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Abstract

Strained epitaxial films grown on a relatively thick substrate are considered in the context
of plane linear elasticity. The total free energy of the system is assumed to be the sum of the
energy of the free surface of the film and the strain energy. Because of the lattice mismatch
between film and substrate, flat configurations are in general energetically unfavourable and
a corrugated or islanded morphology is the preferred growth mode of the strained film. After
specifying the functional setup where the existence problem can be properly framed, a study
of the qualitative properties of the solutions is undertaken. New regularity results for volume
constrained local minimizers of the total free energy are established, leading, as a byproduct,
to a rigorous proof of the zero contact-angle condition between islands and wetting layers.

1 Introduction

In this paper we study from the variational point of view a mathematical model for the epitaxial
deposition of a film onto a relatively thick substrate in the case where there is a mismatch between
the lattice parameters of the two crystalline solids.

At the interface between the film and the substrate two opposing mechanisms compete to
determine the resulting structure. Ideally the minimum energy configuration of the bulk material
occurs at the stress-free state for each solid, however when the lattice parameters of the two
materials differ, complete relaxation to bulk equilibrium would result in a crystalline structure
that would be discontinuous at the interface. As this is forbidden due to the constraint of epitaxy,
a mismatch strain in the film arises during deposition.

The presence of such a strain renders a flat layer of the film morphologically unstable or
metastable, after a critical value of the thickness is reached. This is explained as the effect of the
competition between the surface energy and the bulk energy: To release some of the elastic energy
due to the strain, the atoms on the free surface of the film tend to rearrange into a more favorable
configuration. In turn, such a migration of atoms has an energetic prize in terms of surface tension
and the resulting configuration has lower total energy only if the thickness of the film is large
enough. We refer to [16] for a detailed mathematical discussion of this threshold effect.

Typically, after entering the instability regime, the film surface becomes wavy or the material
agglomerates into clusters or isolated islands on the substrate surface. Island formation in systems
such as In-GaAs/GaAs or SiGe/Si turns out to be useful in the fabrication of modern semiconductor
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electronic and optoelectronic devices such as quantum dots laser. Let us mention here that there
are two different modes of island growth: In the first one, known as the Stranski-Krastanow (SK)
mode, the islands are separated by a thin wetting layer, while in the second one, the Volmer-Weber
(VW) mode, no wetting occurs and the substrate is exposed between islands.

In the literature several atomistic and continuum theories for the growth of epitaxially strained
solid films are available. Here we work in the context of continuum mechanics and we essentially
follow the variational approach contained in [26] (see also [28], [20], and the references contained
therein).

We now describe the model considered in this paper. Both the film and the substrate are
modeled as linearly elastic solids. To keep the geometry as simple as possible we restrict atten-
tion to an epitaxial layer (with variable thickness h) grown on a flat semi-infinite substrate. We
further restrict attention to two-dimensional morphologies which correspond to three-dimensional
configurations with planar symmetry.

We assume that the material occupies the infinite strip

Q={x=(z,y):a<z<b y<h(z)} (1.1)

where h : [a,b] — [0,00). Thus the graph of h represents the free profile of the film, the open set
QF =Qn{y > 0} is the reference configuration of the film, and the line y = 0 corresponds to the
film /substrate interface. We work within the theory of small deformations, so that

E(u) := % (Vu+ vu’)

represents the strain, with u : @ — R? the planar displacement. The displacement is measured
from a configuration of the layer in which the lattices of the film and the layer are perfectly
matched; this configuration, in which E = 0, will not correspond to a minimum energy state of
the film, which we assume to occur at a strain Eqg = Eg (y). We assume that this mismatch strain
has the specific form
Coi ify >
Ba) = { (O Y20 (1.2

with eg > 0 and i the unit vector along the z direction (throughout all the paper {i,j} will denote
the canonical basis of R?).

In our setting the film and the substrate have similar material properties, and so they share the
same homogeneous elasticity tensor C'. Hence, bearing in mind the mismatch, the elastic energy
per unit area is given by W (E — Eq (y)) , where

W (E) = %E~C[E} (1.3)

with C' a positive definite fourth-order tensor, that is,

%E-C[E] >0 (1.4)

for all symmetric matrices E #£0.
In the sharp interface model the interfacial energy density ¢g has a step discontinuity at y = 0 :
It is g, if the film has positive thickness and gy, if the substrate is exposed, precisely

R Yfilm 1fy > 07
eol)i={ T V>0 (1)

Hence the total energy of the system is given by

F(u,Q):= /QW(E (u) (x) = Eo (y)) dX+/F<po (y) dH' (x), (1.6)



where I' represents the free surface of the film, that is,
I':=900n((a,b) xR). (1.7)

As we already mentioned above the sharp interface model is difficult to be implemented nu-
merically. Thus in the literature it is customary to replace it with a boundary-layer model, where
the discontinuous transition is regularized over a thin transition region of width § (“smearing
parameter” ).

In this paper, following the work of Spencer [26] (see also the references therein), for § > 0 we
consider the regularized mismatch strain

Es (y) = %eo (1+f(%))i®i, y €R, (1.8)

and the regularized surface energy density

Y
s (y) ‘= Ysub + ('Yﬁlm - ’YSub) f (5) 5 ) > 07
where f is a smooth increasing function such that
FO) =0, lim f(y)=-1, lm f(y)=1 (1.9)
Thus the regularized total energy of the system becomes
F5(u,Q) := / W(E(u) (x) — Es (y)) dx + / ws (y) dH (x). (1.10)
Q r

The paper is divided into two parts. In the first part we study the asymptotics as § — 0% of
the regularized problem and we show that the limiting functional is given by a suitable relazed
version of the sharp interface model energy (1.6) (see Theorem 2.9). We consider here both regimes
Yalm = Ysub aNd Yaim < Ysub- 1t is interesting to note that in the latter regime the relaxed surface
energy density is no longer discontinuous and in fact it is constantly equal to vgi,. From the
physical point of view this may be seen as evidence of wetting: when g, < Ysub it is energetically
more favorable to cover the substrate with an infinitesimal layer of film atoms (and pay surface
energy with density yaim ) rather than to leave any part of the substrate exposed (and pay surface
energy with density Ysup)-

The asymptotic analysis, which relies on the notion of I'-convergence introduced by De Giorgi,
is very close in spirit to recent work of Bonnetier and Chambolle [4]. However it does not follow
directly from their analysis. Here we have chosen to present a self-contained proof based on
somewhat different arguments. We should mention that the results contained in [4] have been
extended and generalized in a higher dimensional setting in the two recent papers [6] and [8].

In the second part of this work we restrict ourselves to the wetting regime g1, < Ysup and to
homogeneous anisotropic elastic materials, and we study the regularity of local minimizers (u, )
of the limiting functional Fi, (see (3.1) ), under a volume constraint.

Roughly speaking our main regularity results show that the profile h of the film for a locally
minimizing configuration is regular except for at most a finite number of cusps and “vertical
cuts” which correspond to vertical cracks in the film. Numerical results obtained by Spencer and
Meiron [27] confirm that steady state solutions exhibit cusp singularities, and also time-dependent
evolution of small disturbances of the flat interface result in the formation of deep grooved cusps.
Additional analytical evidence of the onset of cusps is provided in the work of Chiu and Gao [10]
(see also [14]), where it was shown that the cycloid which minimizes the total energy (among a
one-parameter family of cycloids) has a cusp singularity pointing toward the solid. Experimental
validation of sharp cusplike features in SIy Geg 4 and the discussion of possible mechanisms that
may explain this phenomenon can be found in [9].



As a consequence we give a proof of the zero contact-angle condition between the wetting layer
and islands, thus providing a rigorous mathematical justification to the formal argument used in
[26] and based on matched asymptotic expansions. To the best of our knowledge these results are
completely new in this context. The extension of some of these results to the three-dimensional
case is the subject of a future work.

Let us now briefly describe the main steps in the regularity proof. As a starting point we
observe that volume constrained minimizers of the limiting energy F,, are also unconstrained local
minimizers if we add to F, a suitable volume penalization. This allows us to consider arbitrary
variations of h and to prove, adapting an argument introduced in [7], a uniform interior sphere
condition for the domain (2. This yields the conclusion that the graph of h is a Lipschitz continuous
curve away from a finite number of singular points. Having the Lipschitz continuity of A in hand, a
blow up argument, combined with classical results on corner domains for solutions of Lamé systems,
leads to a precise decay estimate for the gradient of the displacement u near the boundary, which
in turn implies the C1* regularity of h and Vu. At this point a bootstrap argument together with
a theorem proved in [19] gives the final higher regularity result.

2 Relaxation and I'-convergence

Throughout the paper we denote by x = (x,%) the generic point of R? and by B(x,r) the open
disc centered at x with radius r. Given two sets A, B C R? their Hausdorff distance disty (A, B)
is defined as
disty (A, B) :=inf{r >0: AC N, (B) and B C N, (A4)},
where
N, (A) == {x€R®: |[x—y|<r for somey € A}

and N, (B) is defined similarly.
In the sequel % is a lower semicontinuous function from [a, b] with values in [0, +00). Given h
let

Qp={(z,y): a<zx<b, y<h(zx)}, (2.1)
Qf ={(z,y): a<z<b,0<y<h(z)}

be the reference configuration of the substrate/film system and the reference configuration of the
film, respectively. The set

Iy :=00,N ((a7 b) X R) , (2.3)
represents the free profile of the film. We also consider the set
Ty, := 89, N ((a,b) x R) . (2.4)

When there is no risk of ambiguity we shall omit the subscript h in the above notations.
We denote by Var h the pointwise variation of h, that is

Var b := sup {Z |h (x5) — b (zi1)| - (2.5)

i=1
P :={xg,...,x,} is a partition of [a,b]} < oco.

We recall that if h has finite pointwise variation, then for every x € (a,b) we may define

h™ (z) :=min{h (27),h(z7)} = hgiiffh (2), (2.6)
At (z) :=max{h (z%) h(z7)} = lirgljrp h(z), (2.7)



where
h (xi) = lim h(z).

Z—X

It may be verified that the functions h* coincide with the approximate upper and lower limit of h
in the sense of Federer (see [2] for the definition).
In the following lemma we collect some well known facts for later use.

Lemma 2.1 Let h : [a,b] — [0,400) be a lower semicontinuous function and let T and T be the
sets defined in (2.3) and (2.4) , respectively. The function h has finite pointwise variation if and
only if HY(T') < +oo. Moreover, if h has finite pointwise variation then:

(i) the set Q2 defined in (2.1) has finite perimeter in (a,b) xR,
(i) T ={(z,y): a<x<b, h(z) <y <h™(x)},

(iii) the function h™ is lower semicontinuous and
Q={(z,y):a<z<by<h (z)},

(i) T ={(z,y): a<z<b h™(z) <y <ht(x)}.

Notice that (ii) and (iv) immediately imply that ' and T are connected.
We now introduce the space

Xiip := {(0,Q) : ue H, (QR?), Qis as in (1.1),
h is Lipschitz continuous} ,
where the unrelaxed energies (1.6) and (1.10) are originally defined. In the next proposition we
will show that energy bounded sequences in Xi;, are compact in a larger space X of admissible
relaxed configurations defined as
X :={(u,Q):ueH,, (%R, Qisin (1.1), (2.8)
h is lower semicontinuous and has finite pointwise variation} .

We recall that an infinitesimal rigid motion is an affine displacement of the form v(x) = a + Bx,
where B is a skew-symmetric matrix and a is a constant vector.

Proposition 2.2 (Compactness) Let {(u,, 2, )} C XLip e such that

sup (/ \E(un)|2 dx +H" (Ty,,) + ‘QIJ) < 0. (2.9)
th

n

Then there exist a subsequence {(unk,thk)}, infinitesimal rigid motions vi, and (u,Q) € X

such that the sets R?\ thk converge in the Hausdorff metric to R?\ Q and the functions wy,, + Vi
converge to u weakly in H*(SY;R?) for every Q' CC Q.

Proof. For simplicity we write €, and I',, in place of Q_ and Iy, respectively. From the
assumption it follows that

sup (’QI‘ +H' (') < oc.

Therefore for all n we have Q,, C {(z,y) : a <z < b, y <!} for some [ > 0. Hence the compactness
of the sets R? \ €2, is equivalent to the compactness of the equibounded sets {(z,y) : a < z <
b, y <1} \ , which follows from Blaschke Compactness Theorem (see Theorem 6.1 in [2]). Thus



we may assume that, up to a subsequence (not relabelled), R? \ Q,, converges in the Hausdorff
metric to a set R? \ . It is not difficult to see that Q = €2, where h is the lower semicontinuous
function given by

h(x) :=inf {Hminf ho (z0) @ @y — ac} . (2.10)

n— oo

By the same theorem we may also assume that {fn} converges in the Hausdorff metric to some
compact set K. It can be easily checked that I' C K. Therefore by Gotab’s Theorem

HY(T) < H (K) < liminf H* (T,) .

n—00

Hence from Lemma 2.1 the function h has finite pointwise variation.
Moreover, by (2.9) we may find a subsequence (not relabelled) and a function Eoc€L? (€; ngxn?l)
such that
E (u,) X, = Beoxa in L? (R%RY) .

Fixaball B C {(x,y): a <z < b, y < 0}. By adding suitable infinitesimal rigid motions, if needed,
without loss of generality we may assume that

/ u, dx =0, / (Vu, — Vu,{) dx=0 (2.11)
B B

for every n, in addition to (2.9). Note that here we have used the fact that B C €,,.
Construct a sequence of bounded open sets {D;} with Lipschitz boundary such that

BcD;ccQ, D;/Q

as j — o0. By (2.11) and Korn’s inequality combined with a standard diagonalization argument,
there exists u € H} (2 R?) with E (u) = E such that u,, — u weakly in H'(D;;R?) for every
Jj. As the pair (u, Q) € X this concludes the proof. m

The previous proposition motivates the following notion of convergence.

