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Abstract. Intracellular transport in eukarya is attributed to motor proteins that transduce
chemical energy into directed mechanical motion. Nanoscale motors like kinesins tow organelles and
other cargo on microtubules or filaments, have a role separating the mitotic spindle during the cell
cycle, and perform many other functions. The simplest description gives rise to a weakly coupled
system of evolution equations. The transport process, to the mind’s eye, is analogous to a biased
coin toss. We describe how this intuition may be confirmed by a careful analysis of the cooperative
effect among the conformational changes and the potentials.

1. Introduction. Motion in small live systems has many challenges, as famously
discussed in Purcell [25]. Prominent environmental conditions are high viscosity and
warmth. Not only is it difficult to move, but maintaining a course is rendered diffi-
cult by immersion in a highly fluctuating bath. Intracellular transport in eukarya is
attributed to motor proteins that transduce chemical energy into directed mechanical
motion. Nanoscale motors like kinesins tow organelles and other cargo on micro-
tubules or filaments, have a role separating the mitotic spindle during the cell cycle,
and perform many other functions. Because of the presence of significant diffusion,
they are sometimes referred to as Brownian motors. Since a specific type tends to
move in a single direction, for example, anterograde or retrograde to the cell periphery,
these proteins are sometimes referred to as molecular rachets. How do they overcome
the issues posed by Purcell to provide the transport necessary for the activities of the
cell?

Many models have been proposed to describe the functions of these proteins, or aspects
of their thermodynamical behavior, beginning with Ajdari and Prost [1], Astumian
and Bier, cf. eg. [2], and Doering, Ermentrout, and Oster [6], Peskin, Ermentrout,
and Oster [23]. They consist either in discussions of distribution functions directly
or of stochastic differential equations, which give rise to the distribution functions
via the Chapman-Kolmogorov Equation. We have also suggested an approach for
motor proteins like conventional kinesin where a dissipation principle is derived based
on viewing an ensemble of motors as independent conformation changing nonlinear
spring mass dashpots, [5], as motivated by Howard [11]. The dissipation principle,
which involves a Kantorovich-Wasserstein metric, identifies the environment of the
system and gives rise to an implicit scheme from which evolution equations follow,
[3], [13], [15]. All of these descriptions consist, in the end, of Fokker-Planck type equa-
tions coupled via conformational change factors, typically known as weakly coupled
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parabolic systems. Our own is also distinguished because it has natural boundary
conditions. Here our attention is directed towards the stationary solution of such a
system to understand its transport properties.

A special collaboration among the potentials and the conformational changes in the
system must be present for transport to occur. Here we investigate this for a system
of n states. In Chipot, Hastings, and Kinderlehrer [4], the two component system was
analyzed. As well as being valid for an arbitrary number of active components, our
proof here is based on a completely different approach.

Let us introduce the equations we shall study. Suppose that ρ1, ..., ρn are partial
probability densities defined on the unit interval Ω = (0, 1) satisfying

d

dx
(σ
dρi
dx

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω

σ
dρi
dx

+ ψ′iρi = 0 on ∂Ω, i = 1, ...n,

ρi = 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1.

(1.1)

Here σ > 0, ψ1, ..., ψn are smooth non-negative functions of period 1/N , and A = (aij)
is a smooth rate matrix of period 1/N , that is

aii 5 0, aij = 0 for i 6= j and∑
i=1,..,n

aij = 0, j = 1, ..., n. (1.2)

We shall also have occasion to enforce a nondegeneracy condition

aij 6≡ 0 in Ω, i, j = 1, ..., n. (1.3)

The conditions (1.2) mean that P = 1 + τA, for τ > 0 small enough, is a probability
matrix. The condition (1.3), we shall see, ensures that none of the components of
ρ are identically zero passive placeholders in the system. The system (1.1) are the
stationary equations of the evolution system
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∂ρi
∂t

=
∂

∂x
(σ
∂ρi
∂x

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω, t > 0,

σ
∂ρi
∂x

+ ψ′iρi = 0 on ∂Ω, t > 0, i = 1, ...n,

ρi = 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1, t > 0.

(1.4)

Evidence of transport, to the left for example, would be some property of the form:
ρ1 + · · · + ρn is decreasing on Ω. This particular property does not hold. We shall
prove that under appropriate geometric conditions on the ψi and the aij , this sum is
bounded above by a decreasing exponential, that is,

ρ1(x) + · · ·+ ρn(x) 5 C0e
−C
σ x, x ∈ Ω, (1.5)

for σ sufficiently small. We would like to offer a preview of the features of the ψi and
the aij and their cooperation that promotes this behavior.

To be avoided for transport are circumstances that lead to decoupling in (1.1), for
example,

Aρ = 0, where ρ = (ρ1, ..., ρn),

since in this case the solution vector is periodic. Such circumstances may be related
to various types of detailed balance conditions. For example, if it is possible to find a
solution ρ that minimizes the free energy of the system

F (η) =
∑
i=1···n

∫
Ω

{
ψiηi + σηi log ηi

}
dx,

then Aρ = 0.

But avoiding this is not nearly sufficient. First we require that the potentials ψi
have some asymmetry property. Roughly speaking, to favor transport to the left,
towards x = 0, a period interval must have some subinterval where all the potentials
ψj are increasing and in addition every point must have a neighborhood where at
least one ψi is increasing. Some interchange among the n states must take place. To
explain more clearly, suppose we are considering an ensemble of motors where each
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motor may occupy one of n states. The density of motors in state i at time (x, t) is
given by ρi(x, t), a solution of (1.4), whose stationary equations are (1.1). Then in
the subinterval where all ψj are increasing, we may sum the equations of (1.1) and
employ a Gronwall argument to obtain some exponential decrease, as suggested in
(1.5).

