in a manner similar to that of Proposition 5 of [22] (as well as Proposition
3.1 of [11]), in which an auxiliary Laplacian problem is solved and the properties (4.36)-(4.38) are
used to bound the supremum in (4.51). See [9] for complete details.

4.2.2 Error Estimate

To apply Theorem 4.2, we must show that the inf-sup condition (4.8) holds for the chosen ap-
proximation spaces. To accomplish this, some properties of the Raviart-Thomas elements must
be presented. Let K ∈ Th and let r ∈ RTk(K). Then r can be written as r = rk + r∗, where
rk ∈ (Pk(K))2 and the components of r∗ consist of polynomial terms of degree k + 1 only. In fact,
r∗ can be written as

r∗ =
[
x1

x2

] k∑
j=0

γj x
k−j
1 xj

2 =


k∑

j=0

γj x
k−j+1
1 xj

2

k∑
j=0

γj x
k−j
1 xj+1

2

 ,
for some constants γj , j = 0, . . . , k. We can also write div r = div rk + div r∗ , where div rk is a
polynomial of degree at most k − 1 and div r∗ is a polynomial with terms of degree k only. It is
important to note that if div r = 0, then div r∗ = 0.
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The following lemma is a result from the general theory of finite-dimensional normed spaces (see
[20]).

Lemma 4.4 Let {v0, . . . ,vn} be a linearly independent set of vectors in a normed space X of
dimension at least n + 1. Then, there is a constant C∗ > 0 such that for every choice of scalars
γ0, . . . , γn, we have

‖γ0v0 + · · ·+ γnvn‖ ≥ C∗(|γ0|+ · · ·+ |γn|) .

For Raviart-Thomas elements we have that the norm of the gradient of the highest-degree terms
can be bounded by the norm of the divergence.

Lemma 4.5 Let K ∈ Th, r := rk + r∗ ∈ RTk(K) where the components of r∗ consist of polynomial
terms of degree k + 1 only. Then there exists a constant C̃ > 0, independent of K, such that

‖∇r∗‖0,r′,K ≤ C̃ ‖div r‖0,r′,K . (4.52)

Proof : Let the finite-dimensional vector space X be defined by

X = span
{[
x1

x2

]
xk−j

1 xj
2 , j = 0, . . . , k

}
= span {vj , j = 0, . . . , k} ,

and v ∈ X be represented as v = (v1 v2)T := γ0v0 + · · · + γkvk. Define the norms ‖ · ‖grad and
‖ · ‖div on X by

‖v‖grad :=
∫

K

∣∣∣∣∂v1∂x1

∣∣∣∣+ ∣∣∣∣∂v1∂x2

∣∣∣∣+ ∣∣∣∣∂v2∂x1

∣∣∣∣+ ∣∣∣∣∂v2∂x2

∣∣∣∣ dK , ‖v‖div =
∫

K

∣∣∣∣∂v1∂x1
+
∂v2
∂x2

∣∣∣∣ dK .

Note that ‖v‖grad = ‖∇v‖0,1,K and ‖v‖div = ‖div v‖0,1,K . By the equivalence of norms on a
finite-dimensional vector space there exist constants C1, C2, and C3 such that

‖∇v‖0,r′,K ≤ C1‖∇v‖0,1,K ≤ C2‖div v‖0,1,K ≤ C3‖div v‖0,r′,K .

Thus for r∗ as defined above, there is a CK > 0 such that

‖∇r∗‖0,r′,K ≤ CK ‖div r∗‖0,r′,K (4.53)

for all K ∈ Th. The dependence of CK on K ∈ Th is due to the integral over K. The condition
(4.1) guarantees that Th is a quasi-uniform triangulation of Ω, thus we can find a global constant
C, independent of K, such that

‖∇r∗‖0,r′,K ≤ C ‖div r∗‖0,r′,K (4.54)

for all K ∈ Th.
Now, let Xk be the finite dimensional vector space spanned by the polynomials of degree k only,
and let X = Pk(K). Note that X = Pk−1(K) ⊕ Xk, and that div r ∈ X, div rk ∈ Pk−1(K), and
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div r∗ ∈ Xk. Let {v0, . . . ,vk, . . . ,vn} be a basis for X where {v0, . . . ,vk} is also a basis for Xk.
From Lemma 4.4, there is a constant C∗ > 0 such that, for all v = γ0v0 + · · ·+ γnvn ∈ X,

‖v‖0,r′,K ≥ C∗(|γ0|+ · · ·+ |γn|) .