Definition 2.3 A sequence {(un,Q,)} C X is said to converge to (u, ) in X if:

(i) the functions h,, have equibounded variations; i.e., sup,, Var h,, < 400;
(ii) the sets R?\ Q,, converge in the Hausdorff metric to R? \ Q;
(iii) the functions u, converge to u weakly in H*();R?) for every Q' CC Q.

We will often write (un, Qn,) — (u, ) to mean that (i), (ii), and (iii) of the previous definition
hold.

Note that from the Hausdorff convergence of {R?\ €, } to R?\ Q it follows that Q' C Qy,, for
all n sufficiently large. Hence condition (iii) in the previous definition makes sense.

Remark 2.4 We observe that condition (i) in Definition 2.3 is equivalent to requiring that
sup,, H*(T'p,, ) < +o0.

The following lemma shows a useful property of the convergence in X.

Lemma 2.5 Assume that (i) and (ii) of Definition 2.3 hold. Then h,, converges to h in L'(a,b)
and, in particular,
|9, AQ| — 0.



Proof. For simplicity we write €2, and I'), in place of €}, and I}, , respectively. Since the
functions h,, have equibounded variations, up to extracting a subsequence there exists h with
bounded variation in (a,b) such that k, — h in L'(a,b) and everywhere in (a,b)\ Ny, with Ny at
most countable by the Helly theorem (see [22]). Hence the lemma amounts to showing that h = h
almost everywhere in (a,b).

By the Blaschke Compactness Theorem (see Theorem 6.1 in [2]) we may also assume that

r,—-K in the Hausdorff distance (2.12)

for some compact connected set K. Moreover, by the Gotab Theorem and by Remark 2.4 it follows
that
H' (K) < liminf H* (T',,) < 4o0. (2.13)

Denote by K, := {(z,y) € K} the vertical section of K corresponding to the point x € (a,b). We
claim that H! (K,) = 0 for all = € (a,b) \ Ny, with N; at most countable. To see this it is enough
to observe that

%card{x:Hl(Km)>l}< Z H' (K,) <H' (K) < oo.

n
m:Hl(KI)Z}L

Since K is the Hausdorff limit of graphs, each K, is connected and so K, reduces to one point
for all x € (a,b) \ N1. Set N := Ny U N;. In order to conclude the proof it suffices to show that
for all z € (a,b) \ N the equality h(z) = h(z) holds. Assume by contradiction that h(x) # h(x)
for some z € (a,b) \ N. Since h(z) = lim,, h,(z), by (2.10) we deduce that h(x) > h(z) and that
there exists a (sub)sequence x,, — = with h,(x,) — h(z). Note that for any y € (h(x), h(x)) we
have hy(x,) < y < h,(x) for n large enough. Hence, using the connectedness of I',,, we may find
x}, between x and x,, such that (a},y) € I',,. Since clearly z, — z, we deduce from (2.12) that
(z,y) € K, that is, y € K,.Therefore (h(z), h(z)) C K, but this is a contradiction since by our
choice of = the section K, reduces to one point. ®

Remark 2.6 Combining Lemma 2.1, Remark 2.4, and Lemma 2.5 we deduce that if (u,, <y, ) —
(u,€) in X, then the sets 2y, have equibounded perimeters in (a,b) xR, xq, — xo in L ((a,b)x

R), and Dxq, X Dyq weakly* in the sense of measures.

If h has finite pointwise variation then the upper boundary T' of © defined in (1.7) may be
represented as the union of three subsets

I'=Tvert UTlcus U 1_‘graphv
where:

1. Tyert is the closure of the (at most) countable collection of vertical segments corresponding
to the jumps of h, that is

Lyert :={(z,y) : z € (a,b) N S(h), h— (z) <y < ht(z)}, (2.14)

where, as usual,

S(h):={z € (a,b): b~ (z) #h (z)}; (2.15)

2. Teuts is given by the union of a (at most) countable number of vertical cuts which correspond
to the points where h # h™, precisely

Leuts == {(z,y) : 2 € (a,b) NS, h(z) <y < h™ (2)}, (2.16)

with
S:={xe(a,b): h(z)<h™ (x)}; (2.17)



3. Tgraph = I'\ (Tyert UT cuss) is the portion of the I' corresponding to regular part of the graph
of h.

Thus I' (see (2.4) ) can obtained from I' by eliminating the vertical cuts (i.e. by re-defining h
to be h™), and we have

I' = [ U Ceugs.
y
Ijgraph T
—
X
1::;raph 1—‘graph
1
Lt = . &
' h(x)
I,
- - IEuts

Figure 1: An admissible relaxed configuration.

The compactness and the I'-convergence results proved below are very similar to those estab-
lished by Bonnetier and Chambolle in [4]. However our proofs do not follow directly from the
analysis in [4] and make use of different arguments except for the next lemma.

Lemma 2.7 Let h : [a,b] — [0,4+00) be a lower semicontinuous function with finite pointwise
variation, such that h~ = h. Define the Yosida transform

hpn(z) := inf{h(z") + n|z — 2’| : 2’ € [a,b]}
for x € [a,b]. Then R%\ Qy, — R?\ Q in the Hausdorff metric and
lim H' (Ty,) = H" ().

n—oo

The proof of this lemma is contained in the proof of Lemma 2.1 of [4] (given in Section 5.1 of

[4])

Next we give a representation formula of the relazed functional Fs5 (u,Q) of Fs (u,Q).

Theorem 2.8 (Relaxation) For every § > 0 let Fs be the relazed functional of Fs under volume
constraint, i.e.,

Fs(u,Q) = inf {lim inf F5 (W,, Qp,.) : (up, Q) € Xvip,

(U ) — (0,Q) in X, |9f | = |2}
for all (u,Q) € X. Then
h™ (x)
_ . - 1
Fs (u,9) = / W (B (u) (x) - Es () dx + / o5 () dH <x>+2m€§js /} L P, 21

where T and S are the set defined in (2.4) and (2.17) , respectively.



Proof. For simplicity we write §2,, and ', in place of Q,,, and Ty, , respectively. Fix (u,Q) € X.
Step 1: Let F5 (u,(2) denote the right-hand side of (2.18). We begin by showing that

Fs(u,Q) > F5 (0, Q). (2.19)

Consider a sequence {(uy,,,)} C Xr;p such that (u,,Q,) — (u,Q) in X, with |Q;}| = |QT], and
let h, and h be the functions associated with €2, and €2, respectively. Without loss of generality
we may assume that

liminf Fy (u,,Q,) = lim Fs(u,,Q,) < oo (2.20)

n—oo n—oo
and B
r, - K in the Hausdorff distance,

for some compact set K containing I'.

Since h is of pointwise bounded variation and H! (T') < oo, the set S defined in (2.17) is at
most countable. Fix k € N (with & the cardinality of S if S is finite) and let S*) := {@y,--- , 21}
be any subset of k elements of S. Without loss of generality we may assume that

a<xy <---<xR <Db.

Since the Hausdorff convergence of compact sets is equivalent to the Kuratowski convergence (see
[2]) for each fixed j =1,--- ,k we may find a sequence {z, ;} C (a,b) such that

xn,j — xj, hn (xn,j) — h (.’E]) (221)

as n — oo. The following construction is borrowed from [21]. Let z,, 2o : (a,b+ 1) — (a,b) be
the (continuous) piecewise affine functions such that z, (a) = z¢ (a) = a,

o (s)i=4 U 5E (@ng + 5t ams + ) G=1 0k,
’ 1 otherwise,

1 (s) =4 O s€ (o + 2+ ) J=1 .k
1 otherwise,

and define izn := h,, oz, and

h(s) =1 P s€ (aj+ 2+ ) J=1 .k
' h™ (zo(s)) otherwise.

Note that h,, (s) = hp (zp ;) for s € (a:n,j + j%,znvj + %), j=1,---,k. Denote by R the open
strip (a,b+ 1) xR and set

~

Q,, =

~

(s,y): a<s<b+1,y<ﬁn(s)}, Q:z{(s,y):a<s<b—|—1,y<ﬁ(s)}

—

and N R R R L
I',=00,NR, I':=00NR.

Then by construction and since ;s is independent of the x variable it can be shown that

k
S s a0 = [ sy 60+ 3000 ),

k h™ ()
Joswant o= [ oot i 23 [ o) dy (2:22)



By (2.21) we have that
k
nlgr;on (2n3)) = > 05 (b (). (2.23)
j=1

It is not difficult to see that Qn and Q are sets of finite perimeter in the open strip 7%, that
Xg — Xg in Lloc (Rz), and that

DXQ,, X l))(f2

weakly™* in the sense of measures. Applying Reshetnyak’s Lower Semicontinuity Theorem (as stated
in Theorem 2.38 in [2] with p, := Dxg , p:= Dxg and f (x,£) = @5 (y) |£|) we obtain

tmint [ o5 (0) 0 () > [ s ) @t (9, (2:24)

where FQ denotes the reduced boundary of € in R (see Def. 3.54 in [2]). Note that we have used
the fact that R R R R
[Dxg, I(R) = H'[Tn, [Dxgl(R) = H'[ FQ,

as proved in Proposition 3.62 and Theorem 3.59 in [2]. It is well known that (see [13, Theorem
4.5.9 (5)]), up to a set of H' measure zero, we have

fﬁz{(s,y):a<8<b+1, iz_(s)gygiﬁ(s)}:f, (2.25)

where the functions h* are defined as in (2.7)-(2.6) with & in place of h. Hence the inequality
(2.24) is equivalent to

tminf [ s () (0> [ o) art! ().

By (2.22) and (2.23) we have that

n—oo

h™(x)
/ ws (y) dy.
h

fiminf | GUEACE [os  artt ) +2 .

zeS k),
If S is infinite we now let k — oo in the previous inequality to conclude that
h™ (1)

liminf [ 5 (y) dH (x) > /w( dH* (x +2Z/ : (2.26)

n—oo Fn xes
Note that in view (2.20), by extracting a subsequence, if necessary, we may assume that the limit
inferior in (2.26) is actually a limit.
It remains to study the bulk energy. Fix any D CC €. Since the sequence u,, converges weakly
to uin H'! (D;RR?) we have that
E(u,) = E(u) in L? (D;R**?).

Hence

liminf/ W (E (u,) — Eys) dx>hm1nf/ W (E (u,) — Es) dx (2.27)
Qp

n—oo n—00

Z/DW(E(u)—E[;) dx .

10



By letting D " © and recalling (2.20) and (2.26) (with the limit inferior replaced by a limit) we
conclude that (2.19) holds.
Step 2: To prove the reverse inequality

-7:6 (uv Q) > Fé (uv Q) ) (228)
it is enough to construct a sequence {h,} of Lipschitz continuous functions such that 0 < h,, < h,

(0, Q) — (0, Q) and lim Fs(u,Q,) = F5 (u,Q), (2.29)

n—o0

where Q,, :=Qy, .
Indeed, assume that (2.29) holds with h,, < h. Then by a standard slicing argument we fix
Yo < 0 such that u (-, y0) € H' ((a,b) ; R?) and define

u(xvy_gn) ify>y0+5n7

u, (x) =49 u(z,yo) if yo <y <yo +én,
u(z,y) if y < yo,
and 3
by (%) := hy (%) + Eny
where

b
Ep 1= bia <Q+_/ Iy () da:) .

Note that since || — |Q"| we have that £, — 0. Clearly |QFLJr | =197, (0., ) — (u,Q) in
X and '
lim Fy(u,Q,) = lim Fj (quiLn) .

n—oo n—oo

Hence (2.28) will follow from (2.29). The remaining of the proof is devoted to the construction of
the sequence {h,}.
Step 3: Assume first that

h™ =h. (2.30)

We denote by h,, the Yosida transform of h defined as in Lemma 2.7. It is easy to see that
0 < hy < hper < hand that by, is Lipschitz. Let €, be the sets associated with h,. We claim that

lim Fj5(u,Q,) =Fs (u,Q). (2.31)

n—oo

The convergence of the bulk energies of the approximating sequence follows immediately from
Lebesgue Monotone Convergence Theorem. Thus it remains to prove the convergence of the surface
energies.

From Lemma 2.7 and by (2.30) we have that

lim H'(T,) = H* (0) = HY(T). (2.32)

n— o0

Clearly €, and €2 are sets of finite perimeter in the strip R = (a,b)xR and xq, — xq in L, (R?).
As in (2.25), up to a set of H' measure zero, we have

FQ={(z,y):a<xz<bh (x)<y<ht(z)}=T. (2.33)
Therefore, by (2.33) and (2.32) we obtain

|Dxa,[(R) = H'(T'n) — |[Dxal(R) = H'(T).
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Thus, arguing as in (2.24), we may apply Reshetnyak’s Continuity Theorem (see Theorem 2.39 in
[2]) to conclude that

tim [ s ) M (x) = [ s ) d! ).

n—oo r
n

Step 4: We consider next the case where the set S defined in (2.17) is finite, say S = {x1, -,z },
where as before
a=:1x9g<x] <- - <T <b=:Tp41.

We claim that there exists an increasing sequence of lower semicontinuous functions h,, satisfying
(2.30) such that R?\ Q,, — R?\ Q in the Hausdorff metric and

lim Fs (u, Q) = F5 (u, Q). (2.34)

n—oo

To see this, let
e :=min{|z; —x;_1|: j=1,--- ,k+1} >0

and for n € N define

ho (@)= { D) e € o — gt g] G=1 0k
A h(xz) otherwise.

Since h is lower semicontinuous, and by the definition of S (see (2.17)), for all n sufficiently large
we have that h,, is lower semicontinuous and

0<h, <hpyr <h,

h, — h pointwise and clearly h, = h,. It is easy to see that

/F s (y) dH! (x) = / o5 (y) dH! (%)

T,AT
k h(rj+;—2) h(xj—;—g)
+Y° / @5 (y) dy+/ s (y) dy
=1 h(zj) h(z;)
o K
0
+OS o (h(ay))
j=1
Since h (z; + 5%) — h (x;“), h(zj— &%) — h () for each j =1,---  k, we obtain that
h(z;+52) h(z;—352) h™(z;) bt (x))
/ vs (y) dy +/ vs (y) dy — 2/ vs (y) dy +/ vs (y) dy,
h(z;) h(z;) h(z;) h=(z;)

and thus also by the Lebesgue Monotone Convergence Theorem we obtain (2.34).