Now we explain what is necessary to control the solution in the balance of a period
interval. As mentioned, in any neighborhood in Ω, at least one ψi should be increasing
to promote transport toward x = 0. States tend to accumulate near the minima of the
potentials, which correspond to attachment sites of the motor to the microtubule and
its availability for conformational change. This typically would be where the matrix
A is supported. In a neighbohood of such a minimum, states which are not favored for
left transport should have the opportunity to switch to state i, so we impose aij > 0
for all of these states. The weaker assumption, insisting only that the state associated
with potential achieving the minimum have this switching opportunity, is insufficient
because other states, perhaps not associated to increasing potentials, may also be
available. This is a type of ergodic hypothesis saying that there must be mixing
between at least one potential which transports left and all the ones which may not.
Our hypothesis is not optimal, but some condition is necessary. One may consider, for
example, simply adding new states to the system which are uncoupled to the original
states. In fact, it is possible to construct situations where there is actually transport
to the right by inauspicious choice of the supports of the aij as we show in section 4.

Here we only consider (1.1) although many other and more complex situations are
possible. One example is a system where there are many conformational changes, not
all related to movement. For example, one may consider the system whose stationary
state is

d

dx
(σ
dρi
dx

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω i = 1, ...m,

∑
j=1,...,n

aijρj = 0 in Ω i = m+ 1, ...n,

σ
dρi
dx

+ ψ′iρi = 0 on ∂Ω, i = 1, ...m,

ρi = 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1.

(1.6)

We leave such explorations to the interested reader.

2. Existence. There are several ways to approach the existence question for
(1.1). In [4], we gave existence results based on the Schauder Fixed Point Theorem
and a second proof based on an ordinary differential equations shooting method. The
Schauder proof extends to the current situation, and higher dimension if that is of
interest, but the shooting method was limited to the two state case. Here we offer
a new ordinary differential equations method proof which is of interest because it
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separates existence from uniqueness and positivity, showing that existence is a purely
algebraic property depending only on the second line in (1.2),

∑
i=1,..,n

aij = 0, j = 1, ..., n, (2.1)

while positivity and uniqueness rely on the more geometric nature of the inequalities.
We shall prove Theorem 2.1 below, followed by a brief discussion of a stronger result
whose proof is essentially the same. Recall that Ω = (0, 1).

Theorem 2.1. Assume that ψi, aij ∈ C2(Ω), i, j = 1, ..., n and that (2.1) holds. Then
there exists a solution ρ = (ρ1, ..., ρn) to (1.1). Assume furthermore that (1.2) and
(1.3) hold. Then ρ is unique and

ρi(x) > 0 in Ω and ρi ∈ C2(Ω), i = 1, ..., n.

Proof. Introduce

φi = σ
dρi
dx

+ ψ′iρi in Ω, i = 1, ..., n

Our system may be written as the system of 2n ordinary differential equations, where
(2.1) holds,

σ
dρi
dx

= φi − ψ′iρi, i = 1, ..., n

dφi
dx

= −
∑

j=1,...,n

aijρj , i = 1..., n.
(2.2)

Let Φ denote the 2n× 2n fundamental solution matrix of (2.2) with Φ(0) = 1. Let Ψ
be the 2n× n matrix consisting of the first n columns of Φ. Then

Ψ =
(
R
S

)
,

where R and S are n× n matrix functions with R(0) = 1 and S(0) = 0. We wish to
obtain a solution

(
ρ
φ

)
= Φc

5



such that φ(0) = φ(1) = 0. To have φ(0) = 0, we need the last n components of c to
be zero, so

(
ρ
φ

)
= Ψd

where d is the vector consisting of the first n components of c. We then need the last
n components of Ψ(1)d to be zero, namely

S(1)d = 0. (2.3)

Now in this setup, we have φi(0) = 0, i = 1, ..., n and from (2.1),

∑
i=1,...,n

dφi
dx

(x) = 0, x ∈ Ω,

whence

∑
i=1,...,n

φi(x) = 0, x ∈ Ω.

But this simply means that

∑
i,j=1,...,n

Sij(x)dj = 0 for any d ∈ Rn

so the sum of the rows of S is zero for every x ∈ Ω, i.e., det S(x) = 0, and so S is
singular. Hence we can find a solution to (2.3).

Now we assume (1.2) and (1.3). If the solution is positive, it is the unique solution.
This follows a standard argument. Suppose that ρ is a positive solution and that ρ∗

is a second solution. Then ρ+µρ∗ is a solution for any constant µ and ρ+µρ∗ > 0 in
Ω for sufficiently small |µ|. Increase |µ| until we reach the first value for which some
ρi has a zero, say at x0 ∈ Ω. For this value of i we have that for f = ρ+ µρ∗, fi has
a minimum at x0 and
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− d

dx
(σ
dfi
dx

+ ψ′ifi)− aiifi =
∑

j=1,...,n
j 6=i

aijfj = 0 (2.4)

σ
dfi
dx

+ ψ′ifi = 0 (2.5)

By an elementary maximum principle, [24], cf. also [4], we have that fi ≡ 0.

We now claim that f ≡ 0. Choose any fj and assume that it does not vanish iden-
tically. Using the maximum principle as before, fj > 0. Now choose a point x0 such
that aij(x0) > 0. Substituting onto (2.4) we now have a contradiction because fi ≡ 0.
Thus there is at most one solution satisfying (1.1).

It now remains to show that there is a positive solution. We employ a continua-
tion argument. Note that there is a particular case where ψ′i(x) ≡ 0 for all i and
aii(x) = 1− n, and aij(x) = 1 for j 6= i. The solution in this case is ρi(x) = 1

n , with
our normalization in (1.1). For the moment, it is convenient to use a different nor-
malization in terms of the vector d found above: choose the unique d = (d1, ..., dn)T

satisfying maxi di = 1.

