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Abstract

We present a general theory to study optimal regularity for a large class of non-
linear elliptic systems satisfying general boundary conditions and in the presence of a
geometric transmission condition on the free-boundary. As an application we give a
full positive answer to a conjecture of De Giorgi on the analyticity of local minimizers
of the Mumford-Shah functional.

1 Introduction

In the seminal papers [23] and [24], Kinderlehrer, Nirenberg and Spruck started a systematic
study of the higher regularity of solutions of elliptic systems on one or both sides of a free
hypersurface Γ subject to overdetermined boundary conditions on Γ.

The key ingredient in their proof is the partial hodograph transformation (see [18], [22],
[8, 9]) which is defined in terms of a function u(x) in Ω ∪ Γ ⊂ RN , satisfying on Γ the
condition u = 0, by the mapping

x 7→ y = (x′, u),

where x′ = (x1, . . . , xN−1). If u is a solution of the elliptic free boundary problem this change
of variable transforms the problem into a new one where the boundary now is contained in
a hyperplane.

It is clear that this method is strongly hinged to the presence of Dirichlet boundary
conditions and thus the important problem of the regularity of solutions in the case of
Neumann boundary conditions has remained open until now, with the exception of the two–
dimensional case, where duality arguments can be applied to change Neumann conditions
into Dirichlet (see e.g. [26]).

Moreover, although in [23] and [24] several model problems involving either equations
or systems of decoupled equations were studied, as already remarked by the authors in [24],
corresponding results for general elliptic systems are still missing.
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The main purpose of this paper is to present a general theory to study optimal regularity
for a large class of second order nonlinear elliptic systems satisfying general boundary con-
ditions and in the presence of a geometric condition on the free-boundary, which in several
applications of interest accounts for the interaction either between the physical system and
the outside environment (one-phase free boundary problems), or between two different sys-
tems (two-phase free boundary problems). We will refer to this condition as transmission
condition.

More precisely, in the case of one-phase free boundary problems, we consider systems of
the form

Fk

(
x,u, Du, D2u

)
= 0 in Ω, 1 ≤ k ≤ n, (1.1)

Gh (x,u, Du, ν) = 0 on Γ, 1 ≤ h ≤ µ, (1.2)
H (x,u, Du, ν, Dτν) = 0 on Γ, (1.3)

where Γ ⊂ ∂Ω is the free boundary, ν is the normal to the free boundary, and Dτν denotes
the tangential gradient. Here the system (1.1) is assumed to be elliptic and the boundary
conditions (1.2) complementing for (1.1), in the sense of Agmon, Douglis, Nirenberg (see [2],
[3], [30]), while the derivative of the function H with respect to the variable Dτν is positive
definite.

Assuming some initial degree of regularity on u and Γ we prove optimal regularity and
analyticity (depending on the regularity of Fk, Gh, and H) of u and Γ .

To illustrate our results we consider the important special case

∆u = g (x, u,∇u) in Ω,
∂u

∂ν
= b (x, u) on Γ,

K = h (x, u,∇u) on Γ,

(1.4)

where K denotes the mean curvature of Γ. If g, b, and h are analytic and u and Γ of class
C1,α then u and Γ are analytic. To the best of our knowledge this is one of the first results
in the literature on the analyticity for free boundary problems without Dirichlet condition
for N > 2.

Note that if we replace the transmission condition with a condition of the form

f (x, u,∇u) = 0 on Γ,

then the result is false in general, as illustrated by the example

∆u = 0 in Ω,
∂u

∂ν
= 0 on Γ,

|∇u| = 1 on Γ.

If N > 2 then the function u(x) = x1 solves the problem with Γ any C1 hypersurface of the
form xN = γ (x2, . . . , xN−1) (see [18]).

All the regularity results obtained for (1.1)-(1.3) continue to hold for general two-phase
free boundary problems. In particular if we consider the analogue of (1.4)

∆u± = g± (x, u±,∇u±) in Ω±,
∂u±

∂ν
= b± (x, u+, u−) on Γ,

K = h (x, u+, u−,∇u+,∇u−) on Γ,

where now Γ := ∂Ω+ ∩ ∂Ω− is the free boundary, we can prove optimal regularity and
analyticity of the free boundary under proper smoothness assumptions on the data and on
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the initial regularity of (u±, Γ). This result gives a positive answer to a conjecture of De
Giorgi on the analyticity of local minimizers of the Mumford-Shah functional (see [4], [14],
[15])

Fg (u,K) :=
∫

Ω\K
|∇u|2 dx + α

∫

Ω\K
|u− g|2 dx + βHN−1 (K ∩ Ω) ,

defined for all pairs (u,K) where K is a closed set and u is of class C1 in Ω \K, precisely
Conjecture (De Giorgi ) If g is analytic and (u,K) is a local minimizer of the functional
Fg such that K ∩A is a C1,γ manifold for some open set A, then K ∩A is analytic.

A partial answer to this conjecture in the case N = 2 and α = 0 was given in [26] (see
also [4], [13] and the references contained within for previous results on the C∞ regularity).

Our approach allows us to prove the full conjecture for general free discontinuity problems
of the general form.

The paper is organized as follows. In Section 2 we present some preliminary results on
elliptic systems and complementing conditions. In Section 3 we state and prove the main
theorem on the optimal regularity for one-phase systems of the form (1.1)-(1.3) and we give
the corresponding result for two-phase systems. In Section 4 we present several applications
to systems of physical interest including free discontinuity problems and other free boundary
problems arising from the elasticity theory.

Finally, in order to show the flexibility of our approach, in Section 5 we present a further
result for the stationary Navier-Stokes equations with a free-capillarity condition which,
although not included in the general framework of Section 3, can be treated in a similar
way.

2 Preliminaries

In what follows let Ω ⊂ RN be an open set and define

D := (D1, . . . ,DN ) , Dj :=
1
i

∂

∂yj
1 ≤ j ≤ N.

Let Lkj (y,D) , 1 ≤ j, k ≤ n, be linear differential operators with continuous complex valued
coefficients. Consider the system of partial differential equations in the dependent variables
u1, . . . , un

n∑

j=1

Lkj (y,D) uj (y) = fk (y) in Ω, 1 ≤ k ≤ n. (2.1)

To each equation we assign an integer weight sk ≤ 0 and to each dependent variable an
integer weight tj ≥ 0 such that

order Lkj (y,D) ≤ sk + tj in Ω, 1 ≤ k ≤ n,

max
k

sk = 0,

where we use the convention that Lkj (y,D) ≡ 0 if sk + tj < 0. If we write

Lkj (y,D) =
∑

|α|≤sk+tj

aα
kj (y)Dα,

then the principal part of Lkj (y,D) is denoted by L′kj (y,D) where the polynomial

L′kj (y, ξ) :=
∑

|α|=sk+tj

aα
kj (y) ξα, ξ ∈ RN

is the principal symbol of Lkj (y,D).

3



Definition 2.1 We say that the system (2.1) is elliptic at y0 if the matrix

(L′kj(y0, ξ))kj (2.2)

is non-degenerate for each ξ ∈ RN \{0}, and for each pair of independent vectors ξ, η ∈ RN

the polynomial
p(z) = det L′kj(y0, ξ + zη) (2.3)

has exactly µ = 1
2 deg p roots with positive imaginary part and µ = 1

2 deg p roots with negative
imaginary part.