Step 5: Finally, if the set S defined in (2.17) is denumerable then there exists an increasing
sequence of lower semicontinuous functions h,, satisfying the hypotheses of previous step such that
R%\ Q,, — R?\ Q in the Hausdorff metric and

lim Fs (u,Q,) = F5 (u,Q). (2.35)

n—00

Indeed, for = € (a,b) and n € N define
hy (2) := min { max{h~ (z) — 2,0}, h ()}
Since h is a function of finite pointwise variation, the set

T, :={z € (a,b): h™ (z) —h(z) >

S=

}
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is finite. Note that h,, is lower semicontinuous. Moreover, as {z € (a,b) : h,, (x) # h, ()} C Ty,
the function h,, satisfies the conditions of previous step. Clearly h,, / h and

/ o) )+ / »
h- (1)——

:/f(p(;(max{ 1o}) dH! (x +2Z/ (y) dy

zeT),

m);éh

and thus by the Lebesgue Dominated Convergence Theorem we easily get (2.35) .

Combining Step 3, Step 4, and Step 5, and using a standard diagonalization argument, we
obtain (2.28) . This concludes the proof of the theorem. m

We are now ready to study the I'-convergence in X, under a volume constraint, of the family
{Fs}s5-0asd — 0T (for the definition and the properties of I'-convergence see [5] and [11]). Observe
that the pointwise limit of ¢s is the function ¢ defined in (1.5), which is not lower semicontinuous
in the wetting regime vgim < Ysub- Hence in the I'-limit we expect the surface energy density to
be given by its lower semicontinuous envelope

= Yhlm if y > 0’
1 mi : 2.36
v (y) { min {7ﬁ1m7 A/sub} if y = 0. ( )

Indeed we have the following:

Theorem 2.9 (I'-convergence) For all (u,) € X set

Foo (0, Q) = /Q W (E (u) (x) = Eo () dx + min {yim, e} H' (TN {y = 0}) (2.37)
+ 9 C\ {y = 01) + 2va0m S (A (2) — h (2)) |
€S

where By is defined in (1.2) and the sets T' and S are defined in (2.4) and (2.17) , respectively.
Then F., is the I-limit in X as 6 — 0% of the family {Fs} 50, under volume constraint.

Proof. We divide the proof into two steps.
Step 1: We start by showing that for all sequences ¢, \, 0, (u,,Q,) — (u,Q) in X with
(U, Q) € Xiip and |2} = |QF], we have

liminf Fy (1, Q) > Fao(u, Q). (2.38)

n—oo

Indeed by (1.8) and (1.9) it is clear that Es, — Eo in L _ (R?;R?*?) and thus, as in (2.27),

lim inf W (E(u,) — E;,) dx > / W (E (u) — Eg) dx. (2.39)
Q

n—oo Q
n

To treat the surface energy we distinguish two cases. If va1m > Ysup then we fix m € N. Since for
all n > m we have that @5, > @5, for y > 0, it follows that

liminf | @5, (y) dH' (x) > liminf [ s, (y) dH'(X)

n—oo F/n, n—oo F/n,
h™ (x)
> /Jﬂém (y) dH' (x)+2) / s, () dy,
N zeS h(z)
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where the last inequality can be proved as in (2.26) . As @5, /" @, by letting m — oo and using
the Lebesgue Monotone Convergence Theorem we conclude that

h™ () R
> / @ (y) dy,
h()

zeS

lim inf /F o, (y) dH (%) > /F B(y) dH (x) + 2

n—oo

which, together with (2.36) and (2.39), yields (2.38).

The case Yaim < 7Ysub is simpler, since by definition we have that ¢s, > Yaim.
Step 2: In view of the previous theorem, in order to prove the estimate from above it is enough
to show that for all sequences d,, \, 0 and for all (u,Q) in X there exists (up,Q2,) — (u,Q) in X
such that

limsup Fs, (0,, Q) < Foo (1, Q) , (2.40)

where the functionals F'5, are the relaxed functionals given by (2.18).

Fix a sequence d,, \, 0 and (u,Q) € X. If va1m < Ysub then construct €, \, 0 such that

@5, (Y +en) = & (¥) = Yaim (2.41)

for all y > 0. It is well-known that £'-a.e. y < 0 the function u(-,y) € H* ((a,b); R?) . Let o be
any such y and define

u(xvy_gn) ify>y0+5n7
u, (x) :=q u(z,y0) if yo <y <o+ en,
u($7y) 1fy§f907

and
hy (2) :=min {h (z) + €n, tn}

where ¢, > 0 is chosen so that |Q;| = d. Since &,, — 0 it follows that ¢, — sup h and, in turn, by
(2.41)

@s,, (min{y + &n,tn}) — Yaim (2.42)
for all 0 < y < suph. Clearly
/ W (E (u,) — Es, ) dx — / W (B (u) — Eo) dx. (2.43)
Q
Moreover,
[eswanirz ¥ / &y
n ho (2)F#h, ()
h~ (w
< [ min{y + e ta) art (9 +2 3 / o (min {y + £t }) dy = An. (2.44)
zes /@)
Note that by (2.42) , (2.36) , and the Dominated Convergence Theorem we have
Ap = am H (D) + 296m Y (b (2) — h(2)) . (2.45)
z€S

Hence (2.40) follows from (2.43) , (2.44) , and (2.45) .
The case Ya1m > Ysub 1S simpler, since it is enough to take by u, :=u and 2, =. =
The following compactness result is an easy consequence of Proposition 2.2.

14



Proposition 2.10 Let {(u,,,)} C X and assume that
sup(Foo (Un, Q) +|Q2F]) < 0. (2.46)
Then there exist a subsequence {(uy,, A, )}, infinitesimal rigid motions vy, and (u,) € X such

that
(Wp,, + Vi, Qpy) — (0, Q) in X

Proof. It is enough to observe that (2.46) implies

(/]

and so we can proceed as in the proof of Proposition 2.2. =
By the previous proposition, Lemma 2.5, and the sequential lower semicontinuity of F,, we
obtain immediately:

|E(u,)® dx +H' (Tn) + \Q,ﬂ) < 00

n

Corollary 2.11 For every d > 0 the minimization problem
min { Foo (0, Q) : (u,Q) € X, [QF]|=d}

admits a solution.

3 Regularity of local minimizers

In this section we study the regularity of minimizers of the limiting problem away from cusp points
and cuts in the wetting regime a1, < Ysub- We recall that in this case the energy is given by

Fuo (u,0) = /Q W (B (w) - Eo) dx + M (©) + 296m > (™ (@)~ h(x)) . (3.1)
zcS

for all (u,) € X (see (2.8)), where I and S are the sets defined in (2.4) and (2.17) , respectively.
We say that (u,Q) € X is a d-local minimizer for the functional F,, if Fy (u,) < co and
there exists § > 0 such that
Foo (0, Q) < Fp (v, 8y)

for all (v,,) € X satisfying
Q5| =[] and [Q,AQ| <6. (3.2)

Note that if h and g are the profile functions associated with 2 and €2, respectively, then condition
(3.2) is equivalent to

/abg(w)dx:/abh(x)dx and /ab|h($)—g(x)|dx§6,

In order to study the regularity of (u,(?) it is convenient to replace the volume constraint with a
suitable volume penalization. This is made precise in the following proposition.

Proposition 3.1 Let (u,Q) € X be a §-local minimizer for the functional Fy and let d := |QTF|.
Then there exists £g > 0 such that

Fy (u,Q) = min {FOO (v,Qq) + ¢ ’d — |Q;'H c (v, Q) € X, [Q,AQ] < g} (3.3)

for all £ > {y.
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In order to prove the proposition we need the following lemma about the structure of superlevel
sets of lower semicontinuous functions with finite pointwise variation.

Lemma 3.2 For d > 0 set 19 := 4(%‘1) and fit My > 0. Then there exists a constant ro =
ro(d, My) > 0 with the following property: For every lower semicontinuous function g: [a,b] —
[0, +00) such that

d b 3 L

§§/a g(x)dxgid and  H (Ty) < My
the open set {x € (a,b) : g(x) > 1o} contains at least one connected component, say (a’,b'), such
that b —a’ > ry.

Proof. Assume by contradiction that there exists a sequence of lower semicontinuous functions
gn: a,b] — [0, +00), with

b
gé / gn(z)de < >d  and  H'(Ty,) < My, (34)

N W

such that .
[I] < — for every interval I C {z € (a,b) : gn(x) > 70}. (3.5)
n

Note that (3.4) implies the existence of a constant My > 0 such that

llgnllcoc < My for every n. (3.6)

Set 7 =3 (b - and consider the family I7',..., I} of all connected components of {z € (a,b) :

gn(z) > 70} having nonempty intersection with {z € (a,b) : gn(x) > 71}. Since, by definition, we
have H' (g, N (I xR)) > 2(m1 — 79), summing over j = 1,...,k, we obtain

S

kn
2M; > 2H( Z (Tg, N (IFXR)) > 2k, (11 — 70) ,

which implies

By (3.5) , (3.6) , and (3.7) we deduce that

My M.
/ }gndx<z/ gndx<|\gnuoo2|f"|_ T 0.
gn>T1

Therefore, using also the definition of 7, we have

d b
—glimsup/ gn(x)dleimsup/ gndeSﬁ(b—a):gd,
@ {

n—00 n—o00 gn<T1 }

\V]

which is a contradiction and concludes the proof of the lemma. m
Proof of Proposition 3.1. Arguing as in the previous section (see Corollary 2.11), for any ¢
the minimization problem defined on the right-hand side of (3.3) admits a solution (v¢,Qg,) € X
with 5
[d =951 < 5- (3.8)
From the minimality of v, we have

Cd— |4 || < Fos (ve,Qq,) + £]d — |} || € Fo (0, Q) . (3.9)
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Setting

2F (u, Q) Fy (u,Q)
== 7 d M, = —>"—~+ 3.10
min{d, (S} an ! VYfilm ’ ( )
(3.9) and (3.10) immediately yield
d b 3 1
3 < | ge(x)dz < §d’ and H (Ty,) < My (3.11)
for ¢ > 1.
Note that (3.3) holds if we show that
.| = d (3.12)
for all ¢ sufficiently large. We divide the proof of this fact into two steps.
Step 1: We claim that there exists ¢y > 0 such that
|Q:{Z| >d for £ > ¢y. (3.13)

We assume that

|| <d
for some ¢ > ¢’ (see (3.10) ) and we will prove that this inequality leads to a contradiction if ¢ is
large enough.

Let 79 and ro be as in Lemma 3.2. Then by (3.11) and Lemma 3.2 there exists a connected
component I, of the open set {z € (a,b) : g¢(x) > 70} such that

[le] > 70 . (3.14)

For every 7 € [10/2,70] let (aer,ber) be the connected component of {z € (a,b) : gi(x) > 7}
containing the interval I, (in particular, Iy = (a¢r,, ber,)). Note that for 0 < 71 < 7 < 79 we have
(@ery, bery) C (Gery, ber, ). Tt easily follows that the set

Ty = {(z,7) € (a,b)xR : 7 € [2,70), € (asr, ber) } U ((ag%o,be%o)X(O, 7))

is a generalized trapezoid, as defined in the Appendix, with parallel sides s1¢, so¢ of length I3 := |I],
log = bg%o — Gy respectively, and height 9. Note that the non-degeneracy condition (4.7) is
satisfied with @ = 5 and ryp = min{ 3, l2¢}. Moreover, taking into account (3.14) we have,

1 . .l i To} {llé T1¢ To} 1
my := ———— min{7g, 7o < min< —, —, — » < maxs —, —, — ¢ < —Max{79, 7o} =: M2 .
YT 2(b—a) {ro, o} {lu log los DYRREYRRDY, 0 {ro, o}

Denoting by ¢y the center of Ty (see the Appendix for its the definition) and by By the ball centered
at ¢y with radius mylse/2, it follows from Theorem 4.3 (see also Corollary 4.5) and from (1.4) that
there exist positive constants c;, co independent of ¢ > ¢ such that

Vze?dx < e | W(E(z))dx < 02( W (E(z) — Eo) dx + 1) : (3.15)
T, T, Te
where
z¢ (X) := vy (x) + Arx, (3.16)
with )
Ap = — Vv —Vvy) dx.
B By (( 2 e)
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Using (3.15) , (3.9) , and the fact that E(z;) = E(v,) we obtain
|Vz|? dx < co(Fao (0, Q) + 1) for £ > 1.
T

Define
I

To

Te -

and divide the interval [15/2, 7] in k¢ intervals with length between 1, and 27, where

70
ky = |—1.
‘ LW}

From (3.17) it is clear that at least one of these intervals, say (7}, 7,), satisfies

fori!) i)

/ V2o dx < / Va2 dx < 2 (Fuy (u,Q) +1).
(ae'ré“bffé’)x(‘r T[ﬂ((a,b)x( kl

For simplicity, from now on we write (as, by) in place of (agny, bgTé/). We define

_ | 9e(2) if € (a,b) \ (ar, be),
he() = { ge(z) +7, if z € (ag, be),

where | N
d—|Q
n = 7g£ <
’r}Z b[ — ay = "7@7
and
ZZ(JZ,y) ifze (CL, b) \ (af’ bf) ory < Télﬂ _
wo(x,y) =1 Ze(z,y) if x € (ag,be) and 7/ < y < T+ %,
zo(x,y —7,) if x € (ag,by) and 7/ + % <y < he (2) ,
where

2y(x,y) = ze(z,27] — ).