Define the norm ‖ · ‖∗ : X → R as ‖v‖∗ := C∗(|γ0| + · · · + |γn|). By the definition of r, r∗, the
equivalence of norms on a finite-dimensional space, and the quasi-uniform triangulation Th, we have
that there is a constant C4 such that

‖div r∗‖0,r′,K ≤ C4‖div r∗‖∗ = C4C∗(|γ0|+ · · ·+ |γk|)
≤ C4C∗(|γ0|+ · · ·+ |γk|+ · · ·+ |γn|) = C4‖div r‖∗ ≤ C4‖div r‖0,r′,K . (4.55)

Combining (4.54) and (4.55) the result is shown.

The above result can be applied to the tensor space T
′
div, h to obtain, for τ h = τ k + τ ∗ where the

components of τ ∗ consist of polynomial terms of degree k + 1 only,

‖∇τ ∗‖0,r′,K ≤ C̃ ‖div τ h‖0,r′,K , ∀K ∈ Th . (4.56)

Let Πk : T
′
div, h −→ Th be the classical Lagrangian Pk interpolation operator ([8]) and define

τ̂ = τ k + Πkτ
∗ . (4.57)

Note that τ̂ |K ∈ (Pk(K))2×2 for all K ∈ Th, and div τ h = 0 implies τ ∗ = 0 and τ̂ = τ h. Then,
using (4.56) and standard polynomial approximation properties [5, 8], the error associated in the
approximation of τ h by τ̂ is given by

‖τ h − τ̂‖0,r′,Ω = ‖τ ∗ −Πkτ
∗‖0,r′,Ω ≤ C h

∑
K∈Th

‖∇τ ∗‖r′
0,r′,K

1/r′

≤ C h

∑
K∈Th

C̃ ‖div τ h‖r′
0,r′,K

1/r′

≤ CC̃ h ‖div τ h‖0,r′,Ω = Ĉ h ‖div τ h‖0,r′,Ω . (4.58)

Lemma 4.6 For h sufficiently small, there is a constant c3 > 0 such that

inf
(τ h,qh)∈T

′
div,h×Ph

sup
(ςh,vh,ηh)∈Th×Uh×R

[B(ςh), (τ h, qh)] + [C(τ h, qh) , (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R ‖(τ h, qh)‖

T
′
div×P

≥ c3 . (4.59)

where ‖(ςh,vh, ηh)‖T×U×R = ‖ςh‖T + ‖vh‖U + ‖λh‖R.

Proof : The usual approach of considering two cases (as in Theorem 3.1 of [15] and Lemmas 3.2,
3.4, 4.2, 4.3 here) and constructing particular functions that lie in the appropriate finite element
spaces (using Lemma 4.1 and Corollary 4.1) is used, along with the property (4.58), to give the
proof of (4.59) (see [9] for details).
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From [6, 25] we have the standard approximation properties: for all (ς, τ , q,v) ∈ (Wm,r(Ω))2×2 ×(
Wm,r′(Ω)

)2×2
×Wm,r′(Ω)× (Wm,r(Ω))2 with div τ ∈

(
Wm,r′(Ω)

)2
, there exists (ςh, τ h, qh,vh) ∈

Th × T
′
div, h × Ph × Uh satisfying

‖ς − ςh‖T ≤ Chm‖ς‖m,r,Ω , ∀ς ∈ (Wm,r(Ω))2×2 , (4.60)