For the special case above with

ψ′i = 0, aii = 1− n, and aij = 1, i 6= j,

we find that d = (1, ..., 1)T . To abbreviate the system in vector notation, let ψ′0 and
ψ′ be the diagonal matrices of potentials ψ′i = 0 and ψ′i, respectively, and let A0 and
A denote the matrices of lower order coefficients. For each λ, 0 5 λ 5 1, we solve the
problem

σ
d2ρ

dx2
+

d

dx
((λψ′ + (1− λ)ψ′0)ρ) + (λA+ (1− λ)A0)ρ = 0 in Ω

σ
dρ

dx
+ (λψ′ + (1− λ)ψ′0))ρ = 0 at x = 0, 1.

(2.6)

For λ = 0, (2.6) has a unique solution satisfying maxi ρi(0) = 1 and this solution is
positive. As long as the solution is positive, the argument given above shows that is
its unique. As we increase λ from 0, the solution is continuous as a function of λ,
since the vector d will be continuous as long as it is unique.

Let Λ denote the subset of λ ∈ [0, 1] for which there is a positive solution of (2.6).
To show that Λ ⊂ [0, 1] is open, consider λ0 ∈ Λ and a sequence of points in Λc, the
complement of Λ, convergent to λ0. For each of these there is a non-positive solution
of (2.6), and we may assume that the initial conditions d are bounded. Hence a
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subsequence converges to the initial condition for a non -positive solution with λ = λ0,
which contradicts the uniqueness of the positive solution.

To show Λ is closed, again suppose the contrary and that λ̂ is a limit point of Λ not in
Λ. Now some component ρ̂i must have a zero, and ρ̂i = 0 in Ω. Then by the maximum
principle used above, ρ̂i ≡ 0. We now repeat the argument above to conclude that
ρ̂j ≡ 0 in Ω for all j = 1, ..., n. But this is impossible because we have imposed the
condition that maxi ρ̂i(0) = 1. This implies that Λ is open, so Λ = [0, 1].

Renormalizing to obtain total mass one completes the proof.

Condition (1.3) is more restrictive than necessary for uniqueness and positivity of the
solution. For an improved result, recall that Pτ = 1+τA, τ > 0 small is a probability
matrix when (1.2) is assumed. A probability matrix P is ergodic if some power P k

has all positive entries. In this case it has an eigenvector with eigenvalue 1 whose
entries are positive, corresponding to a unique stationary state of the Markov chain it
determines, and other well known properties from the Perron-Frobenius theory. Such
matrices are often called irreducible and sometimes even ”regular”. We may now state
an improvement of Theorem 2.1

Theorem 2.2. In Theorem 2.1 replace condition (1.3) with∫ 1

0

Pτ (x)dx

is ergodic. Then the conclusions of Theorem 2.1 hold.

We outline the changes which must be made to prove this result. The previous proof
relied on showing that if for some i, ρi ≡ 0, then ρj ≡ 0 for every j. This followed
from the maximum principle and the feature of the equations that each consituent
was nontrivially represented near at least one point x0 ∈ Ω. But suppose that aij ≡ 0
for some j. In this case we could have ρj > 0 and this has no effect on ρi.

Under the assumption that
∫ 1

0
Pτ (x)dx is ergodic, some nondiagonal element in the

ith row of A is not identically zero. This means that there is a π(i) 6= i such that
ρi ≡ 0 implies that ρπ(i) ≡ 0. We may repeat this argument since ergodicity implies
that the permuation π can be chosen so that πm(i) cycles atound the entire set of
integers 1, ..., n.

3. Transport. As we observed in the existence proof of the last section, the
condition (1.1) implies that ∑

i=1,...,n

d

dx
(σ
dρi
dx

+ ψ′iρi) = 0

so that ∑
i=1,...,n

(σ
dρi
dx

+ ψ′iρi) = γ = const.
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In the case of interest of kinesin-type models, the boundary condition of (1.1) implies
that γ = 0. In other words, ∑

i=1,...,n

(σ
dρi
dx

+ ψ′iρi) = 0 (3.1)

A simulation of typical behavior in a two species system is given in Figure 3.1.

Theorem 3.1.

Suppose that ρ is a positive solution of (1.1), where the coefficients aij , i, j = 1, ..., n
and the ψi, i = 1, ..., n are smooth and 1/N-periodic in Ω. Suppose that (1.2) holds
and also that the following conditions are satisfied.

(i) Each ψ′i has only a finite number of zeros in Ω.
(ii) In any interval in which no ψ′i vanishes, ψ′j > 0 in this interval for at least one

j.
(iii) There is some interval in which ψ′i > 0 for all i = 1, ..., n.
(iv) If I, |I| < 1/N , is an interval in which ψ′i > 0 for i = 1, .., p and ψ′i < 0 for

i = p + 1, .., n, and a is a zero of at least one of the ψ′k which lies within ε
of the right-hand end of I, then for ε sufficiently small, there is at least one
index i, i = 1, ..., p, with aij > 0 in (a−η, a) for some η > 0, all j = p+1, .., n.

Then, there exist positive constants K1, K2 independent of σ such that

n∑
i=1

ρi(x+
1
N

) ≤ K1e
−K2

σ

n∑
i=1

ρi(x), x ∈ Ω, x < 1− 1
N

(3.2)

for sufficiently small σ.

Note that (3.1) holds under the hypotheses of the theorem. Also note that from (iv),
where aij > 0, j = p+ 1, ..., n, necessarily, aii < 0 according to (1.2).

We shall prove Theorem 3.2 below. For this, it is convenient to consider a single
period interval rescaled to be [0, 1]. Theorem 3 then follows by rescaling and applying
Theorem 3.2 to period intervals.

Theorem 3.2. Suppose that ρ is a positive solution of (1.1), where the coefficients
aij , i, j = 1, ..., n and the ψi, i = 1, ..., n are smooth in [0, 1]. Suppose that (1.2) holds
and also that the following conditions are satisfied.