By construction f: he(x) dx = d. Moreover, using (3.8) we have

[ 1)@ o< [ ) gl de s a0 <3 a0 <o
for ¢ > ¢'. Since (u, Q) is d-local minimizer it follows that
Feo (0,Q) < Foo (We,Qp,) -
By (1.3) there exists a constant ¢s > 0 independent of ¢ such that
W(E(z) — Eo) < c3(|Vze|> + 1) in (ag, be)x (15, 7)),

and
W(E(2¢) — Eo) < cs(|V2e]* +1) in (ag,be)x (7,77 + %),

Using (3.20) , (3.23) , and (3.24) we easily obtain

/ W (E(z¢) — Eg) dx < 03/ (|Vz)* 4+ 1) dx < C—4(Foo (u,Q)+1)
(ag,be) X (7, (a k

Lri!) £:b0)x () Z
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and

/ jWHM—%MXS%/ (VP +1) dx
(aesbe) (g i+ ) (aesbe) (g i+ ) (3.26)

< APy (u,Q) + 1),
ke

for a suitable constant ¢4 > 0 still independent of £ > ¢’. Note that, setting

" := max {74F°° (u, ) , 5/} ,
ToTo
by (3.9) and (3.21) we have 2/(m9 — 2ny) < 4/79 for £ > £”, which, by (3.19), implies

2 d—|Qf] 2 <4(d—\(2;£]).

< =
T To— 21 ro  To—2m¢ 7070

1
ke
Using also (3.18), (3.21), (3.25) , (3.26) , and the fact that Fi (ve,Qg,) = Fixo (2¢, Qg,) (see (3.16)),
for ¢ > 0" we deduce that

Fo (Wg,th)ZFoo (Vg,Qg»—l—/ W(E(ig)—Eo) dx

(aebe)x () ! +24)

%)

+ / W (E (z¢) — Eo) dx + 29g1m7,
(ae,be) X (Ty,75+

264

ke

d—1Q4 1 /8¢y

T(—

< Fo (Ve, Qge) + (FOO (u, Q) + 1) + 29f1m e

< Foo (ve, ) + (Fao (0, 2) + 1) + 296 )

70
Thus, if
1 804

0>l = max{r—o (T—O(Foo (u,Q) +1) + 2yﬁlm>7 z"} +1, (3.27)

and recalling (3.9) , then it follows that
Foo (We, Q) < Foo (v, Q) + £ (d = |Q]) < Fos (0, Q) ,

which contradicts (3.22). This shows that (3.13) holds if £ > 4.
Step 2: To show (3.12), by the previous step, it suffices to exclude the case

|| >d (3.28)
when £ > ¢y (see (3.27) ). If (3.28) holds then we can find ¢; > 0 such that ’Q;@‘ = d, where
hy := min {gz, te} .

Note that if £ > £y, by (3.8) we have

b

b b
/ Ih(z) — he(e)] da < / Ih() — gu(a)] do + / (ge(e) — hela)) de
1)

a

Jr
< g+ -d<a

19



Hence the pair (v, €p,) is admissible for the volume constrained minimization problem. On the
other hand

Ve ™ (Thy) + 276im Z (hy (x) — he (@)
he(z)#h, (x)

< PYﬁlmHl(fgz) + 27ﬁlm Z (gg_ (Z) —9¢ (aj)) )
ge(2)#g, (2)

which implies, taking into account also (3.9),
Foo (Ve, Q) < Foo (v, Q) < Foo (v, Qg,) + £ (|QF | —d) < Foo (u,Q) .

The last chain of inequalities contradicts the local minimality of (u, ) and concludes the proof of
the proposition. m

Following an idea of Chambolle and Larsen in [7] we begin by establishing an internal sphere
condition.

Proposition 3.3 (Internal_sphere) Let (u,Q) € X be a d-local minimizer for the functional
F. Then, for every zg € T' there exists an open ball B(xq,po), with py independent of zo and
with B(xo, po) N ((a,b) x R) C Q, such that

8B(x0, ,00) ﬂf = {Zo}.

Proof. We divide the proof into two steps.
Step 1: We first prove that there exists pg > 0 such that for any (open) ball B(xg, po), with

B(X07p0) N ((avb) X R) C Qa

the set OB(x, po) intersects ' in at most one point.
By the previous proposition there exists £o > 0 such that

Fyo(u,Q) = rnin{HOO (v,Qg) 1 (v,Qy) € X, |Q,AQ] < g}, (3.29)
where
Hoo (1, Q) i= Fuo (0, Q) + Lo |d — |2 ]|, (3.30)
and d := |QF|.
Fix 5
—_— 31
0<6O<4(b—a) (3.31)

and choose ¢ < 5 and a finite set A C (a, b) such that

S @) = k@) + Y (b (2) - h(@) <

z€S(h)\A 2€S\A

, (3.32)

CIRS)

where S(h) and S are the sets defined in (2.15) and (2.17), respectively. We also consider the
measure . obtained by projecting H!|T" on the x-axis. Since the functions

gn(x) = p([z = 1/n,x+1/n]\ (S(h) U S))

are upper semicontinuous and g, \, 0 by a version of the Dini Theorem (see Theorem 7.3 [12]) it
follows that {g,} converges to 0 uniformly. Taking into account (3.32), it is easy to see that there
exists g > 0 satisfying

ro < min{|lr — 2| : z # 2’ x, 2’ € A} (3.33)
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such that .
sup{p(I \ A): I C (a,b) interval, |I| <rg} < 7 (3.34)

Let B(xo,p) be an open ball such that B(xo,p) N ((a,b) x R) C Q and assume that the set
0B(xg, p) NI contains at least two points ¢ and d. We can write ¢ = (z1,y1), with hA(zq) <y; <
h*(z1), and analogously d = (z2,y2), with h(z2) < yo < hT(x2). We set

Fea = (T Nfa1,22] x R) U U{xz,y v <y < W)

and denote the chord {c+t(d —c): 0 <t < 1} by [c,d]. Since we will modify 2 by removing
the bounded component D of (I'c.q U [c,d])® we need to estimate how much we gain in terms of
surface energy. Setting [ := H!'([c,d]), L := H'(Tc.a), and

71 1= min {%0, 7“0} , (3.35)
we will prove the following claim:
Claim: If

2p <1

then

Yam (L — 1) < £o|D]. (3.36)

We first estimate L. Note that by (3.33) the set [z1,22] N A contains at most one point. Let
us consider the worst case: [z1,23] N A = {Z} and o := ({} x R) NT'c q has positive H!-measure.
Clearly o is a vertical segment and we denote its end-points by wi = (Z,%’) and wo = (Z,y"). It is
also clear that we can write I'c 4 as a union of I'y, o, and I'y, where I'y is the (possibly degenerate)
subarc connecting ¢ with wy while I'y is the subarc connecting wa with d. As H!(I';) + H}(T2) <
2u([z1,22] \ A) < e by (3.34), (3.35), and the fact that I < 2p < 71, we have

HY (o) <HIT) +HN D) +1<e+m

and, in turn,

L <HY(T1) +H' (Do) + H' (0) < 26+ 71 (3.37)
We now define
Y2 — Y1 .
7 — f
h(z) == m2_$1(9€ )ty iz <z <y,
h(x) otherwise.

We claim that the pair (u, QB) € X is admissible for (3.29). Indeed by construction h < h and
Q\Q; C {(z,y): 21 <2 < a9, h(z) <y <hT(x)} C D.
Hence if 21 < x < x5 then
ht(x) — h(z) <+ L < 2+ 2r; < 2, (3.38)

where we used (3.35), (3.37), and the fact that ¢ < 5. Recalling (3.31) , this shows that |Q; AQ| <
4/2 and proves the claim.
By (3.29) and (3.3) we then have

Foo (,9) = Hyo (u,Q) < Hyo (u Qﬁ) . (3.39)
Moreover, it is easy to check that

Hoo (0,97) +9m (L = 1) + o (1197 = d| = 19| = d]) < Fuc (u,9). (3.40)
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Combining (3.39) and (3.40) we easily get (3.36).

From now on we can proceeds exactly as in the proof of Lemma 1 in [7]. For the reader’s
convenience we reproduce here the argument. First note that, setting 6§ := L/l > 1, by the
isoperimetric inequality (see [2]) we have

(I+L)> (O+1)2?

D < =2 = (3.41)

On the other hand, (3.36) can be written as

1< & .
Yeitm (0 — 1)
Substituting in (3.41) we obtain

T (G-1) |DJ?. (3.42)

Finally, since by (3.38)
T2 -
D] = / (W () — h(w)) d < 220(b — a),

1

from (3.42) we deduce that if ¢ is small enough then 6 must be close to 1. As the arc of circle
of dB(xg, p) which lies above the chord [c,d] has length less than or equal to L, we conclude
that if & < /2 then [c,d] lies above xg. We may therefore find a point zp in the segment
{e+t(xo—e): 0 <t <1}, with e the middle point of [c,d], such that, setting p := |z¢ — c|
= |zg — d|, the arc of circle of 0B(zg, p) which lies above the chord [c,d] has length equal to L.
Denote by 2o < 7 the angle associated with such an arc, so that L = 2pa, and let D be the
area enclosed by the same arc and the chord [c,d]. Note that D is the largest area bounded by
[c,d] and a curve of length L. Hence |D| < |D|. Elementary computations yield | = 2psin « and
ID| = (p%/2)(2a — sin 2a). We deduce from (3.36) that

_ . lop? .
29aimp(a — sina) < T(2a — sin 2a)

and, in turn,

o> 5> 476ilm < Oé—S%HOé ) > Dfim
Lo 2ar — sin 2« 20y

where the last inequality holds for all ae. Hence if pg < vg1m /200 is so small that § < 7/2 we have
a contradiction. This concludes Step 1.

Step 2: We now deduce from Step 1 the uniform internal sphere conditions stated in the proposi-
tion. In this step we essentially reproduce the argument of Lemma 2 in [7]. Consider the union U
of all balls of radius po that are contained in Q := QU [(R\ (a,b))xR]. It is easy to see that the
thesis of the lemma is equivalent to showing that & C UN((a,b)xR). Assume by contradiction that
such an inclusion doesn’t hold. Then there exist xo € QN AU, a sequence of balls B(y,, po) C (NZ,
and x,, € 0B(yn, po) such that x,, — xo. Up to extracting a subsequence (not relabelled) we may
assume that B(yn,po) — B(y,po) in the Hausdorff metric, for some ball B(y, pg) C Q having
X¢ at its boundary. Note that the intersection of dB(y, po) with ' must be nonempty, since if it
were we could translate the ball slightly still remaining in Q and this would violate the fact that
Xo € OU. Hence, by the previous step, dB(y, po) N\T = {z}. If x¢ and z are antipodal, then we can
find § > 0 such that B(y + é(xo — z), po) C ﬁ, which would imply that xg € U, a contradiction. If
x¢ and z are not antipodal, then we can rotate B(y, pg) around xq, slightly away from z, to get a
ball B’ of radius pgy such that B c Qand Xo € OB'. Translating now B’ towards x¢ we find a ball
of the same radius containing xo and contained in €2, which gives again xq € U. This concludes
the proof of the proposition. m
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Remark 3.4 Setting Q := QU [(R\ (a,b))xR] we note that Proposition 3.3 can be restated in
the following way: There is pg > 0 such that for every zg € 09 there exists an open ball B(xq, po),
with B(xo, po) C Q, such that

8B(x0,p0) No = {Zo}.

The next Lipschitz regularity result is a consequence of the uniform sphere condition just
proved. Its proof, which relies upon elementary geometrical arguments, is essentially given in [7,
Lemma 3]. In the quoted lemma an external uniform condition is assumed, but it can be checked
that exactly the same arguments go through in our situation and lead to the following proposition,
which we state without proof.

Proposition 3.5 Let (u,Q) € X be a local minimizer for the functional Fu,. Then for any zg € T
there exist an orthonormal basis e1, es € R2, and a rectangle

Q:={zo+se+tes: —a' <s<d, -V <t<l},
a’, v >0, such that QN Q has one of the following two representations:
(i) There exists a Lipschitz function g : (—a’,a’) — (=b',b") such that g (0) =0 and
ONQ ={z¢+se; +tes: —a’ <s<ad, -t <t<g(s)}n((ab) xR).

Moreover, the function g admits left and right derivatives at every point that are, respectively,
left and right continuous.

(ii) There exist two Lipschitz functions g1, g2 : [0,a’) — (=V',b") such that g; (0) = (gl)'Jr 0)=0
fO?"i = 1a 27 g1 < g2, and

QNQ={zo+ser+tea: 0<s<da, b <t<gi(s) or gao(s) <t <b'}.

Moreover, the functions g1, go admit left and right derivatives at every point that are, respec-
tively, left and right continuous.

Remark 3.6 Note that in case (i) the point zg is either a cusp point or the lower end-point of a
vertical cut (see (2.16) ). Proposition 3.5 combined with a simple compactness argument implies
that the set of all such points is finite. In particular the set I'cyss is given by the union of a finite
number of vertical cuts. We also remark that the upper end-point of each vertical cut must be a
cusp point. We denote by I'c;sps the set of all cusp points; i.e.,

Leusps := {(z,h™(z)) : either z € S(h) or € (a,b)\ S(h) and (h™)" (z) = —(h7)"_(z) = o0},
(3.43)
where S(h) is the jump set of h defined in (2.15) and (h™)’, (), (h™)"_ () denote the right derivative
and the left derivative of A~ at . We shall also consider as singular points the lower tips of the
cuts. This motivates the following notation:

Lging 1= Lousps U {(z, h(z)) : = € S}, (3.44)

where S is the set defined in (2.17) . From the previous observations we have that I'cysps and Tging
are finite.

Hereafter we assume that W is the bulk energy density of a linearly isotropic material, i.e.
1
W () = ZA[tr (E) + ptr (E?)
where A and p are the (constant) Lamé moduli with

w>0, p+A>0.
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Note that in this range, the quadratic form W is coercive. Also, the FEuler-Lagrange system of
equations associated to W is

pAu+ (A +p)V(diva) =0 in Q.

We now show that if the boundary is flat then solutions of the Lamé system with natural
Neumann boundary conditions are smooth up to the boundary.

