EXISTENCE AND REGULARITY FOR MIXTURES OF
MICROMAGNETIC MATERIALS
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ABSTRACT. A new model for the energy of a mixture of micromagnetic materi-
als is introduced within the context of functions with special bounded variation
(SBYV). Existence and regularity for the solution of an optimal design problem
in micromagnetics are obtained.
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1. INTRODUCTION

The commonly adopted Weiss-Landau-Lifschitz model of micromagnetics applies
to a single crystal of a magnetic material, and according to this theory the total
energy associated with the magnetized crystal is given as a sum of several energy
contributions, as described briefly in Section 2 (see [5], [6], [8], [11], [12], [13], [16]).
When considering a body composed of several distinct magnetic materials, surface
energy terms must be taken into account due to the interaction between grains with
different magnetic properties, and this leads to the introduction in Section 3 of a
new model for mixtures of magnetic materials, framed within the context of the
space SBYV of functions with special bounded variation.

In this model all material information is encapsulated in a function u, the com-
posite magnetization, and the total magnetic energy associated with a body Q C R3
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composed of a finite number K of different magnetic materials has the form

£(u) = | [a(fuDl VP + é(u) - £-m(w) ~ Bl m(u)] do+ [ (at,u ) k2,
Q u

where f is the external magnetic field, J, is the set of discontinuity points of u,

and the composite magnetization must satisfy the pointwise constraint

|lul € {1,2,...,K} ae. in Q.

In Section 4 we apply this model to an optimal design problem, that of minimizing
the total energy of the body 2 for a fixed external magnetic field f, given the K
materials which 2 may be made of, and possibly under fixed volume fractions of
each component. We prove existence of a solution, and by a modifying appropri-
ately the arguments in [3], [7], we establish a regularity property for the optimal
configuration.

The authors warmly thank Michael Widom at CMU and Giovanni Asti at Parma
University for useful discussions on the physics of the problem. The results in this
paper were partially announced in [1].

2. THE W-L-L MODEL FOR ONE CRYSTAL BRIEFLY VISITED

In this section we summarize the Weiss-Landau-Lifschitz model of micromag-
netics, which has proved to be suitable to the study of a magnetic material with
moderate conductivity. Consider a single crystal of some magnetic material, and
assume that it occupies a set  C R3. Each of its material points is magnetized,
i.e., it generates a magnetic field described by a vector field, the magnetization

m: Q) — R3.
Below the Curie temperature the magnetization has constant intensity,
|m| = m?* in Q,

where the magnetic saturation intensity m® and the Curie temperature are charac-
teristic of the material. We assume throughout that the temperature is well below
the Curie temperature of each material employed.

The magnetic exchange energy favors the alignment with m of the magnetization
at neighboring points: It depends on the gradient matrix Vm through a four-indices
tensor A, also characteristic of the material, and is given by [,(4Vm,Vm)dz. A
good approximation, which is commonly adopted, is that A is close to being a
multiple of the identity, thus we set

Exch:/a|Vm|2dw
Q

where the constant a is another characteristic of the material.

Due to the structure of the crystal, there are some alignments of the magnetiza-
tion m (the easy axes) which are preferred with respect to others: There is just one
direction (and its opposite) for uniaxial crystals, namely the main axis of the crys-
tal, whereas for different symmetry groups there are several easy directions. This
preference is expressed through the anisotropy energy, which is usually described
as the integral of a nonnegative polynomial in m, here generalized to read

Anis = / ¢(m) dz
Q
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where the continuous function
@ : 0Bpms — [0, 4+00]

depends on the grain, not only through the material it is made of, but also through
its orientation.

It may happen that the exchange and anisotropy energies compete: For example,
consider a rod of uniaxial crystal, and assume that at the two ends of the rod
the magnetization is forced by external conditions to be along the easy axis, but
pointing in the two opposite directions. The anisotropy energy favors m to align
with these two directions across a thin transition layer, whereas the exchange energy
term favors a slow transition. Most theories agree that the total energy contribution
of the transition layer is proportional to the area of the cross-section. Ultimately the
material reaches equilibrium partitioned into islands of constant m, the magnetic
domains, separated by thin layers where all the transitions take place, the Bloch
walls (some of our considerations apply to other kinds of walls, such as e.g. Néel
walls, only on a large-scale level). The diameter of magnetic domains is in the
range of one tenth of a micron to millimeters, whereas the thickness of the walls
is of about 10 to 100 atomic layers, and so, as is customary also in the physicists’
practice, we will later take into account very thin transition layers by introducing
a surface energy penalization.

The external magnetic field f interacts with the magnetization m, thus producing
another energy term (to simplify the notation we dropped a few constants, such as
a couple of 1/2 in front of some integrals)

Ext:—/f-mdx,
Q

and in order to minimize it, m will seek to align with f.
The last term is the demagnetizing energy. The magnetization m induces a field
h[m)] in the whole space that is determined by Maxwell’s equations
curlh =0 in R3,
(2.1) . .
div (h+mlgp) =0 in R3.