The condition about the roots is automatic if N ≥ 3. The notion of ellipticity is in-
variant under smooth transformations of the independent variables. If Ψ : Ω1 → Ω is a
diffeomorphism then the principal symbol of the transformed operator is

(
L′kj

(
Ψ(x), DΨ(x)T ξ

))
kj

.

A general system of equations

Fk

(
y,u(y),Du(y), . . . ,D`u(y)

)
= 0 in Ω, 1 ≤ k ≤ n, (2.4)

where u =(u1, . . . , un) and Dm stands for the set of all partial derivatives of order m, is
elliptic for the solution u at the point y0 ∈ Ω if there exist weights s1, . . . , sn and t1, . . . , tn
such that the linearized equations

n∑

j=1

Lkj (y0,D) uj (y) (2.5)

:=
d

dt
Fk

(
y0,u(y0) + tu,Du (y0) + tDu, . . . ,D`u(y0) + tD`u)

)∣∣∣∣
t=0

= 0

constitute an elliptic system at y0 as defined above. Again this notion is invariant under
smooth change of coordinates.

Assume now that Ω is of class C1 and let Bhj (y,D), 1 ≤ h ≤ µ, 1 ≤ j ≤ n, be a linear
differential operator with continuous coefficients. We say that the set of boundary conditions

n∑

j=1

Bhj (y,D)uj (y) = gh(y) on S ⊂ ∂Ω, 1 ≤ h ≤ µ

is complementing at y0 ∈ S for the system (2.1) if

(i) the system (2.1) is elliptic at y0 and

2µ =
n∑

j=1

(sj + tj) ≥ 0;

(ii) there exist integers rh, 1 ≤ h ≤ µ, such that the order of Bhj (y0,D) is at most rh + tj ;

(iii) the homogeneous boundary value problem

n∑

j=1

L′kj (y0,D)uj (y) = 0 in
{
y ∈ RN : (y − y0) · ν (y0) > 0

}
,

n∑

j=1

B′
hj (y0,D)uj (y) = 0 on (y − y0) · ν (y0) = 0,
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where 1 ≤ k ≤ n, 1 ≤ h ≤ µ, and B′
hj is the part of Bhj of order rh + tj , admits no

nontrivial bounded exponential solutions of the form

uj (y) = eiξ·(y−y0)ϕj((y − y0) · ν (y0)), 1 ≤ j ≤ n,

for ξ ∈ RN \ {0} orthogonal to the unit normal ν (y0) to ∂Ω at y0.

This notion of complementing boundary conditions depends only on the principal sym-
bols of the operator and of the boundary conditions. It is again invariant under smooth
changes of coordinates.

A set of (nonlinear) boundary conditions

Gh (y,u(y),Du(y), . . . ,Dsu(y)) = 0 on S, 1 ≤ h ≤ µ,

is complementing for the system (2.4) for the solution u at the point y0 ∈ S if there exist
weights r1, . . . , rµ such that the set of linearized boundary conditions

n∑

j=1

Bhj (y0,D) uj (y)

:=
d

dt
Gh (y0,u(y0) + tu,Du(y0) + tDu, . . . ,Dsu(y0) + tDsu))

∣∣∣∣
t=0

= 0

is complementing at y0 for the linearized system (2.5).
The following classical theorem may be found in [30] (see also [22]).

Theorem 2.2 Let U be a neighborhood of 0 in RN
+ and S = ∂U ∩ {yN = 0} . Assume that

the system
Fk

(
y,u(y),Du(y), . . . ,D`u(y)

)
= 0 in U, 1 ≤ k ≤ n,

is elliptic at 0 and the boundary conditions

Gh (y,u(y),Du(y), . . . ,Dsu(y)) = 0 on S, 1 ≤ h ≤ µ,

are complementing at 0 for the solution u, with weights sk, tj , rh, 1 ≤ j, k ≤ n, 1 ≤ h ≤ µ.
Suppose also that Fk is of class C−sk+r,α and Gh is of class C−rh+r,α for some α > 0

and where r is an integer such that

r ≥ r0 = max
h

(0, 1 + rh) .

If uj∈ Ctj+r0 (U ∪ S), then uj ∈ Ctj+r,α ((U ∪ S) ∩B (0, ε)), 1 ≤ j ≤ n, for some ε >
0. Moreover if r0 ≥ 1 then the same conclusion holds if the functions uj are only as-
sumed to be in Ctj+r0−1,α (U ∪ S), 1 ≤ j ≤ n. Finally if Fk and Gh are analytic and
uj∈ Ctj+r0 (U ∪ S) (respectively uj∈ Ctj+r0−1,α (U ∪ S) if r0 ≥ 1) then the functions uj

are analytic in (U ∪ S) ∩B (0, ε).

3 General free boundary problems

In what follows, given a smooth (N − 1)-dimensional manifold Γ in RN and a vector field
ϕ ∈ C1

(
Γ;RN

)
, we define the tangential gradient Dτϕ at a point x ∈ Γ as

Dτϕ (x) := Dϕ̃ (x) (I − ν (x)⊗ ν (x)) , (3.1)
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where ν (x) is the unit normal vector to Γ at x and ϕ̃ is any smooth extension of ϕ to some
open set Ω containing Γ. It may be verified that this definition does not depend on the
particular extension of ϕ.

In this section we study the optimal regularity and analyticity of one-phase free boundary
problems of the general form

Fk

(
x,u, Du, D2u

)
= 0 in Ω, 1 ≤ k ≤ n, (3.2)

Gh (x,u, Du, ν) = 0 on Γ, 1 ≤ h ≤ µ, (3.3)
H (x,u, Du, ν, Dτν) = 0 on Γ, (3.4)

where Γ ⊂ ∂Ω is the free boundary, ν is the normal to the free boundary, and Dτν denotes
the tangential gradient. Note that Dτν is a symmetric N ×N matrix; it defines a quadratic
form whose restriction to the tangent space of Γ is the second fundamental form. Define

Ĝh (x,u(x), Du(x)) := Gh (x,u(x), Du(x), ν (x)) .

In what follows H = H (x,u, P, ν, M) and, to avoid cumbersome notation, we denote

[x0]u,Fk
:=

(
x0,u (x0) , Du (x0) , D2u (x0)

)
,

[x0]u,Γ,Gh
:= (x0,u (x0) , Du (x0) , ν (x0)) ,

[x0]u,Γ,H := (x0,u (x0) , Du (x0) , ν (x0) , Dτν (x0)) .

A similar notation will be used throughout the paper.
We now present the main result of the paper.