Theorem 3.7 Let Q be a half-ball of radius one, let ' be the concentric half ball of radius %, and
letue W2 (Q;RQ) be a weak solution of the Neumann problem

pAu+ A+ p)V(diva) =0 in Q, (3.45)
[ (Vu+ Vu®) + A (divu) Ilv=0 onT, (3.46)

where I is the flat part of 02. Then for all integers k € N there exists a constant ¢ > 0 depending
only A, p such that

sup Vku’2 < ck/ |Vu)? dx.
o Q

Proof. Let x( be the center of the ball. By Sobolev Embedding Theorem and an easy iteration
argument it is enough to show that for all % <r<R<1landforall k>2

/
/ [VEul|* dx < 07’“2/ [VF L dx. (3.47)
QNB(xo,r) (R—1)" JanB(xo,R)

We begin by proving this inequality for £ = 2. Let 7 and v be the tangent and normal vectors
to I' respectively. By a standard difference quotient argument and Korn’s inequality, we get that
gu ¢ W2 (QN B (x0, R);R?) and

[B0c[p(2)] a0

for all o € W12 (Q; RQ) vanishing in a neighborhood of 90 \ T'. Choosing now ¢ := 7]2%, where
71 is a smooth cut-off function such that n =1 in B (x¢,7) and n = 0 outside B (xq, R) and

IVl <

e ()

Using Korn inequality once more gives

2
Lo P (2
QNB(xo,r) or Q or
ou
< =
<[ e (o3
C

< — / |Vu|? dx.
(R—r1)" JonB(xo,R)

. . . 2 2 7 . 2
This provides L? estimates for 272‘ and 8‘978“1/. We now use the Lamé system to estimate ‘37‘2‘ by
el .. o9%u o9%u
rewriting it in terms of §3 and 5. Set

c
R—r’
we easily obtain

2
dx < c/ Vil [Vul? dx.
Q

2
dx

2
dx < c/ IV |Vul? dx (3.48)
Q

(1,0):OZT+BV7 (0,1):57—7041/3
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where a? 4 32 = 1. Since
ow_ ow ou ow_ ow  ou
or Ot o’ oy ot v
the Lamé system now becomes

82’111 62UQ

o2 ['U'+ (M+)\) 62} - o2 (M+>‘) 016 = fla
62U1( A 82U2 A 27
76V2 M+ )Oéﬂ+ 81/2 [/1“+(,Ll‘+ )Oé]—fg,

where fi; and fo are linear combinations of the remaining second order derivatives of u; and us
with coefficients depending only on the Lamé moduli and quadratic expressions of o and 3. Hence

Pu _ filptptNe?[+f(ntN)ap

o2 2+ ) p ’
Puy  folp+(u+ NP+ fi(p+N)ap
v (2u+A)p ’

which by (3.48) proves (3.47) with k = 2. Since 2% satisfies (3.45) and (3.46) we can now repeat
the same argument to get (3.47) with k > 2. m

Next we prove that for a local minimizer (u, ) the domain € cannot have corners, i.e. at every
point zg € I' \ (Deusps U Lcuts) the left and right derivatives of the Lipschitz function g given in
Proposition 3.5(i) must coincide. We use a blow-up argument which relies on the following result
(see Theorem 3.1 and Remarks 1.1 and 5.1 in [18]).

Let € be a bounded open set in R? whose boundary can be decomposed in three curves

0N =T70UlUl},

where I’y and T’y are two segments meeting at the origin with an (internal) angle w € (0,27) and
I's is a regular curve joining the two remaining endpoints of I'; and I's in a smooth way. Denote
by wo € (7, 27) the solution of the equation

wo = tanwyg.

Theorem 3.8 Let Q C R? be as above and let w € W12 (Q; ]RQ) be a weak solution of the Neumann
problem

AW+ A+ p)V(divw) =f + pw  in Q,
I (Vw + VwT) +A(divw)I|v =0 on 09,

where f € L? (Q;R2) . Then
(i) if w € (0,7] then w € W22 ((;R?) and
HWHW’L’J(Q;R"’) <c() ||f||L2(Q;]R2) )

(ii) if w € (m,27), w # wo, then w may be decomposed as

W = Wieg + Z CaSa, (3.49)
(6%
where o ranges among all complex numbers with Rea € (0,1) which are solutions of the
equation
sin? aw = o? sin? w, (3.50)
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the functions S, are independent of £ and in polar coordinates
So (1,0) =r%gy (r,0),

with g, € W22 (Q;RQ), Moreover

||Wreg||w2,2(Q;R2) + Z |cal < c(92) Hf”L?(Q;R?) ; (3.51)

(iii) if w = wo then w may be decomposed as in (3.49) with the only difference that « ranges
amonyg all complex numbers with Re a € (0, 1] which are solutions of (3.50) and the estimate
(3.51) should be replaced by

[ Wrell oy + 3 leal < e (5,2 £l 2 oz

[e3%

for every 1 < s < 2.

In addition it was shown in Theorem 2.2 in [25] that the following holds
1
Theorem 3.9 Ifw € (0,27) then the equation (3.50) has no solutions with Re o € <O, 5] .

From the previous two theorems we derive the following Decay Estimate for solutions of the
Lamé system at a corner point.

Theorem 3.10 (Decay Estimate I) Let €2 be as in Theorem 3.8 with I's piecewise smooth and
— 1
ro such that B(0,r9) N5 = (). Then there exist a constant ¢ > 0 and an exponent 3 € (5, 1)

such that for every weak solution u € W12 (Q;RQ) of the Lamé problem

pAu+ A+ p)V(diva) =0 in Q,
[ (Va+vVu”) + X(diva)I]y =0 onT;UT,,

we have the following decay estimate

/ [Vul? dx < crzﬁ/ <|u|2 + \Vu|2) dx (3.52)
B(0,7)NQ [¢)

for all0 < r <.
Before proving the theorem we need the following auxiliary lemma.

Lemma 3.11 Let €' C R2 be as in Theorem 3.8 and let g € W22 (89';R2) be a function van-
ishing in a neighborhood of the origin. Then there exist a function v €W?2?2 (Q’;]Rz) such that

(Vv +Vv!h) +A(divv)I|v=g on o

and

¥l sy <€) I8l 12 oy

Proof. Writing v = (v1,v2), v = (11,12) and g = (g1, g2), a straightforward calculation shows
that the equality
(Vv +Vvh) + A (divv)I|v=g
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is equivalent to

0 ovy Ova Ovsa

S @t N+ 5 St + u2+a—AV1—g1,
0 vy Ovsg Ovsg

%)\V + 9y /ll/1+ o /ll/1+ oy (2u+)\)ug—gg

Since

v, o, O v o
or  ov ' Tor Y oy ov or

the previous equation can be rewritten as

Ov Ovg Ovg
8_1/1[ +(M+)\)V1} 8_(M+)\)U1V2+ o (M+)\)V1V2+ or (MVQ )\U12)=gl7
Ov v Ovg
81(M+A)V1V2+ (3 = )+ 52 [ (et N3] 2 (N v = g
Choosing % 8“1 = %”f = 0 the previous system becomes

v v

81 [+ (u+ XN vi] + 81/2 (n+A)vive = g1,

8’()1

Ovsg
o (B+ AN vive + == o [,U-l-(,u—i—)\)l/%] = g2,
which yields

ovr g1 [+ (N3] — g2 (u+ A vie

R 2u+ M p : (3.53)
O0vy [M+(N+)‘)V1] -0 (ﬂJr)\)Vle
e 2+ N (3.54)

Note that even if v is discontinuous at the origin by the assumption on g the right hand sides
of the previous equations are zero in a neighborhood of the origin, hence are both in the space
W22 (99). We can now apply Theorem 1.5.2.8 of [17] to get a function v W22 (©;R?) such
that its trace v =0 on 0§, the components of its normal derivative satisfy (3.53) and (3.54), and
its W22 norm is bounded by the W22 norm of the right hand side of (3.53) and (3.54)

||VHW2v2(Q/;]R2) < C(Q/) |‘g“W%’2(GQ’;R2) .

which concludes the proof. m

We are now ready to prove the theorem.

Proof. Let w be the angle of 2 at the origin. We only give the proof in the case where w
satisfies condition (ii) of Theorem 3.8, that is w € (m,27), w # wy, since case (i) is significantly
simpler, while case (iii) is completely analogous to case (ii).

Let ' C Q be as in Theorem 3.8 and such that ' > QN B(0,ry) and the distance between
I'y and T's is strictly positive, where I'y := QN 9. By Theorem 3.7 we have that u is C* outside
a neighborhood U of the origin. Moreover

/ IV2ul” dx < c/ IVul|? dx. (3.55)
Q\U Q

Set
o(u):= [p(Vu+vVu") +A(divu)I].
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Since o (u)v = 0 on U NI’ and is smooth we are in position to apply the previous lemma with
g = o (u) v to find a function v € W2 (€';R?) such that

(1 (Vv + VVT) +A(divv)I]v =0 (u)v on 9%,
and

||VHW212(Q/;R2) S C(Q/) HJ (u) V||W%'2(6Q/;R2)

<c() </Q/\U (|Vu|2 + |V2u‘2) dX)

Therefore from the estimate (3.55) we conclude that

N

IVllwz2(mey < ¢ (@) IVl L2 qpexe) - (3.56)
Defining w := u — v we get that w is a weak solution of
pAW + (A + p) V (divw) = f+ pw  in
[ (Vw + VWT) +A(divw)I]v=0 on 0%,

where
fi=pAv+ A+ p)V(divy) —p(u—v).
By (3.56) we have that
”f”Lz(Q’;R?) <c(©) Hu||W1~2(Q;R2) .
By Theorem 3.8 we may write

W = Wreg + E CaSa
(6%

so that
”Wreg”W?ﬂ(Q/;W) + Z |cal < () Hf||L2(Q;R2) <c(Q) Hu||W1~2(Q;R2) :
«@
Here and in the remaining part of the proof « ranges among all complex numbers with Re o € (0, 1)

which are solutions of the equation (3.50) . Using Sobolev Embedding Theorem and the previous
estimate we have for any p > 2 and 0 < r < rg

/ Vul?dx < 2 / |Vw/|? dx+/ (Vv |? dx
B(0,r)NQ B(0,r)NQ B(0,r)N2

<e / \Vwreg|2dx+/ Vv dx +cZ|ca\2/ IVSa? dx
B(0,r)NQ B(0,r)NQ — B(0,r)NQ
2

<c / \Vwreg|pdx+/ IVv[Pdx | r27F +CZ\CQ|27"2R‘W
B(0,7)NQ B(0,7)NQ S

_4
< ¢ (I sl + ey 78 + el iz 3 77
«

S C ||u||‘2/Vl’2(Q;R2) (7’2% + Z,,JRea) )
@

Choosing p so large that
2
1——>p0:=min{Rea}
p [e%
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and recalling Theorem 3.9, we obtain (3.52) forall 0 <7 <71o. ®

We now use a blow-up argument to show that for a local minimizer (u,Q) € X for the
functional F, defined in (3.1) the domain € cannot have corners, i.e. that at every point
2o € I\ (Ceusps U euts) the left and right derivatives of the Lipschitz function g given in Proposition
3.5(i) must coincide.

Theorem 3.12 (Blow-Up) Let (u,) € X be a d-local minimizer for the functional Fs defined
in (3.1). Assume that T’ has a corner at some point zg € I' \ (Tcusps U Lcuts) - Then there exists a

constant ¢ > 0, a radius ro, and an exponent 3 < a <1 such that

/ |Vul? dx < er?® (3.57)
B(z0,r)NQ

for all 0 < r < ry.

Proof. Step 1: We claim that there exist an orthonormal basis {e;, ez} of R?, three constants

1
c1, L >0, 1 € (0,1), and an exponent 3 < B < 1 such that for all 7 € (0, 7)) there exists a radius
0 < r, < 1 such that

/ (Vu|? dx < 01726/ (1 + \Vu|2) dx, (3.58)
C(zo,7T) C(zo,r)

for all 0 < r < r,, where
C(zg,r) :=0N{zp+se; +teg: —r <s<r, —4Lr <t <4Lr}. (3.59)

By Proposition 3.5(i) there exists a Lipschitz function g : (—a’,a’) — (=¥',b"), with Lipg < L for
some L > 1, such that ¢ (0) =0 and

QNQ={zo+se +tey: —a' <s<da, b <t<g(s)}
for some a’, b’, where
Q:={z¢+se +tex: —a' <s<ad,-b<t<l}.

Moreover the function g admits left and right derivatives at every point, that are respectively left
and right continuous. Since I' has a corner at zo we have g’ (0) # ¢/, (0). By Korn’s Inequality in
Lipschitz domains we may assume that u € H' (2N Q;R?).
Note that for all 0 < » < min {a’, %}
C(zo,r) ={z0+se1 +tey: —r<s<r, —4Lr <t < g(s)}.

1
Fix ¢; > 0, 79 € (0,1) and 8 > 3 to be determined later and assume by contradiction that the

corresponding estimate (3.58) is false for some 7 € (0, 79). Hence we may find a sequence of radii
{rn} converging to zero such that

/ |Vu|? dx > c#ﬁ/ (1 + |Vu\2) dx. (3.60)
C(z0,TTn) C(z0,Tn)

Define the sets

1
Cp:i=— (=20 + C(2zo,7))

Tn

:{sel+te2:—1<s<1,—4L<t<

2(r20)=9 @),

r
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Then x¢, converges a.e. to the xc  where

Coo i={se1+tea: -1 <s<1, -4L <t < goo ()}

with g (5) :== ¢~ (0) s for s < 0 and g (s) := ¢/, (0) s for s > 0. We rescale accordingly also the
function u by setting
u(zo + rpz) — a,

AnTn ’

u, (z) :=

where z : = =20

1 / 9 1 / 9
a, = —— udx, Ao i=——— |[Vu|” dx.
" |C(Zo,’l’n)| C(zo,mn) " |C(z0,rn)| C(zo,rn)
Note that
L/ |Vu,|* dz =1
|Ch] " '

Moreover, since by construction [, o, Un dz = 0, by Poincaré inequality and a standard extension
argument we may extend each function u,, to the rectangle

R:={se; +tey: -1 <s<1,—4L <t <A4L},
in such a way that the resulting function (still denoted u,,) belongs to W2 (R; R?) and satisfies
HunHWL?(R;]Rz) <c(L) ||VunHL2(cn;R2x2) <c

Without loss of generality we may assume that the sequence {u,} weakly converges to some
function u., € WhH? (R; RQ) and that

An = Ao € [0,00].