‖τ − τ h‖T ′ ≤ Chm‖τ‖m,r′,Ω , ∀τ ∈
(
Wm,r′(Ω)

)2×2
, (4.61)

‖div (τ − τ h)‖T ′ ≤ Chm‖div τ‖m,r′,Ω , ∀ (div τ ) ∈
(
Wm,r′(Ω)

)2
, (4.62)

‖q − qh‖P ≤ Chm‖q‖m,r′,Ω , ∀q ∈Wm,r′(Ω) , (4.63)
‖v − vh‖U ≤ Chm‖v‖m,r,Ω , ∀v ∈ (Wm,r(Ω))2 . (4.64)

Theorem 4.3 Let f ∈
(
Lr′(Ω)

)2
and uΓ ∈

(
W 1−1/r , r(Γ)

)2
. Let (φ,ψ, p,u, λ) ∈ T×T ′

div×P×U×R
solve (2.13)-(2.15) and let (φh,ψh, ph,uh, λh) ∈ Th×T

′
div, h×Ph×Uh×R solve (4.2)-(4.4). Assume

1 ≤ m ≤ k + 1 and (φ,ψ, p,u) ∈ (Wm,r(Ω))2×2 ×
(
Wm,r′(Ω)

)2×2
×Wm,r′(Ω) × (Wm,r(Ω))2 with

divψ ∈
(
Wm,r′(Ω)

)2
. Then there exists a positive constant C such that

‖φ− φh‖2
T ≤ C

{
hmrE(φ,φh)r‖φ‖r

m,r,Ω

+ h2m

(
‖φ‖m,r,Ω + ‖u‖m,r,Ω + ‖ψ‖m,r′,Ω + ‖divψ‖m,r′,Ω + ‖p‖m,r′,Ω

)}
, (4.65)

‖ψ −ψh‖T
′
div

+ ‖p− ph‖P ≤ C hm
(
‖ψ‖m,r′,Ω + ‖divψ‖m,r′,Ω + ‖p‖m,r′,Ω

)
+ E(φ,φh)

(∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

, (4.66)

‖u− uh‖U + |λ− λh| ≤ C ‖φ− φh‖T . (4.67)

Proof : The result follows directly from Theorem 4.2, Lemma 4.6, and properties (4.60)–(4.64).

Remark 4.3 The extension of Remark 4.1 to these approximation spaces is given by: If 1/(|φ| +
|φh|) ≤ C for some constant C > 0 and ‖φ−φh‖∞ ∼ ‖φ−φh‖T , the estimates (4.65)–(4.67) may
be written as

‖φ− φh‖T + ‖ψ −ψh‖T
′
div

+ ‖p− ph‖P + ‖u− uh‖U + |λ− λh|

≤ C hm

{
‖φ‖m,r,Ω + ‖u‖m,r,Ω + ‖ψ‖m,r′,Ω + ‖divψ‖m,r′,Ω + ‖p‖m,r′,Ω

}
. (4.68)
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5 Numerical Experiments

In this section we describe numerical experiments that support the theoretical results outlined in
Sections 3 and 4. The first example illustrates the theoretical rate of convergence of the solution
method and the second example illustrates the computed approximation for a benchmark physical
problem. Computations are performed using the FreeFEM++ finite element software package [19].
All computations below are performed in the lowest-order case (k = 0).

5.1 Example 1

For this example (similar to one in [16]) approximations are computed for a Ladyzhenskaya law fluid
with ν0 = 0 and ν1 = 1.0. The computational domain is Ω = [0, 2]× [0, 2], with f and uΓ chosen so
that the exact solution of (2.10)-(2.12) is given by

u =
[
u1

u2

]
and p = x1 + x2 ,

with
u1 = −(4.0− x1 − x2)α and u2 = −u1

for α just large enough to ensure f = − divψ ∈Wµ−ε,r′(Ω). It should be noted that α = −2
r + r′ +

µ
r−1 + ε ensures f ∈Wµ,r′(Ω) for ε > 0.