(i) Each ψ′i has only a finite number of zeros in [0, 1].
(ii) In any interval in which no ψ′i vanishes, ψ′j > 0 in this interval for at least one

j.
(iii) There is some interval in which ψ′i > 0 for all i = 1, ..., n.
(iv) If I is an interval in which ψ′i > 0 for i = 1, .., p and ψ′i < 0 for i = p+ 1, .., n,

and a is a zero of at least one of the ψ′k which lies within ε of the right-hand
9



end of I, then for ε sufficiently small, there is at least one i, i = 1, ..., p, we
have aij > 0 in (a− η, a) for some η > 0, j = p+ 1, .., n.

Then, there exist positive constants K1, K2 independent of σ such that
n∑
i=1

ρi(0) ≤ K1e
−K2

σ

n∑
i=1

ρi(1), (3.3)

for sufficiently small σ.

The conclusion of the Theorem 3 is that the magnitude of the solution ρ,
∑n
i=1 ρi, is

much smaller at x = 1 than at x = 0, or in terms of the Theorem 2, that it is bounded
above by an exponentially decreasing function for small σ. There is no suggestion
that

∑n
i=1 ρi is itself exponentially decreasing and it is not. Indeed, the core of the

mathematical argument is that
∑
ρi is exponentially decreasing on intervals where all

ψ′i are positive, while not significantly increasing in the remainder of [0,1]. The
∑
ρi

may increase, even exponentially, in regions within δ of a zero of a ψ′i, but because the
total length of these intervals is very small, the increase is outweighed by the decrease
elsewhere. The argument in intervals where the signs of the ψ′i are mixed is more
delicate and relies on the coupling, as spelled out in (iv), the nonvanishing of some
aij near the minima of ψi.

Proof of Theorem 3.1.

Since each ψ′i has only finitely many zeros, we can enclose these zeros with intervals of
length 2δ, where δ > 0 and small will be chosen later. The remainder of [0,1] consists
of a finite number of closed intervals Jm,m = 1, ...,M , in which no ψ′i vanishes and
so we have that ψ′i = k(δ) > 0 or ψ′i 5 −k(δ) < 0 for each i and some positive k(δ).
From (iii), k(δ) may be chosen so that in at least one Jm, ψ′i = k(δ) for all i.

First we establish the exponential decay which governs the behavior of the solution.
This will be a simple application of Gronwall’s Lemma. Consider an interval I0 = Jm
for one of the m′s where ψ′i ≥ k(δ) for all i. Suppose that

sup
I0

{
inf
i
ψ′i(x)

}
= K0,

where, of course, K0 is independent of δ for small δ. So there is a point x0 ∈ I0 where

ψ′i(x0) = K0, i = 1, ..., n.

and

ψ′i(x) =
1
2
K0, |x− x0| < L0, i = 1, ..., n.

for

L0 =
1
2

K0

maxi=1...n{sup[0,1] |ψ′′i |}

Hence, from (3.1),

d

dx

n∑
i=1

ρi 5 −K0

2σ

n∑
i=1

ρi in |x− x0| < L0,
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so that
n∑
i=1

ρi(x0 + L0) 5 e−
1
σK0L0

n∑
i=1

ρi(x0 − L0).

Since
∑n
i=1 ρ

′
i 5 0 in I0, we have that

(
n∑
i=1

ρi)(ξ∗) 5 e−
1
σK0L0(

n∑
i=1

ρi)(ξ) where I0 = [ξ, ξ∗] (3.4)

Indeed, we could extend I0 to an interval in which we demand only that all ψ′i = 0.

Next consider an interval, say I1 of length 2δ centered on a zero a of one of the ψ′i.
From (3.1) we have that ∣∣∣∣∣ ddx

(
n∑
i=1

ρi

)∣∣∣∣∣ ≤ K1

σ

n∑
i=1

ρi in I1

where

K1 = max
i=1..n

sup
05x51

|ψ′i|,

so that (
n∑
i=1

ρi

)
(a+ δ) 5 e

1
σ 2K1δ

(
n∑
i=1

ρi

)
(a− δ) (3.5)

There may be N such intervals, but over them all the exponential growth is only
2
σNK1δ, and we can choose δ sufficiently small, which does not affect K0, L0 so that

2NK1δ < K0L0

Finally, with δ so chosen, we consider an interval I2 = [α, β] where, say,

ψ′i = k(δ), i = 1, ..., p, and
ψ′i 5 −k(δ), i = p+ 1, ..., n.

(3.6)

We may assume that there is some overlap, that the endpoints α, β of I2 are in 2δ
intervals considered above. In the interval I2, we shall bound ρ1, ...ρp on the basis of
(3.6) above. We shall then argue that ρp+1, ..., ρn are necessarily bounded or, owing
to the coupling of the equations, the positivity of ρ1, ..., ρp would fail.

Write the equation for ρ1 in the form

σρ′′1 + ψ′1ρ
′
1 + ψ′′1ρ1 + a11ρ1 +

n∑
j=2

a1jρj = 0, (3.7)
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so that

d

dx

(
ρ′1e

1
σ (ψ1(x)−ψ1(α)

)
= − 1

σ

{
(a11 + ψ′′1 )ρ1 +

n∑
j=2

a1jρj

}
e

1
σ (ψ1(x)−ψ1(α)),

and carrying out the integration,

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x) − 1

σ

∫ x

α

{
(a11 + ψ′′1 )ρ1 +

n∑
j=2

a1jρj

}
e

1
σ (ψ1(s)−ψ1(x))ds

(3.8)
Now the a1j , j = 2, and the ρi are all non negative, so we may neglect the large sum
and find a constant K2 for which

ρ′1(x) 5 ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) +

K2

σ

∫ x

α

ρ1(s)e
1
σ (ψ1(s)−ψ1(x))ds (3.9)

Note that for small σ,∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds 5

∫ x

α

e
k(δ)
σ (s−x)ds 5

σ

k(δ)
(3.10)

Integrating (3.9),

ρ1(x)− ρ1(α) 5 ρ′1(α)
∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds+

K2

σ

∫ x

α

∫ t

α

ρ1(s)e
1
σ (ψ1(s)−ψ1(t))dsdt

5 K(δ)σ|ρ′1(α)|+K(δ)
∫ x

α

max
[α,t]

ρ1dt,

so,

max
[α,x]

ρ1 5 ρ1(α) +K(δ)σ|ρ′1(α)|+K(δ)
∫ x

α

max
[α,t]

ρ1dt.