Theorem 3.1 Let (u, Γ) be a solution of (3.2)− (3.4) and assume that the system (3.2) is
elliptic and the set of boundary conditions Ĝh are complementing for (3.2) for u at a point
x0 ∈ Γ, with weights sk, tj , rh, 1 ≤ j, k ≤ n, 1 ≤ h ≤ µ. Suppose that uj ∈ Ctj+r0−1,α

(
Ω

)
,

Γ is of class Ct0+r0−1,α, where α > 0 and

r0 := 1 + max
1≤h≤µ

(0, rh) , t0 := max
1≤j≤n

(2, tj)

and that the functions Fk, Gh, and H are of class C−sk+r,α, C−rh+r,α, and Cr,α for some
integer r ≥ r0 and α > 0 in a neighborhood of the points [x0]u,Fk

, [x0]u,Γ,Gh
, and [x0]u,Γ,H ,

respectively. Finally assume that DMH
(
[x0]u,Γ,H

)
is positive definite. Then near x0 the

functions uj are of class Ctj+r,α up to the boundary and Γ is of class C2+r,α.
If, in addition, the functions Fk, Gh, and H are analytic in a neighborhood of the points

[x0]u,Fk
, [x0]u,Γ,Gh

, and [x0]u,Γ,H respectively, then near x0 the functions uj and Γ are
analytic.

Proof. Since the result is local it is enough to consider the special case where the free
boundary is given by

Γ ⊂ {
x = (x′, xN ) ∈ RN−1 × R : xN = f (x′)

}
(3.5)

and Ω lies above. In this case the boundary conditions become

Ḡh (x′, f,u, Du,∇x′f) = 0 on Γ, 1 ≤ h ≤ µ,

H̄
(
x′, f,u, Du,∇x′f,∇2

x′f
)

= 0 on Γ,
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where

Ḡh (x,u, P, q) := Gh (x,u, P, ν (q)) ,

H̄ (x,u, P, q, Z) := H (x,u, P, ν (q) , M (q, Z)) ,

with

v(q) :=


 q√

1 + |q|2
,

−1√
1 + |q|2


 , (3.6)

M (q, Z) :=




Z√
1+|q|2

− Z(q⊗q)

(1+|q|2)
3
2

0

qZ

(1+|q|2)
3
2

0


 (I − v(q)⊗ v(q)) .

Here the variables q and Z correspond to the ∇x′f and to the (N − 1) × (N − 1) Hessian
matrix ∇2

x′f . Note that

M (0, Z) :=
(

Z 0
0 0

)
. (3.7)

Without loss of generality we may assume that

x0 = 0 and ∇x′f (0) = 0. (3.8)

In addition, we make the substitution u = ũ+p, where the components of p are polynomials
of degree less than or equal to 2 such that Dlp(0) = Dlu(0), l = 0, 1, 2. We now define

F̃k

(
x, ũ, Dũ, D2ũ

)
:= Fk

(
x, ũ + p, D (ũ + p) , D2 (ũ + p)

)
,

G̃h (x′, f, ũ, Dũ,∇x′f) := Ḡh (x′, f, ũ + p, D (ũ + p) ,∇x′f) = 0,

H̃
(
x′, f, ũ, Dũ,∇x′f,∇2

x′f
)

:= H̄
(
x′, f, ũ + p, D (ũ + p) ,∇x′f,∇2

x′f
)
.

where 1 ≤ k ≤ n and 1 ≤ h ≤ µ. Since by construction Dlũ(0) = 0 for l = 0, 1, 2, it is clear
that the principal symbol of the modified system and of the modified boundary conditions
at x = 0 remains unchanged.

Using (3.7) it follows from the hypotheses on H that H̃ is analytic and DZH̃ (0, u, p, 0, Z)
is positive definite.

For simplicity in what follows we will write Fk, Gh, H, and uj in place of F̃k, G̃h, H̃,
and ũj , where

Dlu(0) = 0 for l = 0, 1, 2. (3.9)

Let φ ∈ C2 (B (0, 1)) satisfy

∆φ = 0 in B+,
φ (y′, 0) = f (y′) for |y′| ≤ 1,

where B+ := {y = (y′, yN ) ∈ B (0, 1) : yN > 0}. We consider the following map

Φ : B → RN

y 7→ (y′, φ (y) + λyN ) ,

where λ > 0 is chosen so large that det DΦ(0) = φyN
(0) + λ > 0. By the Inverse Function

Theorem there exists r positive such that

Φ : B+ (0, r) → Φ
(
B+ (0, r)

) ⊂ Ω
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is invertible with inverse denoted by Ψ. Define for y ∈ B+ (0, r)

v (y) := u (Φ (y)) , ϕ (y) := φ (y) + λyN .

A straightforward calculation shows that v satisfies the following system in B+ (0, r) 1

Fk

(
Φ(y) ,v, DvDxΨ (Φ (y)) , (DxΨ(Φ (y)))T

D2vDxΨ(Φ (y))

+DvD2
xΨ(Φ (y))

)
= 0,

together with the boundary conditions

Gh (y′, f,v, DvDxΨ(Φ (y′, 0)) ,∇y′f) = 0 on {yN = 0} ∩B (0, r) ,

and the transmission condition on {yN = 0} ∩B (0, r)

H
(
y′, f,v, DvDxΨ(Φ (y′, 0)) ,∇y′f,∇2

y′f
)

= 0.

Hence (v, ϕ) is a solution of the following system in B+ (0, r)

Fk

(
y′, ϕ,v, DvT (∇ϕ) , (T (∇ϕ))T

D2vT (∇ϕ) + DvT1

(∇ϕ,∇2ϕ
))

= 0, (3.10)

∆ϕ = 0 (3.11)

together with the following boundary conditions on {yN = 0} ∩B (0, r)

Gh (y′, ϕ,v, DvT (∇ϕ) ,∇y′ϕ) = 0, (3.12)

and the transmission conditions on {yN = 0} ∩B (0, r)

H
(
y′, ϕ,v, DvT (∇ϕ) ,∇y′ϕ,∇2

y′ϕ
)

= 0. (3.13)

Here
T (∇ϕ (y)) := DxΨ(Φ (y)) , T1

(∇ϕ,∇2ϕ
)

:= D2
xΨ(Φ (y)) .

We now assign to the dependent variable ϕ the weight tn + 1 := 2 and to the equations
(3.11) and (3.13) the weights sn + 1 = 0 and rµ + 1 := 0 respectively. Then

max
1≤h≤µ+1

(0, 1 + rh) = r0 = 1 + max
1≤h≤µ

(0, rh) .

Since vj ∈ Ct
j + r0 − 1, α

(
B+ (0, r)

)
, ϕ ∈ Ct

n + 1 + r0 − 1, α
(
B+ (0, r)

)
, to conclude the

proof, in view of Theorem 2.2 it is enough to show in y = 0 ellipticity of (3.10)-(3.11) and
the complementing condition for (3.12)-(3.13).

Using (3.9) it is easy to see that the principal symbol of (3.10) at 0 is given by

L̃′kj (0, ξ) := L′kj

(
0, DxΨ(0)T

ξ
)

1 ≤ k, j ≤ n,

1With the notation
(DxΨ(Φ (y)))T D2vDxΨ(Φ (y)) + DvD2

xΨ(Φ (y))

we mean the third order tensor of components
(
(DxΨ)T D2vDxΨ + DvD2

xΨ
)

ijk
:=

(
(DxΨ)T D2viDxΨ + DviD

2
xΨ

)
jk

.