Computations are performed on uniform meshes of decreasing size h and for selected values of
r, α, and µ. For 1 < r < 2, the resulting system of equations is nonlinear, and a fixed-point
iteration is used to compute approximations. The fixed-point iteration is terminated when the
pointwise maximum absolute difference in successive approximations falls below 10−5. Results for
the velocity, u, the gradient of the velocity, φ (= ∇u), and the total stress, ψ, are shown in Table
5.1.

For this example, divψ ∈ Wµ−ε,r′(Ω) is the most singular of the quantities to be approximated.
The observed experimental convergence rate for ‖divψ − divψh‖0,r′ of Chµ is in agreement with
that predicted by (4.35). The experimental convergence rates observed for ‖φ−φh‖T and ‖u−uh‖U

are both better than that given by (4.35).

5.2 Example 2

This example is the benchmark driven cavity problem. Driven cavity flows of power law fluids were
computed using a mixed method by Manouzi and Farhloul in [22]. (In [22] the authors explicitly
inverted the constitutive equation to obtain Φα(σ) = ∇u, which was used in their formulation.)

For Ω = [0, 1] × [0, 1], we have that f = 0 in Ω, uΓ = 0 on Γ \ Γtop and uΓ = [1 0]T on Γtop,
where Γtop is the portion of the boundary satisfying 0 ≤ x1 ≤ 1 and x2 = 1. Computations were
performed for a power law fluid with ν0 = 1.0 and selected values of r. Figures 5.1, 5.2, and 5.3
show plots of the streamlines computed for h = 1/32 for r = 2, r = 1.5, and r = 1.1, respectively.
As the power r in the constitutive law is decreased, we see a movement of the central vortex toward
the top of the cavity, corresponding to an increase in viscosity.
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h ‖φ− φh‖0,r rate ‖divψ − divψh‖0,r′ rate ‖u− uh‖0,r rate
1 2.5481 0.8014 37.3797

r = 3/2 1/2 1.2633 1.01 0.4459 0.85 19.6284 0.93
µ = 1 1/4 0.6218 1.02 0.2426 0.88 9.8677 0.99

α = 11/3 1/8 0.3080 1.01 0.1299 0.90 4.9294 1.00
1/16 0.1534 1.01 0.0687 0.92 2.4623 1.00

1 1.3341 0.2556 10.5023
r = 3/2 1/2 0.6899 0.95 0.1824 0.49 5.3111 0.98
µ = 1/2 1/4 0.3405 1.02 0.1294 0.49 2.6503 1.00
α = 8/3 1/8 0.1677 1.02 0.0917 0.50 1.3223 1.00

1/16 0.0832 1.01 0.0648 0.50 0.6605 1.00
1 2.6967 1.3410 4721.1800

r = 5/4 1/2 1.3109 1.04 0.7234 0.89 2553.9800 0.89
µ = 1 1/4 0.6325 1.05 0.3833 0.92 1285.9000 0.99

α = 37/5 1/8 0.3094 1.03 0.2007 0.93 635.6200 1.02
1/16 0.1533 1.01 0.1042 0.95 315.0940 1.01

1 1.4671 0.1661 363.2130
r = 5/4 1/2 0.7461 0.98 0.1176 0.50 191.1110 0.93
µ = 1/2 1/4 0.3604 1.05 0.0832 0.50 94.7585 1.01
α = 27/5 1/8 0.1746 1.05 0.0588 0.50 46.8215 1.02

1/16 0.0860 1.02 0.0416 0.50 23.2479 1.01

Table 5.1: Approximation errors and rates of convergence for Example 1.
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Figure 5.1: Streamlines for r = 2.0, driven cavity
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r = 1.5
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Figure 5.2: Streamlines for r = 1.5, driven cavity

r = 1.1
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Figure 5.3: Streamlines for r = 1.1, driven cavity

Lemma 4.1.
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