We may now use Gronwall’s Lemma to obtain

ρ1(x) 5 K(δ)
{
ρ1(α) + σ|ρ′1(α)|

}
, α 5 x 5 β (3.11)

Similar estimates hold for ρ2, ..., ρp.

Our attention is directed to ρp+1, ..., ρn. Our first step is lower bounds for ρ′1, ..., ρ
′
p,

for which it suffices to carry out the details for ρ′1. We can use (3.11) to modify our
formula (3.8). Using (3.10),

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) − 1

σ
max
I2

ρ1 max
I2

(a11 + ψ′′1 )
∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

−max
[α,x]

(ρp+1 + · · ·+ ρn) max
15i5n

max
I2

aij

∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

So,

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) −K(δ)

{
ρ1(α) + σ|ρ′1(α)|

}
−K(δ) max

[α,x]
(ρp+1 + · · ·+ ρn),

α 5 x 5 β
(3.12)

12



Similarly for ρ′2, ..., ρ
′
p.

With our technique we can handle only the sum ρp+1 + · · · + ρn and not individual
ρi, p+ 1 5 i 5 n. From (3.1), and taking into account (3.11), (3.12), and the signs of
the ψ′i,

d

dx
(ρp+1 + · · ·+ ρn) = − d

dx
(ρ1 + · · ·+ ρp)−

1
σ

(ψ′1ρ1 + · · ·+ ψ′pρp)−
1
σ

(ψ′p+1ρp+1 + · · ·+ ψ′nρn)

= −K1(δ)
σ

p∑
i=1

(ρi(α) + |dρi
dx

(α)|) +
K2(δ)
σ

n∑
i=p+1

ρi in I2 (3.13)

Let

C(α) =
p∑
i=1

(ρi(α) + |dρi
dx

(α)|),

which means (3.13) assumes the form

d

dx
(ρp+1 + · · ·+ ρn) = −K1(δ)

σ
C(α) +

K2(δ)
σ

(ρp+1 + · · ·+ ρn). (3.14)

We assert that

ρp+1 + · · ·+ ρn 5
K1(δ)
K2(δ)

C(α) α 5 x 5 β − δ. (3.15)

Suppose the contrary and that

A > 1 and

(ρp+1 + · · ·+ ρn)(x∗) >
AK1(δ)C(α)

K2(δ)
for some x∗ ∈ [α, β − δ].

(3.16)

This continues to hold in [x∗, β], since at a first x ∈ I2 where it fails, (3.14) would
imply that ρp+1 + · · ·+ ρn were increasing, which is not possible. Indeed, integrating
(3.14) between points x∗, x ∈ I2 with x∗ < x, we have that

(ρp+1 + · · ·+ ρn)(x) = (ρp+1 + · · ·+ ρn)(x∗)e
K2(δ)
σ (x−x∗) +

K1(δ)
K2(δ)

C(α)(1− e
K2(δ)
σ (x−x∗))

=
AK1(δ)
K2(δ)

C(α)e
K2(δ)
σ (x−x∗) +

K1(δ)
K2(δ)

C(α)(1− e
K2(δ)
σ (x−x∗))

= (A− 1)
K1(δ)
K2(δ)

C(α)e
K2(δ)
σ (x−x∗) +

K1(δ)
K2(δ)

C(α), x∗, x ∈ I2 (3.17)

Now let us suppose, without loss of generality, that (iv) holds for i = 1, that is, we
can find a K3(δ) > 0 such that

n∑
i=p+1

a1jρj = K3(δ)(ρp+1 + · · ·+ ρn) in [β − δ, β] (3.18)
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Keep in mind that

e
K2(δ)
σ (x−x∗) = e

K2(δ)
σ

1
4 δ = e

K4(δ)
σ for β − 1

4
δ 5 x 5 β.

Then we have from (3.8)

dρ1

dx
(x) 5

dρ1

dx
(α)e−

1
σ (ψ1(x)−ψ1(α)) +

K(δ)
σ

C(α)
∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

− (A− 1)K1(δ)K3(δ)C(α)
K2(δ)

e
1
σK4(δ)

5
dρ1

dx
(α)e−

1
σ (ψ1(x)−ψ1(α)) +K(δ)C(α)

− (A− 1)K1(δ)K3(δ)C(α)
K2(δ)

e
1
σK4(δ), for β − 1

4
δ 5 x 5 β

Above, ψ1(x) > ψ1(α), so the exponential in the first term on the right may be
neglected. From the trivial inequality

0 5 ρ1(x) = ρ1(α) +
∫ x

α

ρ′1(s)ds

5 C(α) +
∫ x

α

ρ′1(s)ds,

we have that

0 5
ρ1(x)
C(α)

5 1 +
∫ x

α

(1 +K(δ))ds−
∫ β− 1

8 δ

β− 1
4 δ

(A− 1)
K1(δ)
K2(δ)

K3(δ)e
K4(δ)
σ )ds

5 1 + (1 +K(δ))(β − α)− (A− 1)
K1(δ)
K2(δ)

K3(δ)e
K4(δ)
σ

1
8
δ (3.19)

for β − 1
8
δ 5 x 5 β

Since A > 1, the above cannot hold for small σ depending only on δ because the
extreme right hand side of (3.19) is 0. This proves (3.15). Note that the size of σ
determined by (3.19) depends on the geometrical features of the potentials ψi, i =
1, ..., n, but not on C(α), that is, the magnitude of the solution ρ.

The theorem now follows by concatenating the three cases.