Here the superscript T indicates transpose.
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where L′kj(x, ξ) is the principal symbol of (3.2), and so, by assumption, the rank of L̃′kj (0, ξ)
is n for every ξ ∈ RN \ {0}. Hence the principal symbol of the full system (3.10)-(3.11) is
given by (

L̃′kj (0, ξ) 0
0 −∑N

i=1 (ξi)
2

)
,

which has clearly rank n + 1. Moreover, when N = 2 for each pair of independent vectors
ξ, η ∈ R2, the polynomial

p(z) = −
2∑

i=1

(ξi + zηi)
2 det L̃′kj (0, ξ + zη)

has exactly 1
2 deg p roots with positive imaginary part and 1

2 deg p roots with negative imag-
inary part, since the root condition is satisfied by hypothesis for L̃′kj . Hence the system
(3.10)-(3.11) is elliptic at y = 0 for (v, ϕ).

To prove the complementing condition for (3.12)-(3.13), we consider the homogeneous
boundary value problem in RN

+ obtained by linearization (according to our choice of weights)
of (3.10)-(3.11) and (3.12)-(3.13), and which takes the form

n∑

j=1

L̃′kj (0,D) ūj (y) = 0 in RN
+ , 1 ≤ k ≤ n, (3.14)

∆ϕ̄ = 0 in RN
+ , (3.15)

n∑

j=1

B̃′
hj (0,D) ūj (y) + B̃′

h(n+1) (0,D) ϕ̄ (y) = 0 on yN = 0, 1 ≤ h ≤ µ, (3.16)

DZH
(
0, 0, 0, 0,∇2

y′ϕ (0)
) · ∇2

y′ ϕ̄ = 0 on yN = 0. (3.17)

Note that
B̃′

hj(0, ξ) := B′
hj

(
0, DxΨ(0)T

ξ
)

1 ≤ h ≤ µ, 1 ≤ j ≤ n,

with B′
hj the principal symbol of (3.3).

To check the complementing condition at 0, we need to show that it admits no nontrivial
bounded exponential solutions of the form

ūj (y) = eiξ′y′wj(yN ), 1 ≤ j ≤ n, ϕ̄(y) = eiξ′y′ψ(yN ),

where as usual y′ = (y1, . . . , yN−1) and ξ′ ∈ RN−1 \ {0}. From (3.17) it follows

eiξ′·y′ψ (0) (DZHξ′ · ξ′) = 0,

and since DZH is by assumption positive definite, we obtain ψ (0) = 0. On the other hand,
from (3.15), we get d2ψ

dt2 − |ξ′|2 ψ = 0. Consequently, ψ (t) = c
(
e|ξ′|t − e−|ξ′|t

)
, which is

bounded only if c = 0. Thus the system simplifies to
n∑

j=1

L̃′kj (0,D) ūj (y) = 0 in RN
+ , 1 ≤ k ≤ n,

n∑

j=1

B̃′
hj (0,D) ūj (y) = 0 on yN = 0, 1 ≤ h ≤ µ,

and since by assumption G̃h satisfy the complementing condition we conclude that ūj = 0
for 1 ≤ j ≤ n. This shows the complementing condition for (3.12)-(3.13).

We can now apply Theorem 2.2 to obtain the desired regularity for (v, ϕ) and, in turn,
for (u, Γ). This concludes the proof of the theorem.
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Remark 3.2 Along the same lines one can prove a result analogous to Theorem 3.1 for
higher order systems of the form

Fk

(
x,u, Du, . . . , D`u

)
= 0 in Ω, 1 ≤ k ≤ n,

Gh

(
x,u, Du, , . . . , Dsu,Dτν, . . . , Dt

τν
)

= 0 on Γ, 1 ≤ h ≤ µ,

H (x,u, Du, . . . , Dsu,ν,Dτν, . . . , Dm
τ ν) = 0 on Γ,

where t ≤ s ≤ m and similar hypotheses apply. We leave the details to the interested reader.
The condition s ≤ m allows us to decouple the boundary conditions of the system from the
transmission condition H (see the final part of the proof of Theorem 3.1). However when
the boundary conditions Gh are of special form such a decoupling is possible even when
s > m, for example for second-order elliptic equations of the form

F
(
x, u,∇u,∇2u

)
= 0 in Ω,

one can allow the transmission condition

H
(
x, u,∇u,∇2u, ν,Dτν

)
= 0 on Γ

with the following Neumann or Dirichlet boundary conditions:

∂u

∂ν
= b (x, u) or u = g (x) .

We next consider two-phase free boundary problems of the general form

F±k
(
x,u±, Du±, D2u±

)
= 0 in Ω±, 1 ≤ k ≤ n, (3.18)

G±h
(
x,u+,u−, Du±, ν

)
= 0 on Γ, 1 ≤ h ≤ µ, (3.19)

H
(
x,u+, Du+,u−, Du−, ν,Dτν

)
= 0 on Γ, (3.20)

where Γ := ∂Ω+ ∩ ∂Ω− is the free boundary. Define

Ĝ+
h

(
x,u+(x), Du+(x)

)
:= G+

h

(
x,u+(x),u−(x), Du+(x), ν (x)

)
,

Ĝ−h
(
x,u−(x), Du−(x)

)
:= G−h

(
x,u+(x),u−(x), Du−(x), ν (x)

)
.

Theorem 3.3 Let (u±, Γ) be a solution of (3.18) − (3.20) and assume that the system
(3.18) is elliptic and the set of boundary conditions Ĝ±h are complementing for (3.18) for
u± at a point x0 ∈ Γ, with weights s±k , t±j , r±h , 1 ≤ j, k ≤ n, 1 ≤ h ≤ µ. Suppose that

(u±)j ∈ Ct±j +r0−1,α
(
Ω

)
, Γ is of class Ct0+r0−1,α, where α > 0 and

r0 := 1 + max
1≤h≤µ

(
0, r+

h , r−h
)
, t0 := max

1≤j≤n

(
2, t+j , t−j

)

and that the functions F±k , G±h , and H are of class C−s±k +r,α, C−r±h +r,α, and Cr,α for
some integer r ≥ r0 and α > 0 in a neighborhood of the points [x0]u±,F±k

, [x0]u±,Γ,G±h
, and

[x0]u+,u−,Γ,H , respectively. Finally assume that DMH
(
[x0]u+,u−,Γ,H

)
is positive definite.

Then near x0 the functions (u±)j are of class Ct±j +r,α up to the boundary and Γ is of class
C2+r,α.

If, in addition, the functions F±k , G±h , and H are analytic in a neighborhood of the points
[x0]u±,F±k

, [x0]u±,Γ,G±h
, and [x0]u+,u−,Γ,H , respectively, then near x0 the functions u± and

Γ are analytic.
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Proof. The proof is similar to that of Theorem 3.1 and we only indicate the main changes.
As before it is enough to consider the special case where the free boundary is given by

Γ := ∂Ω+ ∩ ∂Ω− ⊂ {
x = (x′, xN ) ∈ RN−1 × R : xN = f (x′)

}
.