Note that by (3.60) necessarily Ao, > 0. Moreover, denoting by zo the point in (a,b) such that
zo = (o, h(xp)), it is easy to see that the functions u,, satisfy the equation

/CHE( ). C[E (u)] dz_A / C[Eo (h (20) + )] dz (3.61)

for every ¢ €C§ (R;R?). We observe that the sequence {Eq (h () + )} converges to Eo, in
LP (R;R?*?) for any 1 < p < oo, where

L s o s L (&) if A (xo) > 0,
Boo (2) 1= oo (22) 101, €0 (22) 1= { X{z>01€0 if h(zg) =0.
Step 2: We now fix a ball B such that
BccC {se;j+tey: —1<s<1, —4L <t < —3L}.

We claim that for all functions ¢ € C§ (R) which vanish in B we have

lim ¥? |V, — Vue|? dz = 0.

n—oo C
From (3.61), and the fact that x¢, — xc.. in L? (R), u, — us in W2 (R;R?), and

Eo (h(zg) + 75+) — Eo in LP (R; R2X2)
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we get that
[ B CcB@d= [ E@)-CEd (3.62)
Coo oo Cw

where the right-hand side is understood to be zero when A\, = oo.
Fix ¢ € C§ (R) and choose ¢ := 1)?u,, in (3.61) (p := 1)*u in (3.62) respectively) thus getting

/ V2E (u,) - C [E (u,)] dz:)\i/ E (%u,) - C [Eo (h (20) + rnz)] da (3.63)
Ch n JCp

- / o (un ® VY + (1, ® WJ)T) C[E (u,)] dz

n

and

/ Y?’E (Us) - C [E (un)] dz = i/ E (4*ux) - C [E] dz (3.64)
Coo C

[=S)

Aso
- / W (uoo ® VY + (U ® w)T) - C[E (us)] dz.
Cowo

Letting n — oo in (3.63), and using the fact that the right-hand side converges to the right-hand
side of (3.64), we get that

im [ $?E(w,) - C[E (w) dz:/c V?E () - C[E ()] dz,

n—oo C
n

or, equivalently,

lim Y2 {E (u,)-C[E(u,)] —E(us) - C[E (ux)]} dz =0

n—oo C

from which we easily get

lim E (¢¥(u, —ux)) - C[E (¥(u, —ux))] dz = 0.

n—oo C
n

Hence the claim follows from Theorem 4.2.
Step 3: We now divide the proof according to the three cases Ao, = 00, Aoo < 00 and h (z¢) > 0,
Aoo < 00 and h (xg) = 0. We begin by assuming that Ao, = co. In this case it follows from (3.62)
that u., is a weak solution of the problem

pAU + (A + )V (divus) =0 in Co,
[ (Vs + Vul) + A(divus) ]y =0 only_.

1
By Theorem 3.10 there exist ¢ > 0 and § € (5, 1) such that for all 0 < r < 1 we have

/ |Vue|” dz < crw/ (|uoo|2 + |Vuoo|2) dz
B(0,7r)NCs Coo

< crm/ |Vuoo|2 dz < cr?8

oo

where we have used Poincaré inequality, which holds since fc Uy dz =0, and the fact that
I |Vuse|? dz < |Cuo|. Therefore if 7y is such that

T70Co0 C (B(0,1)NCyx) \ {se1 +tes: -1 <s<1, —4L <t < —3L}
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we get that for all 0 < 7 < 7
/ |Vum\2 dz < / |Vu00|2 dz < co72P.
o B(O,%)ﬂcm

By Step 2 we then have that

n—oo

lim Vu,|* dz :/ |Vue|” dz
7C 7C

n oo

for all 0 < 7 < 79, and so

woaVutax g
lim fC( 0:77n) 5 = lim / Vu,|? dz < 2
o Ve dx 1Ol e, [

which contradicts (3.60), provided we take

C2
cL>2—.
[&%]
Step 4: Assume next that A\, < 0o and h (z¢) > 0. In this case eo, = eg. Define

(6021, O)

Voo (2) := U (2) — .
Then v, is a weak solution of the problem

AV + (A + )V (divve) =0 in Cu,
(1 (Vves + Vvi) +A(divvee) Iy =0 onTy_

and thus, as in the previous step, for all 0 < r < 1 we have

/ Vvao|? dz < chﬂ/ (|voo|2 + |Vvoo|2> dz,
B(O,r)ﬂCoo Coo

from which we easily obtain that for all 0 < 7 < 7y, where 7y is the same as in the previous step,

there holds
1 1
/ Vue|® dz < c7’2ﬂ/ <|Vuo<>|2 + )\T> dz < c37%° (1 + )\T) )
TC, C 0o 00

[eS) [eS)

In turn

- |Vul® dx - |Vul® dx
lim fC( 0,7 = lim fc( 0,7

n— o0 Jdim . -
o (waf 1)~ TR )

2
= lim fTC” [Vo” dz 2

which is again a contradiction provided we take

C3
cl > 2——.
T

Step 5: Finally we consider the case Ao < 00 and h (zg) = 0. Define

~ L €0 if 29 > 0,
€oo (22) = { v if 29 <0,
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for some v to be determined later, and observe that for every ¢ €C} (R; R2)

/ €oo (z)&pld —/ 8301dz_/ eo%dz
O 021 Confz>0) 021 Confz>0}y 021

+/ 8('01 dz = / €oo (22) % dz,
Coon{22<0} T2 c 0z

oo

where we have used the fact that

0
/ 801 dz = / Y11 dHl (2’1, 2’2) =0
Coonfza<0} 021 CooN{z2=0}

since v1 = 0. Define

war )= o (s -min o, 22 ) MUY,
o] ) ’2M+>\ ) (2M+A)2

A straightforward calculation shows that

- 0 (Woo)q 0 (Woo)s
2 o = (2
Cu+A)e Cu+A) o + A 92
a(WOO)l a(WOO)Q
o = A————= 2
Ae A 92, + (2u+A) 9

Hence for every ¢ €C} (R;R?)
0
[ BB da= ) [ o) 52 da
coc

Coo 8,21
2
+)\/ €oo dz
; (22 )622

oo

_ ~ o1 )
= (2,u—|—)\)/c oo (22) B dz—l—)\/c oo (22) 92 dz

[eS) oo

_ O(Weo)y | 9 (Weo)y | 01
B /Coo {(QH A 0z A 0z 021 dz

0 (Woo)q 0 (Woo)s | Opo
+/Coo [)\ 1 +(2u+A) P B dz

~ [ B CEw) @
Coo

We can now proceed exactly as in the previous step with the only difference that we now take
1
Aco
Step 6: By Steps 2-5 the estimate (3.58) holds, and we are now in position to prove (3.57). By

(3.58) for all 7 € (0, 79) we have

Voo 1= Ugs — Weo-

/ (1 + \vu|2) dx < 216Lr% + ng/ (1 + |Vu\2) dx (3.65)
C(zg,7T) C(zo,r)
< (16L + ¢1) TQﬁ/ (1 + |Vu|2> dx
C(zo,r)
for all 0 < r < r,. Hence for a fixed a € (1/2,3)
(16L + 1) 7% = (16L + ¢;) 72720 7%* < 720 (3.66)
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provided Tq is sufficiently small.
Fix 0 < r < r; and find k£ € N such that

+

Tk 1rT <r< TkT'T.

By iterating (3.65) and by (3.66) we have

/ |Vul? dx < / (1 + |Vu|2) dx < / <1 + |Vu|2) dx
B(z0,r)N C(zo,r) C(zo,7kr;)

2c
g“k/ (1+ |Vu|2> dx < T—m/ (1+ \Vu|2) dx,
C(zo.rr) (7)™ JC(@o.rs)
where we have used the fact that B (zg,r) N Q C C(zg,r) since L > 1. This yields (3.57) with

1
c:= 5o / (1 + \Vu|2) dx
(r77)™" Je(ao,rr)
and g :=7r,. ®

Next we prove that for a local minimizer (u,2) € X the upper boundary T is of class C! away
from the finite singular set defined in (3.44) .

Theorem 3.13 (C! Regularity of I') Let (u,2) € X be a 6-local minimizer for the functional
Fy defined in (3.1) . Then T'\ Tsing is of class C*.

Proof. Since I'¢yg is made of segments, it is enough to prove the regularity of I'\ (T cuspsULcuts ) -
Assume by contradiction that I" has a corner at some point zg € I' \ (T'cusps U Tcuts)-

By Proposition 3.5 and a standard extension argument we may define u in a fixed neighborhood
of zg in such a way that for all 0 < 7 < ry

/ Vul? dx < c(L)/ Vul? dx (3.67)
B(zo,r)

B(zg,r)NQ2

for some 1 > 0, and where the constant ¢(L) is independent of r and depends only on the Lipschitz
constant L of the function g in Proposition 3.5.
Moreover, by Proposition 3.1 there exists £y > 0 such that

5
Foo (0,9) = min {Foo (v, Q) +bold — Q]|+ (v, Q) € X, [2,A0] < 5} : (3.68)

where d := |QQF|. We recall also that by Proposition 3.5(i) ' admits a left and a right tangent line
at xg. We are assuming by contradiction that the two tangent lines are distinct and form an angle
0 <9 < m. Let us also suppose, to fix the ideas, that zg & 'y, since the case zg € I'yery can be
treated similarly. For r > 0 (sufficiently small) we denote

/

z, := max{z € (a,b) : x <z and there exists y s.t. (z,y) € T NIB (zo,7)},

z) = min{z € (a,b) : z > z¢, and there exists y s.t. (z,y) € T NIB (zg,7)},

and we let ()., h(x])) and (2!, h(z!)) be the corresponding points on I' N OB (zg, ). Construct h,.
as the greatest lower semicontinuous function coinciding with h outside [z.., z!'] and with the affine
function

T T

hxy) — h(z;)

x o h(z) + (x —a})

T —
in (x],2)). It is easy to see that for r > 0 sufficiently small (u, 2, ) is admissible for the penalized
minimization problem (3.3) . Hence, by (3.68),

Foo (0,Q) < Foo (0, Qp,) + Lold — | || < Foo (0, Q) + cr?,
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and, in turn, using the estimates (3.57) and (3.67),

/T\/l—i—(h’)de S/ T\/l—i—(h;)gdx—i—c/ |Vul|? dx + cr?
z, a B(

Z0,7) (3.69)

§/ ' V14 (h)2dx 4 cr®
@,

for 7 small enough. Recall that by Proposition 3.5 the right and the left derivatives h/, and h’
exist and are continuous in a neighborhood of zy. In particular, for © > xzy we have h(x) =
h(zo) + h! (zo)(x — 20) + oz — 20). Since

r =z, h(z))) = (w0, h(zo))| :(xg_%)\/“r (MM”M)Q’

!l —xo
we get that
o = w0 + - . (3.70)
\/1 + (W (wo) + 2=
Similarly, we obtain
T, =Ty — L (3.71)

’ o(xz!—xo) 2
1+ h_(xo) + Er——

Plugging (3.70) and (3.71) in estimate (3.69) , dividing both sides by r and letting r go to zero, we
immediately get, taking into account the right and left continuity at x¢ of h/, and h’_ respectively,

2 < 2sin(¥/2),

which is impossible. m
As an immediate corollary of the previous theorem we have a rigorous proof of the zero contact-
angle condition between wetting layer and island (see [26] for a discussion on this matter).

Corollary 3.14 (Zero Contact-Angle) Let (u,Q) € X be a local minimizer for the functional
Fo defined in (3.1). If zg = (20,0) € I' \ Ising then h'(zq) = 0.

Next we seek to prove C17 regularity of I' away from the cusp points. To this purpose we need
a uniform version of the decay estimate (3.57) .

Theorem 3.15 (Decay Estimate II) Let (u,Q) € X be a local minimizer for the functional Fuo
defined in (3.1). Then for every closed subarc I" C I' \ (Teusps U Tcuts) and for every 0 < o < 1
there exist a constant ¢ > 0 and a radius ro such that for all 0 <r <1y and for all zg € T’

/ [Vul? dx < er?7. (3.72)
B(zo,r)NQ

Proof. The proof is very similar to the one of Theorem 3.12 so we only indicate the main
changes. We begin by showing that there exist two constants ¢ > 0, 79 € (0, 1) such that for all
7 € (0,7p) there exists a radius r, > 0 such that for all 0 < r < r, and for all zy € T”

/ IVu)? dx < CTZ/ (1 + |Vu\2) dx, (3.73)
C(zo,7T) C(zo,r)

where C'(zg,r) is defined in (3.59) and eq, es are respectively the unit tangent vector and the
normal to the curve I' at z.
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We fix ¢ > 0, 79 € (0,1) to be determined later and we assume by contradiction that the
corresponding estimate (3.73) is false for some 7 € (0, 7). Hence we may find a sequence of radii
{rn} converging to zero and a sequence {z,} C I converging to some zy € I'" such that

/ Vul® dx > 072/ (1 + |Vu|2) dx.
C(zn,TTn) C(zn,rn)

Define the sets )
Cpi=— (=2, +C(2n,m)).

Tn
Using the fact that, since I'\ (Tcusps U leuts) is of class C1, the unit tangent and normal vector to
IV vary with continuity one can show that x¢, converges a.e. to the xc. where

Coo i={s€1 +tea: -1 <s<1, 4L <t < goo (s)}
with g () := ¢’ (0) s. We rescale accordingly also the function u by setting

u(z, +12) —a,
AnTn

u, (z) :=

b

X—2Zp
Tn

where z : =

1

B |C(1‘n,’l"n)| C(xnarn)

1

udz, N = ——
|O($n,7’n)| C(Xn,rn)

o |Vul? dz.

a, :

As in the proof of Step 1 of Theorem 3.12 we may assume that u,, (extended to the rectangle R)
weakly converges to some function us, € W12 (R; RQ) and that

An = Aoo € (0,00] .