4. Stability of the stationary solution. In this section we discuss the trend
to stationarity of solutions of the time dependent system (1.4). We have the stability
theorem

Theorem 4.1. Let ρ(x, t) denote a solution of (1.4) with initial data

ρ(x, 0) = f(x) (4.1)
14
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Fig. 3.1. Transport in a two species system with period sixteen. The abcissa shows the total
density ρ1 + ρ2. In this computation, ψ2 is a one-half period translate of ψ1 and the support of the
aij , i, j = 1, 2 is a neighborhood of the minima of the ψi, i = 1, 2. The simulation was executed with
a semi-implicit scheme.

satisfiying

fi(x) = 0, i = 1, ..., n, and
∑

i=1,...,n

∫
Ω

fidx = 1.

Then

ρ(x, t)− ρ0(x) = O(e−ωt) ast→∞, (4.2)

for some positive constant ω, where ρ0 is the steady positive solution obtained in
Theorem 1.

Thus the steady positive solution is globally stable. One proof of this was given
in [4] for n = 2, and this proof may be extended to general n. A proof based on
monotonisity of an entropy function is given in [22]. A different type of monotonicity
result showing that the solution operator is an L1-contraction is given in [10]. Here we
outline a different way of viewing the problem based on inspection of the semigroup
generated by the operator, written in vector form,

Sρ = σ
∂2ρ

∂x2
+

∂

∂x
(ψ′ρ) +Aρ (4.3)

with natural boundary conditions. All of the methods are based on ideas from positive
15



operators via Perron-Frobenius-Krein-Rutman generalizations or on closely related
monotonicity methods.

We need the result that (4.3) has a real eigenvalue λ0, which is simple and has an
associated positive eigenfunction, and that all other eigenvalues λ satisfy Reλ < λ0.

This is a standard result (see, for example, [33]) obtained using the ideas of positive
operators. Very briefly, we define eS by writing the solution of (4.3) as

ρ (x, t) = etSf(x). (4.4)

Thus eS is a positive operator, since f = 0 implies ρ ≥ 0, and clearly compact, and so
has a real eigenvalue, eλ0 , which is simple and has a positive eigenfunction, and all
other eigenvalues eλ have

∣∣eλ∣∣ < ∣∣eλ0
∣∣ . This leads to S having a real eigenvalue λ0,

simple and with a positive eigenfunction, and Reλ < Reλ0 for any other eigenvalue.
In fact, λ0 = 0 because our problem has a positive steady state. Now form the

Laplace transform

ρ̂ (x, λ) =
∫ ∞

0

e−λtρ (x, t) dt,

and (4.4) gives

ρ̂ (·, λ) = (λ− S)−1
f, (4.5)

and ρ̂ is analytic in λ for Reλ ≥ m − δ, say, except for an isolated singularity at
λ = 0. Given the initial data f, we write

f = cρ0 + ρ∗,

where ρ∗ is orthogonal to the positive eigenfunction, say ρ∗0, of the adjoint operator
of S. This determines c uniquely. Then, by the Fredholm alternative, we can solve

(S − λI) ρ = ρ∗,

uniquely if we insist that the solution is orthogonal to ρ0. Then (S − λI)−1
ρ∗ is

bounded, and

(S − λI)−1
f = c (S − λI)−1

ρ0 +O (1)

= −λ−1cρ0 +O (1)

as λ→ 0, showing that the pole of (S − λI)−1 at λ = 0 has residue −cρ0. If we now

apply the inverse Laplace transform to (4.5) , we get, integrating first up a vertical
line Reλ = γ > 0, and then moving it to Reλ = −γ,

ρ (x, t) = cρ0 +O
(
e−ωt

)
as required.
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Fig. 5.1. A period interval showing potentials and conformation coefficients which do not satisfy
the hypothesis (iv) of Theorem 3.2.

5. Discussion and some conditions for “reverse” transport. We now in-
vestigate what may happen if the conditions on the ψi in Theorem 3.1 are satisfied
but those on the aij are not. In particular, we note that condition (iv) of Theorem 2
requires that if a is the minimum of one of the ψk, then some aij has support contain-
ing an interval (a− η, a) to the left of a. We will show that without this condition,
aij can be found such that the direction of transport is in the opposite direction from
that described in Theorem 3.1. We remark that the necessity of some positivity con-
dition on the aij to get transport is obvious, for if the aij are all identically zero, for
example, or satisfy conditions that permit the functional F of the introduction to be
minimized, then the solutions of (1.1) are periodic. What we look for in the following
example is a situation in which there is transport, but in the opposite direction from
that predictied by Theorem 2.2 even though the conditions on the ψi in that theorem
are satisfied.

We now specialize to n = 2, a two state system. In constructing this example, we
begin by considering functions ψ′i and aij satisfying all of the hypotheses of Theorem
2.2, and reversing direction, with the transformation x→ 1− x. Thus, we set

ψ̄i (x) = ψi (1− x)
āij (x) = aij (1− x) .

From Theorem 3.2 we conclude that if ρ̄1, ρ̄2 is a solution of (1.1) but with ψ̄i and
āij replacing ψi and aij , then for small σ,
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Fig. 5.2. Reverse transport computed using the potentials and conformation coefficients shown
in Figure 5.1. The simulation was done with XPP.

n∑
i=1

ρ̄i (0) ≤ K1e
−K2

σ

n∑
i=1

ρ̄i (1) . (5.1)

We then revert to the previous notation, dropping the bar’s and letting ψi and
aij denote data which give transport to the right in the sense of (5.1), as implied by
Theorem 3.2. For example, we may assume that the following conditions are satisfied,
cf. (1.2) and (1.3), for a two state system

aii < 0, i = 1, 2 (5.2)
a1i + a2i = 0 and aij 6≡ 0, i = 1, 2 (5.3)
If ψ′1 (x) ≥ 0 then ψ′2 (x) < 0, while if ψ′2 (x) ≥ 0, then ψ′1 (x) < 0 (5.4)

There is an interval in which ψ′1 < 0 and ψ′2 < 0. (5.5)

Since our goal is simply a class of examples of reverse transport, we will impose
further conditions on the ψi. Assume that ψ1 has a minimum at y1 = 0 followed
by a maximum at z1 ∈ (0, 1) and then a second minimum at 1, with ψ1 (0) = ψ1 (1).
Assume that ψ2 has a minimum at y2 ∈ (z1, 1) followed by a maximum at z2 ∈
(y2, 1) ,and ψ2 (0) = ψ2 (1). Assume that ψ′i 6= 0 except at the minima and maxima
specified above. We have 0 = y1 < z1 < y2 < z2 < 1. There is no point where both
ψ′1 ≥ 0 and ψ′2 ≥ 0 and so when the aij are all non-zero on [0, 1] , we will have
transport to the right as given in (5.1).