Let ϕ ∈ C2 (B (0, 1)) satisfy

∆ϕ = 0 in B+,
ϕ (y′, 0) = f (y′) for |y′| ≤ 1,

where B+ := {y = (y′, yN ) ∈ B (0, 1) : yN > 0}. We consider the following maps

Φ± : B → RN

y 7→ (y′, ϕ (y)± λyN ) ,

where λ > 0 is chosen so large that det DΦ+ (0) = ϕyN
(0) + λ > 0 and det DΦ− (0) =

ϕyN
(0)− λ < 0.
For y ∈ B+ (0, r) let

v± (y) := u±
(
Φ± (y)

)
, ϕ± (y) := ϕ (y)± λyN ,

where ϕ±, Φ± and Ψ± are defined as in the previous section. A straightforward calculation
shows that (v+,v−, ϕ+, ϕ−) is a solution of the following system in B+ (0, r)

F±k
(
y′, ϕ±,v±, Dv±T±

(∇ϕ±
)
,
(
T±

(∇ϕ±
))T

D2v±T±
(∇ϕ±

)

+Dv±T±1
(∇ϕ±,∇2ϕ±

))
= 0,

∆ϕ± = 0

together with the following boundary conditions on {yN = 0} ∩B (0, r)

G±h
(
y′, ϕ±,v+,v−, Dv±T±

(∇ϕ±
)
,∇y′ϕ

±,∇2
y′ϕ

±)
= 0,

and the transmission conditions on {yN = 0} ∩B (0, r)

H
(
y′, ϕ+,v+,v−, Dv+T+

(∇ϕ+
)
, Dv−T−

(∇ϕ−
)
,∇y′ϕ

+,∇2
y′ϕ

+
)

= 0,

H
(
y′, ϕ−,v+,v−, Dv+T+

(∇ϕ+
)
, Dv−T−

(∇ϕ−
)
,∇y′ϕ

−,∇2
y′ϕ

−)
= 0.

Here, as in the previous section,

T±
(∇ϕ± (y)

)
:= DxΨ±

(
Φ± (y)

)
, T±1

(∇ϕ±,∇2ϕ±
)

:= D2
xΨ±

(
Φ± (y)

)
.

We can now continue essentially as before. We omit the details.

4 Applications

In this section we present some applications of the main theorems in Section 3.

4.1 Strongly and very strongly elliptic systems

In this subsection we begin by showing that when the system (3.2) satisfies the strict
Legendre-Hadamard condition, or strong ellipticity condition, then our regularity result
holds with Dirichlet boundary data, namely

11



Fk

(
x,u, Du, D2u

)
= 0 in Ω, 1 ≤ k ≤ n, (4.1)

u = b(x) on Γ, (4.2)
H (x,u, Du, ν, Dτν) = 0 on Γ. (4.3)

We assume that the strict Legendre-Hadamard condition is satisfied at some point x0 ∈ Γ,
that is,

(η ⊗ ξ) ·DQF
(
[x0]u,F

)
[η ⊗ ξ] ≥ λ |η|2 |ξ|2 (4.4)

for all (η, ξ) ∈ RN × Rn and for some λ > 0, where

F (x,u, P,Q) := (F1 (x,u, P,Q) , . . . , Fn (x,u, P, Q)).

Theorem 4.1 Let u ∈ C2,α
(
Ω;Rn

)
, α > 0, be a solution of the free-boundary problem

(4.1)− (4.3), where Γ is an (N − 1)-manifold of class C2,α. Assume that that the functions
F, b, and H are of class Cr,α, C2+r,α, and Cr,α for some integer r ≥ 1 and α > 0 in
a neighborhood of the points [x0]u,F, x0, and [x0]u,Γ,H , respectively. Finally, assume that

DMH
(
[x0]u,Γ,H

)
is positive definite and that (4.4) holds. Then near x0 the function u is of

class C2+r,α up to the boundary and Γ is of class C2+r,α. If, in addition, the functions F, b,
and H are analytic in a neighborhood of the points [x0]u,F, x0, and [x0]u,Γ,H , respectively,
then near x0 the function u and Γ are analytic.

Proof. By Theorem 6.5.5 in [30] the Dirichlet conditions are complementing provided we
assign weights tj := 2 to the dependent variables uj , sk := 0 to the k-th equation, and
rh = −2 to the boundary conditions, for 1 ≤ j, k, h ≤ n. The thesis follows now from
Theorem 3.1.

Remark 4.2 In general, Neumann boundary conditions are not complementing for the
system (4.1). Indeed, consider the system corresponding to the equilibrium equations of an
isotropic elastic body in the framework of linear elasticity:

µ∆u + (λ + µ)∇ (div u) = 0 in Ω, (4.5)[
µ

(
Du + DuT

)
+ λ (div u) I

]
ν = 0 on ∂Ω. (4.6)

If µ > 0, λ+2µ > 0, then it can been shown that (4.4) holds. In this case the complementing
condition is satisfied if and only if λ + µ 6= 0 (see [29], [33], [32]).

If we strengthen the strict Legendre-Hadamard condition to the Legendre condition, then
it is possible to prove that the natural Neumann boundary conditions are complementing
for second-order quasilinear strongly elliptic systems of the form:

n∑

j=1

N∑

l,m=1

alm
kj (x,u, Du)D2

lmuj = gk (x,u, Du) in Ω, 1 ≤ k ≤ n, (4.7)

n∑

j=1

N∑

l,m=1

al,m
kj (x,u, Du)uj

xm
νl = 0 on Γ, k = 1, . . . , n, (4.8)

H (x,u, Du, ν,Dτν) = 0 on Γ, (4.9)

where Γ ⊂ ∂Ω is the free boundary.
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We assume that the strict Legendre condition is satisfied at some point x0 ∈ Γ, that is

n∑

j,k=1

N∑

l,m=1

al,m
kj ([x0]u) plkpmj ≥ γ |P |2 , (4.10)

for every P = (pij) ∈ RN×n and for some γ > 0, where

[x0]u := (x0,u (x0) , Du (x0)) .

Theorem 4.3 Let u ∈ C2,α
(
Ω;Rn

)
, α > 0, be a solution of the free-boundary problem

(4.7)− (4.9), where Γ is an (N − 1)-manifold of class C2,α. Assume that that the functions
al,m

kj , gk and H are of class Cr,α, for some integer r ≥ 1 and α > 0 in a neighborhood of the

points [x0]u, and [x0]u,Γ,H , respectively. Finally, assume that DMH
(
[x0]u,Γ,H

)
is positive

definite and that (4.10) holds. Then near x0 the function u is of class C2+r,α up to the
boundary and Γ is of class C2+r,α. If, in addition, the functions al,m

kj , gk and H are analytic
in a neighborhood of the points [x0]u, and [x0]u,Γ,H , respectively, then near x0 the function
u and Γ are analytic.

Proof. Assign to the equations (4.7) weights tk := 2, to the dependent variables uj the
integers sj := 0, and to the boundary conditions (4.8) weights rh := −1, 1 ≤ k, j, h ≤ n.

It is clear that the equation is elliptic. In order to apply Theorem 3.1 it is enough to
check the complementing condition. This follows as in Theorem 1 in [32].

Remark 4.4 It is easy to see that Theorems 4.1 and 4.3 can be extended to two-phase free
boundary problems.