The proof of Step 2 of Theorem 3.12 continues to hold while Step 3 can be simplified.
Indeed, if Aoc = oo then u. is a weak solution of the problem

pAU + (A + )V (divus) =0 in Co,
[ (Vs + Vul) + A(divus) I] v =0 only_.
Therefore by Theorem 3.7 we have that if 0 < r < % then
/ Vue[*dz < Cr?  sup  |Vus|® < CT‘Q/ Vo> dz < Cr.
B(0,r)NCoo B(0,r)NCw B(0,1)NCo

We may now proceed as before to obtain a contradiction.
If Ao < o0 then as in Step 4 of Theorem 3.12 we set

Voo (3) = e () — 0
Then v, is a weak solution of the problem
PAVo + A+ p) V (divve) =0 in Cu,
(1 (VVoo + VVE) + A(divve) IJy =0 on T,

and thus, as in the previous step, for all 0 < r < % we have

/ IVveo|® dz < Cr?
B(0,7r)NCo

and the rest of the proof is analogous.
Steps 5 and 6 are also similar, we omit the details. m
We are now in a position to show that I is of class C!* away from the finite singular set Ling-
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Theorem 3.16 (C'? Regularity of I') Let (u,2) € X be a d-local minimizer for the functional
F defined in (3.1). Then I' \ T'sing is of class CY forall0 < o < %

Proof. As in the proof of Theorem 3.13 it is enough to consider I' \ (Icysps U T'cuts). Fix a
closed subarc IV C I'\ (Teusps U Teuts), % < 0g < 1, and a point zg = (zg, yo) in I''. As in the proof
of Theorem 3.13, for all 0 < r < r; we may extend u to the ball B (zg,r) in such a way that (3.67)
holds. Moreover, since I' \ (Tcusps U leuts) is of class C!, we may assume that constants r1, L and
¢(L) in (3.67) are independent of zy. Hence also by (3.72) there exist ¢, 7o > 0 indepedent of zg
such that

/ |Vul? dx < cr?o (3.74)
B(zo,r)

for all 0 < r < 1.

Owing to the C! regularity and taking 7o smaller (and again independently of zg), we can also
assume that for all 0 < r < rg, the curve I" crosses transversally 0B(zg,r) at exactly two points.

Let (z).,y.) and (2!, y)) be two points in 0B(zg,r) NI'. We redefine I inside the ball B(zg,r)
as the polygonal path of length 2r connecting (7., y.) with zgand zg with (!, y/) and we denote
the corresponding function by h,..

Using Proposition 3.1 and the fact that if 7 is small enough the new pair (u, §25,.) is admissible
for problem (3.3) , we can estimate

Foo(u, ) < Foo (0, Q,) + lold — | || < Foo (w,Q,) + er?,
which, together with (3.74), yields
HY (T, N B(z,r)) — 2r < c/ |Vul? dx + cr? < ¢r?7°.
B(z,r)

Note that the previous inequality holds for all z € TV and 0 < r < rg, with ¢; independent of z
and r. It follows that I" is of class C1?, where o := 0 — % (see Proposition 6.4 and the proof of
Theorem 6.1 in [3]). =

In view of the previous theorem and Remark 3.6 we can partition (a,b) as

a=Tog<T1 < ...<Ty1 <Xy :=Db
in such a way I' N ((z;—1,2;) x [0,00)) is of class C17 for all 0 < o < 1 for each i =1,...,m.

Theorem 3.17 (C'? Regularity of u) Let (u,Q) € X be a d-local minimizer for the functional
Fy defined in (3.1). Then for any [a’,b'] C (w;—1,2:), i = 1,...,m, we have that u — W, €
Chor (Qn ([, 0] x R);R?), for some o1 > 0, where

_ o Ay
Woo (X) 1= €g <:c, mm{O, 2#"')\}) .

In particular, u € C*7* (N ([@/, 0] x R\ {0}); R?).

Proof. As shown in Step 5 of the proof of Theorem 3.12 the function u — w, satisfies
/ E (¢) - C [E(u — woo)] dx = 0 (3.75)
Q

for every ¢ € CL((a’,V’) x R;R?). We now argue as in the proof of Theorem 7.53 in [2] to which
we refer for some details of the proof that will be omitted here.

By straightening the boundary I' with a diffeomorphism of class C*“ for every 0 < o < %, the
function u — wo is transformed in a H! function v satisfying a linear system of the form

VpA(x)Dvdx =0
-
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for all ¢ € C(B~;R?) vanishing in a neighborhood of 9B~ N {y < 0}), where B~ is a half ball
centered at the origin contained in {y < 0} and the coefficients AZ’J-k of the matrix A are of class
C% for 0 < 0 < % Moreover, since A + ¢ > 0 and p > 0, the matrix A satisfies the strong
Legendre-Hadamard ellipticity condition. Let us extend the function v to the whole ball B by
setting v(z,y) = v(z,—y) for y > 0. It is easy to check that the new function v satisfies the

equation
/ VpA(z)Vvdx =0, (3.76)
B

for all ¢ € C}(B;R?), where the coefficients of A are also extended to the upper ball BT by setting,
for y > 0,

k

A?’jk(xy): AZ,Z( —y) ifh:kzlor.h:k:Q
i A (2, —y) otherwise.

Let us fix (29,0) € B and B((zg,0), R) C B. We denote by w the weak solution of the Dirichlet

problem
/ Vo AVw dx = 0,
B((%0,0),R)
w=v on 0B((z0,0), R),
where )
+ in Bt
_ A =B +A(X)dx in BT,
A(x) = 1P
A_:—/ A(x)dx in B™.
B
By the standard difference quotient argument and Korn’s inequality, one can show that 8—‘;’ is a
VV&)C2 weak solution of
/ VAV (aw> dx =0.
B((20,0),R) Oz
Therefore, by standard regularity estimates, we get that for every ball B (z, 0) C B((z0,0), R)
9 ow\ |
/ v (—W> dx < —/ ( > <—W) dx (3.77)
(z,0/2) Ox (z,0) Ox z,0

where (8—“’) denotes the average of the function a—‘;’ in the ball B,(z). From inequality (3.77)
1

oz /z,0
2
ow\ | (aw> 2
VI{—=— dx <c| —— VI— dx
(333) N <B(Z79)| B(z,0) oz

and Poincaré inequality we get
From this inequality, by using Gehring’s lemma (see for instance [15], Proposition 1.1, Chap. V)
we get that 2% € WLP(B;R?) for some p > 2 and for all B (z, 0) C B((x0,0), R)

1/p 2 1/2
1 8w> P / < >
1 v (V] ax VA ax| (378
(B(Z&/Q) B(2,0/2) <39€ ) <B (2,0l JB(z0) Oz 7

for some constant ¢; independent of the ball B (z, 9). Note that, since p > 2, we may conclude that

9w s Jocally y-Holder continuous for 4 = 1 — 2/p. Moreover, from Sobolev Embedding Theorem

ox
ow 2
v (a—x)

1
|B(2,0/2)| JB(2,0/2)

and (3.78) we obtain that

CQ2

|B (Z’ Q)| B(z,0)

ow [*
ox

ow |?
Or

Cc

S T dax.
‘B (Za Q)| B(z,0)

dx +

ma

B(z,
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This inequality and (3.77) yield

2 2

Ow dx.

Dz

ow
ox

C
N |B (Z720)| B(z,20)

max
B(z,0/2)

Denoting by [%—‘;"L{ ,.» the Holder seminorm of 9% in the ball B(z,r), from Sobolev embedding

theorem, (3.78) and (3.77) we get that if B(z,4r) C B((x,0),R) and o < r

2
/ ow _ <5W)
B(z,g) 815 (9$ 2,0
» 2/p
dX)

< CQQ+2’YT4/P < ¢
dx.

87w2
ox

dx < cp*t? {

Y%,

*(5)

2
dx

|B (Za T)| B(z,r)

< 092“77“%_2/ \% (6_w>
B(z,2r) Ox

2
0 2+27/ ow ow
< £ -7 (2=
=¢ (r) B(z,47) ox ox 2Ar

Following the proof of Theorem 7.53 in [2], we introduce the vector D.w whose components are

for 7 = 1,2, where for convenience we used the notation r; = x, xr2 = y. From the equation
satisfied by w we get that for j = 1,2

H(Dew);) _ s~y 0w

O0xs — Y 0x10x),

Therefore we may conclude that V(D,w) is locally in L? in B((zg,0), R) and

ow

From now on the proof proceeds exactly as in Theorem 7.53 in [2] with the conclusion that Vv is
locally o-Holder continuous for all ¢ < min {7, %} ]
We will finally prove that I' is analytic outside a bigger singular set . Consider the contact

|V(D.w)| < c

[e]
set Z :=I'N{y = 0} and its inner regularization Z,cy := Z, where the interior part and the closure
are with respect to the relative topology. We set

¥ = 1_‘cusp U Fvert U Fcuts U Zreg ’

where, we recall, I'cysp and I'yey are the sets defined in (2.14) and (3.43) , respectively. Note that
by construction ¥ is a closed set.

Theorem 3.18 (Analyticity) Let (u,Q) € X be a d-local minimizer for the functional Fo,. Then
'\ ¥ is analytic and satisfies the Euler-Lagrange equation

~Yim curv'(z) = W(E(u)(z) — Eo(y)) + Ao forallz e T\ X, (3.79)

where Ao is a suitable Lagrange multiplier and curv I'(z) denotes the curvature of I' at the point z.
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Proof. Consider the relatively open subset I' \ (¥ U Z) and denote by A its projection on the
z-axis. By considering variations in A of the form h + ey, where ¢ has compact support in A and
[ pdx =0, we easily get that I'\ (X U Z) is weak solution of (3.79) . From the previous theorem
and this equation we immediately obtain that Igrapn \ (£ U Z) is of class C*7 for some o > 0 and
thus it is a classical solution of (3.79) . Since every point of I'\ ¥ is in the closure of T'\ (X U Z),
by approximation we see that (3.79) is satisfied classically at every point of I'\ X.

Let w, be the function introduced in Theorem 3.17, set i1 := u — W, and denote by E., the
constant value of E(wy) on the half space {y > 0}. Taking into account (3.75) , it is easy to see
that the pair (,T\ ¥) is a C? solution of the following overdetermined system:

divC[E(m)] =0 inQ,
CE@)]-v=0 onT\X%,

Yiim curvl = W(E(Q)) + (Eoo —epi®1) - C[E(Q)] + W(Exw —epi®1i)+ Xy on T\ X.
A standard bootstrap argument now yields that I' \ ¥ is of class C* and that u — wy, is C* up

to I'\ ¥. The analytic regularity follows from Theorem 4.9 and the remarks at the end of Section
4.21n [19]. =

Remark 3.19 Denote by 7(3 \ Zig) the projection of ¥\ Z,es on the z-axis. By the definition
of ¥ and the structure of T" it is easy to see that 7(X \ Z,eg) is contained in the set where h is non
differentiable. Hence £(m(X\ Zieg)) = 0. In particular if we set

U:={z € (a,b): h(z) >0},
it follows from Theorem 3.18 that h is analytic on an open set of full measure in U.
We conclude by proving the following corollary on the structure of the contact set Z.

Corollary 3.20 (Contact Set) Let (u,Q) € X be a d-local minimizer for the functional Fy and
let Z=TnN{y =0} be the contact set of ' with the x-axis. Then for all open intervals I C (a,b)
the set (Ix{0}) N Z is either discrete or with nonempty relative interior part.

Proof. Assume by contradiction that (Ix{0}) N Z has no relative interior part and admits a
cluster point zg = (z9,0). Taking into account the definition of ¥ and the structure of I" it is easy
to see that under these circumstances ¥ N ((zg — €, o + &) xR) = @ if € is small enough. It follows
from Theorem 3.18 that h is analytic in (zg — €,z + ¢) and its zero-set has a cluster point at xg,
a contradiction. m

Remark 3.21 It would be interesting to show that Z is in fact the finite union of (possibly
degenerate) closed intervals.

4 Appendix: Korn’s Inequalities

We begin by recalling a classical version of Korn’s inequality which may be found in [23], [24].

Theorem 4.1 (Korn’s inequality I) Let M > 0 and let Q@ C RN be an open bounded domain
starshaped with respect to a given ball B (xg,r) C Q and such that diamQ < M. Then there exists
a constant ¢ = ¢ (p, N,7, M) > 0 such that for all u € W1? (Q;RN), p>1,

/Q\Vulp dX§C</9|u|pdx+/Q|E(u)|pdx> :
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As a consequence of this theorem we establish the following Korn-type inequality for subgraphs
of Lipschitz functions.

Theorem 4.2 (Korn’s Inequality II: subgraphs of Lipschitz functions) Let By_1(0,1) be
the unit ball in RN~Y and let h : By_1(0,1) — [—L, L] be a Lipschitz function with Liph < L for
some L > 0. Define

Ry = {(x,zn) e RVIxR: x' € By_1(0,1), -4L < ay < h(x)}.

Then there exists a constant ¢ depending only on N, p, and L such that

/ IVl dxgc(/ |u|pdx+/ E(u)|pdx)
Ry, Ry Ry,

for allu € Whr (Rh;RN), p > 1. Moreover for any ball B compactly contained in By_1 (0,1) x
(—4L, —3L) there exists a constant ¢, depending only on N, p, L and on the radius of B such that

/ |Vul? dxgcl/ |E (u)|” dx (4.1)
Rp

Ry,

for allu € Wh» (Rh; RN) with

/B (vu - (vu)T) dx = 0. (4.2)

Proof. In view of the previous theorem, to prove the first part of the statement it is enough
to show that Rj is starshaped with respect to any ball B compactly contained in By_; (0,1) X
(—4L,—3L). To this aim, let x = (x’,zn) € Ry and y € B. If )y < —L then the segment joining
x with y is clearly contained in Ry. If xny > —L then the straight line passing through x and y
has slope greater than L therefore it cannot intersect the graph of the function A in more than one
point, that is, the segment joining x with y is contained in Rj,.