18



But we will now choose new aij to give transport to the left. For our existence we
still need (1.2) and (1.3), in this case

aii 5 0, i = 1, 2 (5.6)
a1i + a2i = 0 and aij 6≡ 0, i = 1, 2 (5.7)

so the hypothesis (iv) of Theorem 3.2 about the relationship of the supports of the
aij and the minima of the ψi will not be satisfied.

Choose a point x1 ∈ (y1, z1) and a point x2 ∈ (y2, z2) . Our example is constructed
initally using δ- functions, with a brief remark about the continuous case at the end.
We consider the system

(σρ′1 + ψ′1ρ1)
′ = (δ (x− x1) + δ (x− x2)) (ρ1 − ρ2)

(σρ′2 + ψ′2ρ2)
′ = (δ (x− x1) + δ (x− x2)) (ρ2 − ρ1) ,

(5.8)

with boundary conditions

σρ′i + ψ′iρi = 0 at x = 0, 1, for i = 1, 2.

We wish to find further conditions which imply that there is a c > 0 independent of
σ such that if (ρ1, ρ2) is a solution and ρ1 > 0 and ρ2 > 0 on [0, 1], then

ρ1 (1) + ρ2 (1) < e−
c
σ (ρ1 (0) + ρ2 (0)) . (5.9)

We follow the technique in [4] , and let φi = σρ′i + ψ′1ρi. Adding the equations in
(5.8) shows that φ1 + φ2 is constant, and applying the boundary conditions shows
that φ1 + φ2 = 0. This leads to the system

σρ′1 = φ̂− ψ′1ρ1

σρ′2 = −φ̂− ψ′2ρ2

φ̂′ = (δ (x− x1) + δ (x− x2)) (ρ1 − ρ2) ,

where φ̂ = φ1 = −φ2. Observe that φ̂ takes a jump of amount ρ1 (xj) − ρ2 (xj)

at each xj . Further, φ̂ is constant in the intervals [0, x1), (x1, x2) , (x2, 1]. Let
φ̂j = φ̂ (yj). We then have

ρi (xj) = ρi (yj) e
ψi(yj)−ψi(xj)

σ + (−1)i−1
φ̂j

∫ xj

yj

1
σ
e
ψi(s)−ψi(xj)

σ ds,

i = 1, 2. Hence,

ρ1 (xj)− ρ2 (xj) = ρ1 (yj) e
ψ1(yj)−ψ1(xj)

σ − ρ2 (yj) e
ψ2(yj)−ψ2(xj)

σ

+ φ̂j

∫ xj

yj

1
σ

(
e
ψ1(s)−ψ1(xj)

σ + e
ψ2(s)−ψ2(xj)

σ

)
ds

For i = 1, 2 let
19



ai =
ψi (y1)
σ

bi =
ψi (x1)
σ

ci =
ψi (x2)
σ

Ai =
∫ x1

0

1
σ
e
ψi(s)
σ ds

Bi =
∫ x2

x1

1
σ
e
ψi(s)
σ ds

Ci =
∫ 1

x2

1
σ
e
ψi(s)
σ ds.

Since ψi (0) = ψi (1) , we eventually obtain (computation facilitated by Maple)

ρ1 (1) = k11ρ1 (0)− k12ρ2 (0) + k13φ̂1

ρ2 (1) = −k21ρ1 (0) + k22ρ2 (0)− k23φ̂1

where

k11 = 1 + e−b1B1 + e−b1C1 + e−c1C1 + e−b1−c1B1C1 + e−b1−c2B2C1

k12 = ea2−b2−a1B1 + C1

(
ea2−b2−a1 + ea2−b2−c1−a1B1 + ea2−c2−a1 + ea2−b2−c2−a1B2

)
k21 = ea1−b1−a2B2 + C2(e−b1 + e−c1 + e−b1−c1B1 + e−b1−c2B2)

k13 = e−a1(A1 +B1 (1 + v) + C1 (1 + v) + e−c1C1A1 + e−c1C1B1 (1 + v)

+ e−c2C1A2 + e−c2C1B2 (1 + v))

k22 = 1 + e−b2B2 + C2(e−b2 + e−b2−c1B1 + e−c2 + e−b2−c2B2)

k23 = e−a2A2 + e−a2B2 (1 + v) + e−a2C2 (1 + v) + e−a2−c1C2A1 + e−a2−c2C2A2

+ e−a2−c1C2B1 (1 + v) + e−a2−c2C2B2 (1 + v)

with v = e−b1A1 + e−b2A2. As in [4], we solve each of the inequalities ρ1 (1) > 0,

ρ2 (1) > 0 for φ̂1, and substitute the result into the other of these two relations. We
find that

ρ1 (1) ≤ k11k23 − k21k13

k23
ρ1 (0) +

k13k22 − k12k23

k23
ρ2 (0) ,

ρ2 (1) ≤ k11k23 − k13k21

k13
ρ1 (0) +

k13k22 − k12k23

k13
ρ2 (0) .