Theorem 4.3 can be significantly improved for elliptic equation (n = 1). Indeed, consider
the following one-phase free boundary problem

F
(
x, u,∇u,∇2u

)
= 0 in Ω, (4.11)

G (x, u,∇u, ν) = 0 on Γ, (4.12)
H (x, u,∇u, ν,Dτν) = 0 on Γ. (4.13)

In what follows F = F (x, u, p, S).

Theorem 4.5 Let u ∈ C2,α
(
Ω

)
, α > 0, be a solution of the free-boundary problem (4.11)−

(4.13), where Γ is an (N − 1)-manifold of class C2,α. Let x0 ∈ Γ and assume that the
functions F, G and H are of class Cr,α, C1+r,α and Cr,α for some integer r ≥ 1 and α > 0
in a neighborhood of the points [x0]u,F , [x0]u,Γ,G and [x0]u,Γ,H , respectively. Finally assume

that DSF
(
[x0]u,F

)
and DMH

(
[x0]u,Γ,H

)
are positive definite and that DpG

(
[x0]u,Γ,G

)
·

ν (x0) 6= 0. Then near x0 the function u is of class C2+r,α up to the boundary and Γ is of
class C2+r,α. If in addition the functions F, G and H are analytic in a neighborhood of the
points [x0]u,F , [x0]u,Γ,G and [x0]u,Γ,H , respectively, then near x0 the function u and Γ are
analytic.

Proof. Assign to the equation (4.11) weight t1 := 2, to the dependent variables u the
integer s1 := 0, and to the boundary condition (4.12) weight r1 := −1.

It is clear that the equation is elliptic. In order to apply Theorem 3.1 it is enough to check
the complementing condition. For this purpose we consider the linearized homogeneous
boundary value problem

A · ∇2ū (x) = 0 in x · ν > 0,

e · ∇ū (x) = 0 on x · ν = 0,
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where
A := DSF

(
[x0]u,F

)
, e := DpG

(
[x0]u,Γ,G

)
, ν := ν (x0) .

We need to show that the only bounded solution of the form

ū (x) = eix·ξw (x · ν) ,

where x · ν ≥ 0, and ξ ∈ RN \ {0} is orthogonal to ν, is identically zero. It is easy to see
that w (t) satisfies the Cauchy Problem

(Aν · ν)
d2w

dt2
+ 2i (Aξ · ν)

dw

dt
− (Aξ · ξ) w = 0, (4.14)

e · (iξw (0) + νw′ (0)) = 0. (4.15)

The general solution of the ODE is given by

w (t) = c1 exp
[

t

(Aν · ν)

(
−i (Aξ · ν) +

√
− (Aξ · ν)2 + (Aν · ν) (Aξ · ξ)

)]

+ c2 exp
[

t

(Aν · ν)

(
−i (Aξ · ν)−

√
− (Aξ · ν)2 + (Aν · ν) (Aξ · ξ)

)]

The argument of the square root is equal to Aξ̄ · ξ̄, where

ξ̄ :=

(√
(Aν · ν)ξ − 1√

(Aν · ν)
(Aξ · ν) ν

)
,

therefore, since A is positive definite and w is bounded we obtain that c1 = 0.
Finally, using (4.15) we obtain

c2

[ −e · ν
(Aν · ν)

√
− (Aξ · ν)2 + (Aν · ν) (Aξ · ξ) + ie ·

(
ξ − (Aξ · ν)

(Aν · ν)
ν

)]
= 0

and since the real part of the complex number inside the square brackets is different from
zero we must have that c2 = 0 and in turn w = 0.

Under additional assumptions on the regularity and the structure of F , b, and H, it is
possible to weaken the initial regularity of u and Γ. Specifically, we have the following:

Corollary 4.6 In addition to the hypotheses of Theorem 4.5 assume that F (x, u, p, ·) and
H (x, u, p, ν, ·) are concave. Let u ∈ C2

(
Ω

)
be a solution of the free-boundary problem

(4.11) − (4.13), where Γ is an (N − 1)-manifold of class C2. Then the conclusions of
Theorem 4.5 continue to hold.

Proof. As in the proof of Theorem 4.5, without loss of generalit,y we can assume Γ to have
the form (3.5), in turn the transmission condition becomes

Ĥ
(
x′,∇2

x′f
)

= 0 on Γ,

where
Ĥ (x′, Z) := H (x′, f, u,∇u, ν (∇x′f) ,M (∇x′f, Z)) ,

and ν and M are defined in (3.6). Since M is linear in Z it is clear that the function Ĥ is
concave in Z and of class C1 (by the regularity assumptions on u and Γ). Hence we may
apply classical interior regularity results (see Theorem 3 and the remarks following it in [10],
see also [16], [25]) to conclude that f is of class C2,α, for some α > 0. We may now apply
Theorem 5.4 in [27] (see also the remarks on pages 533 and 544 in the same reference) to
obtain that u is of class C2,α up to the boundary.
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Remark 4.7 Under suitable growth conditions on the functions F and G, we can relax
the initial regularity of u in the previous corollary down to C2 (Ω) ∩ C1,α

(
Ω

)
, α > 0 (see

Theorem 1.1 in [27]).
Moreover if we consider solutions in the viscosity sense (see [11]) then we can assume

both u and Γ to be of class C1,α, α > 0 (to see this, one can argue as in the corollary using
the regularity results for viscosity solutions contained in [10]).

Example 4.8 1. (The p-Laplacian operator)

div
(
|∇u|p−2∇u

)
= g (x, u,∇u) in Ω,

∂u

∂ν
= b (x, u) or u = b (x) on Γ,

K = h (x, u,∇u) on Γ.

In this case when p 6= 2 the equation is elliptic only in the set
{
x ∈ Ω : ∇u 6= 0

}
and

thus we obtain analyticity in the set

{x ∈ Γ : ∇u 6= 0} .

Note that it is possible to construct nonzero solutions which vanish in an open set.

2. The following problem related to extremal domains for eigenvalues was considered by
Garabedian and Schiffer [19] in dimension N = 2 and by Kinderlehrer, Nirenberg and
Spruck [23] in arbitrary dimension:

∆u + λu = 0 in Ω,

u = 0 on Γ,
(

∂u

∂ν

)2

= cK on Γ,

where K is the mean curvature of the unknown free boundary Γ and c 6= 0. In this
case we can prove the analyticity of the free boundary Γ without the non-degeneracy
condition K 6= 0 which was needed in Theorem 6.1 of [23].

It is easy to show that all the results of this subsection can be extended to two-phase
free boundary problems of the form

F±
(
x, u±,∇u±,∇2u±

)
= 0 in Ω±,

b± (x, u+, u−,∇u±, ν) = 0 on Γ,
H (x, u+,∇u+, u−,∇u−, ν, Dτν) = 0 on Γ,

(4.16)

where Γ := ∂Ω+ ∩ ∂Ω− is the free boundary. We omit the details.