To prove the second part of the theorem fix a ball B contained in By_1 (0,1) x (—4L, —3L).
Clearly it suffices to prove (4.1) for all functions u € W' (Ry; RY) which satisfy (4.2) and

/udx:O.
B

By the first part it will be enough to prove that there exists a constant ¢ depending only on L
and B such that

/ lu? dx§02/ |E (u)]? dx (4.3)
Rh Rh

for all u € WP (Rp,; RY) satisfying (4.2). Assume by contradiction that (4.3) fails. Then there
exist a sequence of functions {h,} as in the statement and a sequence {u,} of functions with
u,, € WP (Ry, ; RY) such that

/Bun dx =0, /B (Vun - (Vun)T) dx =0, (4.4)

and
/ lu,|” dx =1, lim |E (u,)|" dx = 0. (4.5)
R n—

oo
hn Ry,

Since Lip h,, < L up to a subsequence we may assume that {h,} converges uniformly to a function
hoo with Lip Ao < L. By the first part of the theorem we have that

sup/ [Vu,|? dx < c.
R

n B
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A straightforward extension argument by reflection allows us to extend the functions u, to the
cylinder Cp, := By_1(0,1) x (=4L,4L) in such a way that the resulting functions, still denoted
by u,, are equibounded in W1? (CL; RN ) Hence, without loss of generality, we may assume that
the sequence {u, } converges weakly in W1 (CL; RN ) to some function us,. We claim that

/R luse|? dx = 1. (4.6)

hoo

Indeed, since {h,} converges uniformly to h it is clear that xg, converges to xg,_ pointwise
a.e. in Cr. Hence by Lebesgue Dominated Convergence Theorem {u,xr,  } converges in L to
U XR,, - The claim now follows from (4.5).

Moreover, by lower semicontinuity, it is easy to see that

/ |E (uso) | dx < lim |E (u,)|"dx =0
Rioe "% JRy,

and so E(us) = 0 a.e. in Rp,__. Since the domain Rj__ is connected this implies that us (x) =
a + Bx for some constant a € RY and some skew-symmetric matrix B € RV*¥_ On the other

hand, it follows from (4.4) that

/BuOO dx =0, /B (Vuoo — (Vuoo)T) dx=0

and so a = 0 and B = 0, which contradicts (4.6). m
We next extend the above theorem to a different class of two-dimensional domains which appear
in the proof of Proposition 3.1.

Figure 2: A generalized trapezoid.

A generalized trapezoid T C R? is the open region enclosed by two parallel (horizontal) straight
line segments s1, so and a pair vy, 72 of arcs connecting the endpoints of s; and se with the
following properties (see the picture above):

(i) assuming without loss of generality that the upper side s; is shorter than s and denoting
by m(s1) the projection of s; on the straight line containing ss, there holds m(s1) C so;

(ii) each ;, i = 1,2, is either the extended graph of a monotone function g;, i = 1,2, or a vertical
segment (in the latter case with an abuse of language we say that ~; coincides with the graph
of a degenerate monotone function g;);

42



(iii) denoting by a; and as the endpoints of the lower side sq, there exists a > 0 and 0 < 1 <9
such that
B(aj,r1)NT and B(ag,r1) NT contain a sector of angle a. (4.7

Note that one of the two monotone functions, say g1, is non-decreasing while g, is non-
increasing. We denote by I1, lo the length of s1, so respectively, and we call the distance h
between s; and so the height of the generalized trapezoid T. Finally, let R be the maximal rect-
angle contained in T with one side coinciding with the shorter side s;. The center ¢ of such a
rectangle will be called the center of the generalized trapezoid T .

Theorem 4.3 (Korn’s Inequality III: generalized trapezoids) Letp > 1 and let T be a gen-
eralized trapezoid with center c, height h, and parallel sides s1, so of length 1y, ly respectively (and
without loss of generality l; < ly). Assume that the non-degeneracy condition (4.7) holds for some
a >0 and for some 0 <11 <ly and let 0 < my < mo < +00 satisfy

m1 < min l—lr—lﬁ < max l—lr—lﬁ <m
b= I’ 1y 1y [ = I Iy [ =%

Then there exists a constant ¢ > 0 depending only on p, m1, mso, and o such that
/ |[Vul? dx < c/ |E (u)[” dx (4.8)
T T

for all uw € WhP (T; R?) with
/ <Vu - (vu)T) dx =0, (4.9)
B
where B is the (open) ball centered at ¢ with radius mqls/2.

Proof. Since for every A > 0 and every vector uy € R? inequality (4.8) is invariant under the
transformation
uec WhHP(T;R?) — uory +uy € WHP(AT;R?),

where r) denotes the dilation map x — x/\, we may assume that

lo =1, my <min{ly,r1,h} <max{ly,r1,h} <ms, diamT <y/1+m3, (4.10)

and

/Budx:O. (4.11)

We can also assume that the lower side sy coincides with the segment [0,1]x{0}. We first claim
that there exists a constant ¢; = ¢1(p,m1, ma, @) > 0 such that for all u € W'» (T;R?)

/T|Vu\p dx < ¢ (/Tu|pdx+/T|E (u)? dx) . (4.12)

To this purpose observe that by (4.7) and (4.10) the isosceles trapezoid T (with base angles equal
to o and left and right sides equal to m;) depicted in Figure 3 is contained in 7. Consider also the
rectangle Ry = (0,1)x(—ma, 0] and note that any u € W'? (T;R?) can be extended to a function
wewhr (T U Rl;R2) so that

/ |w|? dxgco/ lul’ dx  and / [Vwl? dxgco/ |Vul? dx, (4.13)
Rl T1 Rl Tl

where the constant ¢y > 0 depends only on T7j, that is, on m; and a. Let ¢ be the symmetric
point to ¢ with respect to segment so and call B’ the ball centered at ¢ with radius mq/2. Then
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it is easy to see that T'U Ry is starshaped with respect to B’. Hence by Theorem 4.1 there exists
a constant ¢’ = ¢/(p, my, ms) such that

/ [Vw? dx < ¢ </ |wl? dx+/ |E (w)]” dx> .
TUR; TURy TUR,

Taking into account (4.13) we deduce from the last inequality that
/ |[Vul? dx < / IVw[? dx < (co + 1)/ [ul? dx—l—c’/ |E (w)|” dx. (4.14)
T TUR, T TUR,

Finally by (4.13) and by applying Theorem 4.1 in T} we obtain

/ |E (w)|" dx < co/ |[Vul? dx < ¢ (/ [ul” dx+/ |E (u)? dx) (4.15)
Ry T T T

for some ¢’ > 0 depending only on « and m;. Inequality (4.12) follows now from (4.14) and (4.15)

8§
\ T /gz
e C
1-2m,coso.
m, sina] o T o
. ¢
R m,

Figure 3: The sets T and R;.

As in the proof of Theorem 4.2 it is now sufficient to show the existence of a constant co =
c2(p, m1, mg) > 0 such that

/%IuV” dx < CQL|E(u)|de (4.16)

for all u € W'» (T;RR?) satisfying (4.9) and (4.11) . Assume by contradiction that (4.16) fails.
Then there exists a sequence of generalized trapezoid T, as in the statement and a sequence
u, € Whr (Tn;Rz) such that

/Bn u,dx =0, /B (Vun — (Vun)T) dx =0,

n
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and
/ lu,|” dx =1, lim |E (u,)["dx =0. (4.17)
T, n—oo Jp.

By rescaling and translating we may assume that for every n the generalized trapezoid T, is
centered at c, satisfies (4.10) , and is contained in a fixed rectangle Rs. In particular we may
assume that B, = B for every n. From (4.12) and (4.17) we deduce that

sup/ |Vu,|” dx < +oo.
n J,

n

Let g1,n, g2.n be the two monotone (possibly degenerate) functions associated with T,,. It is well
known (see for instance [1]) that a rotation of 7/4 transforms the extended graph of g;, into the
graph of a 1-Lipschitz function (the rotation should be clockwise for the non-decreasing function
g1,n» and counterclockwise for the non-increasing function gs,). Exploiting this observation and
(4.7) one can see that it is possible to extend the functions u, to the rectangle Ry in such a way
that the resulting functions, still denoted by u,, are equibounded in W*? (Rz; RQ). Using Helly’s
theorem for monotone functions, it is also easy to see that we can find a generalized trapezoid
T, still contained in Ry, such that, up to a subsequence, x7, — x7.. a.e.. We can now proceed
exactly as in the last part of the proof of Theorem 4.2. =

Remark 4.4 The final part of the previous proof shows in particular that T is a Lipschitz domain
and so one can extend from the very beginning the function u to a fixed rectangle. Howewver, it
18 not possible to control the LP norm of the symmetrized gradient of the extended function with
the LP norm of the symmetrized gradient of u. This explains why we had to use a more involved
argument.

A simple mollification argument shows the following result:

Corollary 4.5 Let T and B as in the previous theorem. Then for every u € Wllo’cp (T; R2) satis-
fying (4.9) and

/ |E (u)|” dx < +00
T

it follows that u € WP (T;R?) and (4.8) holds.

Acknowledgment

The authors are profoundly indebted to Robert Kohn for multiple discussions on the subject of
this work and for his guidance toward relevant literature. Also, numerous fruitful conversations
were carried out with P. Cermelli, A. Chambolle, M. Gurtin, V. Millot and B.J. Spencer. The
authors thank the Center for Nonlinear Analysis (NSF Grant No. DMS-0405343) for its support
during the preparation of this paper. The research of I. Fonseca was partially supported by the
National Science Foundation under Grant No. DMS-040171 and that of G. Leoni under Grant No.
DMS-0405423.

References

[1] ALBERTI G.; AMBROSIO L., A geometrical approach to monotone functions in R™. Math. Z.
230 (1999), 259-316.

[2] AMBROSIO L.; Fusco N.; PALLARA D., Functions of bounded variation and free discontinuity
problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,
New York, 2000.

45



[3] BONNET A., On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré Anal.
Non Linéaire 13 (1996), 485-528.

[4] BoNNETIER E..; CHAMBOLLE A., Computing the equilibrium configuration of epitazially
strained crystalline films. SIAM J. Appl. Math. 62 (2002), 1093-1121.

[6] BRAIDES A., I'-Convergence for beginners, Oxford University Press, 2002.

[6] BRAIDES A.; CHAMBOLLE A.; SOLCI M., A relazation result for energies defined on pairs
set-function and applications, preprint.

[7] CHAMBOLLE A.; LARSEN C. J., C* regularity of the free boundary for a two-dimensional
optimal compliance problem. Calc. Var. Partial Differential Equations 18 (2003), 77-94.

[8] CHAMBOLLE A.; Sorcl M., Interaction of a bulk and a surface energy with a geometrical
constraint, preprint.

[9] CHEN K. M.; JESsON D. E.; PENNYCOOK S. J.; THUNDAT T.; WARMACK R. J., Cuspidal
pit formation during the growth of Si, Gei_, strained films. Applied Physics Letters 66 (1995),
34-36.

[10] CH1u, C.-H.; GAO, H. Stress Singularity along a cycloid rough surface. Int. J. Solids Struc-
tures 30 (1993), 2983-3012.

[11] DAL Maso G., An Introduction to T'-Convergence, Birkhaiiser, 1993.

[12] DIBENEDETTO E., Real analysis. Birkhduser Advanced Texts: Basler Lehrbiicher. Birkhauser
Boston, Inc., Boston, MA, 2002.

[13] FEDERER H., Geometric measure theory, Springer, Berlin, 1969.

[14] Gao H.; Nix W.D., Surface Roughening of Heteroepitazial Thin Films. Annual Review of
Materials Science, 29 (1999), 173-209.

[15] GIAQUINTA M, Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems.
Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.

[16] GRINFELD M. A., Stress driven instabilities in crystals: mathematical models and physical
manifestation, J. Nonlinear Sci. 3 (1993), 35-83.

[17] GRISVARD P., Elliptic problems in nonsmooth domains. Monographs and Studies in Mathe-
matics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985.

[18] GRISVARD P., Singularités en elasticité. Arch. Rational Mech. Anal. 107 (1989), 157-180.

[19] KocH H.; LEONI G.; MORINI M., On Optimal regularity of Free Boundary Problems and a
Congecture of De Giorgi. Comm. Pure Applied Math. 58 (2005), 1051-1076.

[20] KukTAa R.V.; FREUND L.B., Minimum energy configurations of epitaxial material clusters
on a lattice-mismathched substrate. J. Mech. Phys. Solids 45 (1997), 1835-1860.

[21] LEONI G.; MORINI M., Necessary and sufficient conditions for the chain rule in VVlloc1 (RY;RY)
and BVj,.(RY;R%), to appear on J. Eur. Math. Soc.

[22] LieB E. H.; Loss M., Analysis. Second edition. Graduate Studies in Mathematics, 14. Amer-
ican Mathematical Society, Providence, RI, 2001.

[23] MosoLov P. P.; MJiasNikov V. P.. A proof of Korn’s inequality. (Russian) Dokl. Akad.
Nauk SSSR 201 (1971), 36-39.

46



[24] NECAS J.; HLAVACEK 1., Mathematical theory of elastic and elasto-plastic bodies: an intro-
duction. Studies in Applied Mechanics, 3. Elsevier Scientific Publishing Co., Amsterdam-New
York, 1980.

[25] NICAISE S., About the Lamé system in a polygonal or a polyhedral domain and a coupled
problem between the Lamé system and the plate equation. I. Regularity of the solutions. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 327-361.

[26] SPENCER B. J., Asymptotic derivation of the glued-wetting-layer model and contact-angle
condition for Stranski-Krastanow islands. Physical Review B 59 (1999), no. 3, 2011-2017.

[27] SPENCER B. J.; MEIRON D.I., Nonlinear Evolution of the Stress-Driven Morphological In-
stability in a Two-Dimensional Semi-Infinite Solid. Acta Metallurgica et Materialia 42 (1994),
3629-3641.

[28] SPENCER B. J.; TERSOFF J., Fquilibrium shapes and properties of epitaxially strained islands.
Physical Review Letters 79 (1997), 4858-4861.

47