To demonstrate exponential decay of ρ1(1)+ρ2(1)
ρ1(0)+ρ2(0)

, we show that under certain addi-
tional conditions the four fractional coefficients k11k23−k21k13k13

, k11k23−k21k13k23
, k13k22−k12k23k13

, k13k22−k12k23k23
tend to zero exponentially as σ → 0. Further Maple computation (checked with Sci-
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entific Workplace) shows that

k11k23 − k21k13 =
A2

ea2
+
B2

ea2
+
C2

ea2
+A2

B1

ea2eb1
+A2

C1

ea2eb1
+A2

B2

ea2eb2
+A2

C1

ea2ec1

+A2
C2

ea2eb2
+B2

C1

ea2ec1
+A2

C2

ea2ec2
+B2

C2

ea2ec2
+A2B1

C1

ea2eb1ec1
+A2B1

C2

ea2eb1ec2

+A2B2
C1

ea2eb2ec1
+A2B2

C2

ea2eb2ec2

Note that many cancellations have occurred, eliminating terms in which four or five
integrals are multiplied. Also,

k13k22 − k12k23 =
A1

ea1
+
B1

ea1
+
C1

ea1
+A1

B1

ea1eb1
+A1

C1

ea1eb1
+A1

B2

ea1eb2
+A1

C1

ea1ec1

+A1
C2

ea1eb2
+B1

C1

ea1ec1
+A1

C2

ea1ec2
+B1

C2

ea1ec2
+A1B1

C1

ea1eb1ec1
+A1B1

C2

ea1eb1ec2

+A1B2
C1

ea1eb2ec1
+A1B2

C2

ea1eb2ec2

In estimating the integrals, first consider B1. We will say that f ∝ g if there are

positive numbers α and β such that for sufficiently small σ, α < f
g < β. We then

have

B1 =
∫ x2

x1

e
ψ1(s)
σ ds ∝ σke

ψ1,max
σ ,

for some k > 0 and with ψ1,max = ψ1 (z1) = maxx ψ1 (x). Also, for possibly different
values of k,

A1 ∝ σkeb1

A2 ∝ σkea2

B2 ∝ σk
(
eb2 + ec2

)
C1 ∝ σk (ec1 + ea1)

C2 ∝ σke
ψ2,max

σ .

Hence the two largest terms among A1, A2, B1, B2, C1, C2, e
a1 , ea2 , eb1 , eb2 , ec1 , ec2 , are

B1 and C2, for small σ. For the moment we let di = ψi,max
σ and set

A1 = eb1

A2 = ea2

B1 = ed1

B2 = eb2 + ec2

C1 = ec1 + ea1

C2 = ed2
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We will find also that to get the desired backward transport, we need to take x2 near
to the maximum of ψ2. Therefore for now we will set x2 = y2, so that c2 = d2.
Finally, we can without loss of generality assume that a1 = 0.

Remark: The additional conditions we will give for backwards transport for small σ
are that the inequalities (5.10) and (5.11) below hold and that x2 is sufficiently close
to y2.

We then have

k11k23 − k21k13 =
1
eb1

+
2
ec1

+
3
ea2

eb2 +
1
eb1

ec1 +
3
eb1

ed1 +
4
ea2

ed2 +
4
eb2

ed2

+
1
ea2

eb2

ec1
+

1
eb1ec1

ed1 +
1

ea2ec1
ed2 +

1
eb2ec1

ed2 + 6

k22k13 − k12k23 = 6eb1 + 2ec1 + 6ed1 + 2
eb1

ec1
+

2
ec1

ed1 + 4
eb1

eb2
ed2 +

eb1

eb2ec1
ed2 + 2

k13 = 2eb1 + 4ec1 + 4ed1 + 2
ea2

eb2
+
eb1

ec1
+ 2

ea2

ed2
+

2
ec1

ed1 + 2
eb2

ed2
+ 2

ea2

eb2
ec1 + 2

ea2

eb2
ed1

+ 2ea2
ec1

ed2
+ 2eb2

ec1

ed2
+

ea2

eb2ec1
ed1 + 4

k23 =
4
ea2

eb2 +
6
ea2

ed2 +
3
eb2

ed2 +
1
ea2

eb1

ec1
ed2 +

2
ea2ec1

ed1ed2 +
1

eb2ec1
ed1ed2 + 4

We now assume that d1 > max {b1, c1} , a1 = 0 < min {b1, c1} , and d2 > max {a2, b2}.
We compare terms pairwise wherever possible, eliminating the term which is neces-
sarily smaller as σ → 0. This results in the asymptotic relations

k11k23 − k21k13 ∝
3
eb1

ed1 +
4
ea2

ed2 +
4
eb2

ed2 .

(This expression is unchanged if we drop the assumption that a1 = 0.) Similarly,

k22k13 − k12k23 ∝ 6ed1 + 4
eb1

eb2
ed2 .

(with a1 included: 6
ea1 e

d1 + 4
ea1

eb1

eb2
ed2),

k13 ∝ 4ed1 + 2
ea2

eb2
ed1 .

(or with a1 : 4
ea1 e

d1 + 2
ea1

ea2

eb2
ed1), and

k23 ∝
2

ea2ec1
ed1ed2 +

1
eb2ec1

ed1ed2 .
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(This is unchanged if a1 6= 0.) From these we conclude that the four fractions in
question are exponentially small as σ → 0 if in addition to the previous assumptions
we have

d2 − a2 < d1 − b1 < d2 − b2. (5.10)

and

d1 > b1 + c1. (5.11)

(If a1 6= 0 this becomes d1+a1 > b1+c1.) By continuity we see that these inequalities

will also suffice if c2 is sufficiently close to d2. The conclusions also hold with the
factors σk included in the asymptotic expressions, since these don’t affect the expo-
nential limits. Finally we wish to obtain a result with continuous functions for the

aij . Here we don’t have a limit result as σ → 0. But suppose that ε > 0 is given,
and in the equation (5.8) we choose σ so small that

n∑
i=1

ρi (1) < ε

n∑
i=1

ρi (0) .

Then for this σ the same inequality will hold for continuous functions αij sufficiently
close in an appropriate sense to the δ-functions in (5.8).
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