4.2 General free discontinuity problems

In this subsection we apply our regularity results to general free discontinuity functionals of
the form

F (u,Γ) =
∫

Ω\Γ

f(x,u, Du) dx +
∫

Γ

g(x,u+,u−, ν) dHN−1, (4.17)

where Γ ⊂ Ω is a closed (N − 1)-rectifiable set (see [4]),

u ∈ W 1,1 (Ω \ Γ;Rn) ∩ L∞ (Ω \ Γ;Rn) ,

and u+ and u− denote the traces of u on both sides of Γ. The existence of the traces is
guaranteed by Theorem 3.77 and Proposition 4.4 in [4].
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Theorem 4.9 Let Ω ⊂ RN be an open bounded set. Assume that:

(i) f : Ω× Rn×Rn×N → R is a function of class C2+r,α (respectively analytic) for some
integer r ≥ 1 and some α > 0, with D2

P f(x,u, P ) positive definite for every (x,u, P ) ∈
Ω× Rn×Rn×N ;

(ii) g : Ω×Rn×Rn×SN−1 → R is a function of class C2+r,α (respectively, analytic) such
that2

D2
ν⊥

(
|w| g

(
x,u1,u2,

w

|w|
))

is positive definite

for every (x,u1,u2, w) ∈ Ω× Rn×Rn× (
RN \ {0}).

Let (u, Γ) be a local minimizer of the functional F . Assume that Γ∩Ω is a C1 manifold
which divides Ω into two connected components and that u is of class C2,α up to the boundary
in each component of Ω \ Γ. Then u is of class C2+r,β (respectively, analytic) up to the
boundary, and Γ ∩ Ω is of class C2+r,β (respectively, analytic), for some β > 0.

Proof. Let Ω+ and Ω− be the connected components of Ω\Γ and denote u± the restriction
of u to Ω±. By a standard variation argument we deduce that (u+,u−,Γ) solves the
following free boundary system:

div
(
DP f

(
x,u±, Du±

))
= Duf

(
x,u±, Du±

)
in Ω± (4.18)

together with the Neumann boundary conditions

DP f
(
x,u±, Du±

) · ν = lower-order terms on Γ, (4.19)

and the transmission condition

D2
ν⊥ g̃(x,u+,u−, ν) ·Dτν = lower-order terms on Γ, (4.20)

where g̃ : Ω×Rn×Rn× (
RN \ {0}) → R is defined by

g̃ (x,u1,u2, w) := |w| g
(

x,u1,u2,
w

|w|
)

,

and the right-hand sides of (4.19) and (4.20) are analytic functions that depend on lower-
order terms. We only observe that to prove the transmission condition it is sufficient to
assume that

Γ ∩ Ω = {x = (x′, xN ) ∈ Ω′ × R : xN = h (x′)} ,

where Ω′ ⊂ RN−1 is an open set, and to perform variations of h in the functional

F̃ (u, h) :=
∫

Ω\Γ

f(x,u, Du) dx +
∫

Ω′

ĝ(x′, h (x′) ,u+,u−,∇x′h (x′)) dx′, (4.21)

where
ĝ(x,u1,u2, q) := g̃ (x,u1,u2, (q,−1)) .

It is clear that (i) and (ii) imply the hypotheses of Theorem 4.3.
From (4.21) it is clear that the equation (4.20) can be written as an elliptic equation for

the unknown h and so by classical regularity results we obtain that h is of class C1,γ , and
in turn, by standard Schauder estimates, of class C2,min{α,γ} (see [20]).

In the scalar case, that is when n = 1, we can weaken the initial regularity of minimizers
u, thus obtaining the following result which includes, as a particular case, the proof of De
Giorgi’s conjecture quoted in the introduction.

2With the notation D2
ν⊥

(
|w| g

(
x,u1,u2, w

|w|
))

we denote the Hessian of the function |·| g
(
x,u1,u2, ·

|·|
)

restricted to the affine hyperplane tangent to ν.
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Corollary 4.10 Let Ω ⊂ RN be an open bounded set. Assume that all the hypotheses of
the previous theorem are satisfied with n = 1.

Let (u,Γ) be a local minimizer of the functional F . Assume that Γ∩Ω is a C1 manifold,
which divides Ω into two connected components and that u is of class C1 up to the boundary
in each component of Ω \ Γ. Then u is of class C2+r,β (respectively, analytic) up to the
boundary, and Γ ∩ Ω is of class C2+r,β (respectively, analytic), for some β > 0.

Proof. We only have to show that under our assumptions u ∈ C2,β
(
Ω
±)

, β > 0, and Γ is

of class C2,β . As in the previous theorem we obtain that Γ is of class C1,θ.

Since u ∈ C1
(
Ω
±)

it is possible to construct two functions A and B satisfying all the
assumptions of Theorem 2 in [28] and such that

∇pf
(
x, u±,∇u±

)
= A

(
x, u±,∇u±

)
, fu

(
x, u±,∇u±

)
= B

(
x, u±,∇u±

)

in Ω
±

and thus by the same theorem there exists a positive constant γ such that u ∈
C1,γ

(
Ω
±)

. In turn, by standard Schauder estimates applied to the equation (4.20) one

obtains Γ ∈ C2,min{α,γ}(see [20]). By classical regularity results (see [27]) it now follows
that u ∈ C2,min{α,γ}

(
Ω
±)

.
Under appropriate growth conditions on f the initial regularity of u can be significantly

weakened provided we strengthen the initial regularity on Γ.

Corollary 4.11 In addition to conditions (i) and (ii) in the previous theorem assume that
for every L there exists γ ∈ (0, 1], 0 < λ < Λ, m > −1, and k > 0 such that

∇2
pf(x, u, p)ξ · ξ ≥ λ (k + |p|)m |ξ|2 ,∣∣∇2

pf(x, u, p)
∣∣ ≤ Λ (k + |p|)m

,

|∇pf(x, u, p)−∇pf(y, w, p)| ≤ Λ (1 + |p|)m+1 [|x− y|γ + |u− w|γ ] ,

|fu(x, u, p)| ≤ Λ (1 + |p|)m+2
,

for all x, y ∈ Ω, u, w ∈ [−L, L], p, ξ ∈ RN . Let (u, Γ) be as in the previous theorem, where
u is assumed to be only in W 1,1 (Ω \ Γ) ∩ L∞ (Ω \ Γ) and Γ ∩ Ω is a C1,α manifold. Then
the conclusions of the previous theorem continue to hold.

Proof. By Theorem 2 in [28] it follows (see also [4]) that u ∈ C1,β
(
Ω
±)

, for some β > 0.
We now apply the previous theorem.

Remark 4.12 It goes almost without saying that the Mumford-Shah functional falls under
the hypotheses of the previous corollary.

Finally we remark that functionals of the type (4.17) in the vectorial setting arise in
the theory of brittle fracture developed by Griffith (see [21]). In this context it is worth
mentioning the recent variational model of quasistatic crack growth evolution proposed by
Francfort and Marigot (cite [17]). More precisely, they consider functionals of the form

F (u, Γ) =
∫

Ω\Γ

1
2
A(x)E(u) ·E(u) dx +

∫

Γ

g(x,u+,u−, ν) dHN−1,

where E(u) := 1
2

(∇u + (∇u)>
)

is the strain tensor and A(x) is a symmetric and positive
definite fourth order tensor. Assuming that g satisfies the condition of Theorem 4.9, to
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apply our theory we have to show that the natural Neumann boundary conditions are
complementing for the equilibrium equations corresponding to the bulk energy of F . Given
a fixed x0 ∈ Γ, this follows from Theorem 1 in [32] provided we show that

∫

B±(x0,r)\Γ

1
2
A(x0)E(u) ·E(u) dx ≥ c

∫

B±(x0,r)\Γ

|Du|2 + |u|2 dx,

for all u ∈ C∞
(
B±(x0, r);RN

)
with u = 0 on a portion of ∂B±(x0, r) \ Γ. This is an

immediate consequence of the definite positiveness of A(x0) and of Korn and Poincaré
inequalities.

5 Stationary solutions of Navier-Stokes equations

In this section we study the analyticity of solutions of the stationary Navier-Stokes equations
with a free-capillarity condition (see [7]). This problem is not included in the general
framework of Section 4, but it can be treated in a similar way.

More precisely, we consider the following free boundary problem:

γ∆u−∇p = uiDiu in Ω, (5.1)
div u = 0 in Ω, (5.2)
u · ν = 0 on Γ, (5.3)
Tijνj = Kνi on Γ, i = 1, . . . , 3, (5.4)

where γ > 0, Ω ⊂ R3 is an open set, Γ ⊂ ∂Ω is the free boundary, and

Tij :=
(

Du + (Du)T

2

)

ij

− pδij .

Theorem 5.1 Let u ∈ C1
(
Ω;R3

)
, p ∈ C1,α

(
Ω

)
, α > 0, be a solution with Γ a surface of

class C1. Then Γ is analytic

Proof. Arguing as in the previous sections we deduce that u ∈ C2,α
(
Ω;R3

)
and Γ is of

class C3,α. Fix x0 ∈ Γ. Since the problem is rotation-invariant, without loss of generality,
we may assume that

x0 = 0 and ν (x0) = (0, 0, 1) . (5.5)

Upon the usual change of variable and using the notations of Section 3 the system becomes

div (A (∇ϕ)Dv)− ϕy3∇p̃ T (∇ϕ) = ϕy3v · (Dv T (∇ϕ)) , (5.6)
Dv · T (∇ϕ) = 0, (5.7)
∆ϕ = 0, (5.8)

together with the following boundary conditions on {yN = 0} ∩B (0, r)

v · (∇y′ϕ,−1) = 0, (5.9)

divy′


 ∇y′ϕ√

1 + |∇y′ϕ|2


 (∇y′ϕ,−1)i = L̃ij(p̃,∇ϕ,Dv) (∇y′ϕ,−1)j , (5.10)

i = 1, . . . , 3, where
A (∇ϕ) := |ϕy3 |DxΨ(Φ (y)) (DxΨ (Φ (y)))T
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and

L̃ij(p̃,∇ϕ,Dv) :=
(

DvT (∇ϕ) + (DvT (∇ϕ))T

2

)

ij

− p̃δij .

We assign to the three equations in (5.6), to (5.7), and to (5.8) respectively the weights
s1 = s2 = s3 := 0, s4 = s5 := −1, to the dependent variables v1, v2, v3, p̃, and ϕ,
respectively, the weights t1 = t2 = t3 := 2, t4 := 1, and t5 := 3, and to (5.9) and to the three
equations in (5.10) respectively the weights r1 := −2, r2 = r3 = r4 := −1. The principal
part of the linearized system at 0 is

div (A0Dv̄(y))− ϕy3(0)∇p̄(y)T0, (5.11)
Dv̄(y) · T0, (5.12)
∆ϕ̄(y), (5.13)

while the principal part of the linearized boundary conditions at 0 becomes, also by (5.5),

− v̄3(y) + v (0) · i (∇y′ ϕ̄, 0) (5.14)
(

Dv̄(y)T0 + (Dv̄(y)T0)T

2

)

i3

i = 1, 2, (5.15)

∆y′ ϕ̄(y)−
(

Dv̄(y)T0 + (Dv̄(y)T0)T

2

)

33

+ p̄, (5.16)

where

A0 := A (∇ϕ (0)) =




c 0 0
0 c 0
0 0 c−1


 ,

T0 := T (∇ϕ(0)) =




1 0 0
0 1 0
0 0 c−1




with c := ϕy3(0).
To prove that the system is elliptic for each ξ ∈ R3 \ {0} , we set η = iξ and consider the

determinant
∣∣∣∣∣∣∣∣∣∣

A0η · η 0 0 ηj (T0)1j c 0
0 A0η · η 0 ηj (T0)2j c 0
0 0 A0η · η ηj (T0)3j c 0
ηj (T0)1j ηj (T0)2j ηj (T0)3j 0 0
0 0 0 0

∑3
i=1 η2

i

∣∣∣∣∣∣∣∣∣∣

= c2 (A0η · η)2 |T0η|2

which is different from zero since the matrix T0 is non-singular and A0 is positive definite.
To show that the boundary conditions are complementing, we consider the homogeneous

system in R3
+ associated with (5.11)-(5.13) together with the homogeneous boundary condi-

tions associated with (5.14)-(5.16) on y3 = 0 and study the bounded solutions of the special
form

(v̄, p̄, ϕ̄) (y) = eiξ′·y′ (w (y3) , p (y3) , ψ (y3)) ,

where ξ′ ∈ R2 \ {0}. Simple manipulations show that d2p
dt2 − c2 |ξ′|2 p = 0 whose general
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bounded solutions are given by p(t) = Ce−c|ξ′|t. Hence we obtain the following system:

d2wj

dt2
− c2 |ξ′|2 wj − c2iξjCe−c|ξ′|t = 0, j = 1, 2, (5.17)

d2w3

dt2
− c2 |ξ′|2 w3 + c2 |ξ′|Ce−c|ξ′|t = 0, (5.18)

d2ψ

dt2
− |ξ′|2 ψ = 0 (5.19)

ciξ1w1 + ciξ2w2 +
dw3

dt
= 0, (5.20)

together with the initial conditions

− w3(0) + v (0) · i (ξ′, 0)ψ (0) = 0, (5.21)

ciξjw3(0) +
dwj

dt
(0) = 0, j = 1, 2, (5.22)

c |ξ′|2 ψ (0) +
dw3

dt
(0)− C = 0. (5.23)

By differentiating (5.20), evaluating at t = 0 and using (5.22) we obtain d2w3
dt2 (0) = −c2 |ξ′|2 w3 (0)

which, upon substitution in (5.18), yields w3 (0) = C
2|ξ′| and, in turn, from (5.18), w3(t) =

C
2|ξ′|e

−c|ξ′|t + cC
2 te−c|ξ′|t. Since dw3

dt (0) = 0 the boundary conditions now reduce to the
following linear system

− C

2 |ξ′| + v (0) · i (ξ′, 0) ψ (0) = 0, C − c |ξ′|2 ψ (0) = 0

ciξj
C

2 |ξ′| +
dwj

dt
(0) = 0, j = 1, 2,

in the unknowns ψ (0) , dw1
dt (0), dw2

dt (0), C, whose determinant is equal to v (0) · i (ξ′, 0) −
1
2 |ξ′| c 6= 0. Hence ψ (0) = dw1

dt (0) = dw2
dt (0) = C = 0 from which it is clear that (v̄, p̄, ϕ̄) is

identically zero.
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