These are to be interpreted in the sense of distributions as
h € L2(R3;R3) curlh =0,

/ h-vdz = —/ m-vdr  for all v € L*(R*;R?) such that curl v = 0.
RS Q
The demagnetizing energy (which is a nonlocal term) is given by
Demag = / |h[m]|* dz .
R3

Since (2.1) holds in R?, the generated magnetic field is zero if m is divergence-
free and at is tangent to the boundary of 2, whereas it is large if m has constant
direction. Thus the demagnetizing energy has large effects and strongly interferes
with the exchange and anisotropy energies, which have opposite preferences regard-
ing the alignment of m. For interesting microstructure problems arising from this
situation we refer e.g. to [12], [10].
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The total energy associated with a magnetization m of a single crystal is given
by the sum of the four terms we discussed, i.e.,

V(m) = Exch+ Anis+ Ext + Demag
= /[a|Vm|2+¢(m)—f-m] dz—i—/ |h[m]|? dz .
Q R3

We conclude this section by remarking that the mapping m + h[m] has some
interesting properties (see [9]). The theory of singular integrals (see [15]) ensures
that it is linear, continuous from L?(f2) to LP(R3) for any p > 1, and

/Rs Ih[m][? dz — —/Qm-h[m] da.

From this formula we deduce, in particular, that
m — / |h[m]|*dz is continuous from L2(Q;R?) into R .
R3

Also, although the term Demag is nonlocal, some local estimates may be recovered:
If two magnetizations agree outside a ball, i.e. if m = m’ outside B, C , and if
|m|, jm’| < L, then we have for every ¢ > 1

‘/ hm|-m — h[m'] - m’dz
22)

|/ (m ') B+ ') /20 + (s +-) - B — ') 2] d
< o(L,q)lm - m'lly < cg®?

Also, by the continuity of ¢ on the compact set 9By,

(2.3) [ 16m) — pfam') e < e
Q
Both estimates will be useful when proving regularity in Section 5.

3. MIXTURES, THEIR ENERGY AND THE NEW MODEL

We now turn to mixtures of magnetic materials. Suppose that €2 is composed of
two crystals 27 and s of different materials, separated by a smooth surface 3. We
stress the fact that by “different” we mean that the two grains may also be made
of the same substance but with differently oriented crystallographic axes. Each
magnetic material is identified by the exchange constant a, the magnetic saturation
m?, and the anisotropy function ¢, which contains all the necessary crystallographic
information, thus we must consider two triples (a1, m$, ¢1) and (a2, m$, ¢2), and
the energy contribution of the magnetizations m; and my of the two grains is then

V(m;,my) = /Q [a1]Vmy |? + ¢1(m;) — f - m;]dz
—I—/Q [a2|Vm2|2 + ¢2(mg) — f - my) dz

—1—/ |h|*dz ,
R3

where h = h[m; 1o, + my1g,].
The presence of the dividing surface in 2 creates chemical and electric distur-
bances in the lattice atoms, possibly related also to the different magnetizations
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on the two sides, and maybe also on the direction of the normal vector to ¥ (we
are not aware of a physical interpretation for this, but mathematically it comes for
free). Therefore we must include in the energy a surface term, whose density is
the sum of a positive constant depending on the two materials with a non-negative
function depending on the two materials and with arguments the traces Tr m; and
Tr my of the magnetizations on the two sides of ¥, and the normal vector v to 3.
Precisely,

S(m;, my) = / [a1,2 + B1,2(Tr my, Tr my, v)]dH?,
b
and the total energy becomes
E(mi,m;) = V(m;,my) + S(m, my) ,

under the constraint that the modulus of each magnetization equals the respective
magnetic saturation intensity.

In the case of K magnetic materials, each is characterized by a triple (a;, m, ¢;)
and occupies an open subset £2; of 2, where the sets 2; are pairwise disjoint and their

union is all of © up to a 2-dimensional set X.. If we denote by m; the magnetization
in Q;, then the energy is given by

(3.1)
K

Z/ﬂ [a;|Vm; |2 + ¢;(m;) — £ - my] dz+/Rs Ih[>" mdo )P dz+ > S(my,m;),
i=1 "% i#j

where the terms S(m;, m;) are surface integrals on subsets of X, and where we
recall that

(3.2) m;| =m inQ;, m;eWHQ;R).

1

One may see easily that this energy does not entail compactness of energy bounded
sequences. Indeed, a magnetization m; which is discontinuous along a surface
o C Q; is not admissible due to the Sobolev condition in (3.2), but it may be
approached by a sequence of admissible magnetizations with equibounded energy,
simply by fattening o into an open set ¢’ and adding this to €; for some j # i
(extend m; to o’ as a constant). This then leads to a finite relaxed energy for the
discontinuous function we selected. We remark that this is somewhat analogous to
Gibbs’ phenomenon in fluids (see [14]).

The structure of the relaxed energy, which allows inner discontinuities but pe-
nalizes them, may be physically interpreted as keeping into account the possible
magnetic disarrangements (“magnetic cracks”) inside a crystal, or as a simplifica-
tion of the energy of a Bloch wall.

We are thus led to considering an energy which no longer forces the magnetiza-
tions to belong to W12 inside each grain, but instead allows jumps, so it is natural
to take as ambient space that of special functions of bounded variation, SBV. We
recall that the distributional derivative of a function v with bounded variation in
Q C R™ may be decomposed as the sum of an absolutely continuous term, Vul _dz,
and a singular part D*u. Moreover (the precise representative of) u is discontin-
uous on a “jump” set J,, which is countably H™ ! rectifiable. The singular part
may be further decomposed into a jump part DJu = D%ul_ J,, which is supported
on J,, and a Cantor part D°u = D*u — DJu. The functions with special bounded
variation are defined as those BV functions whose distributional derivative has no
Cantor part.



6 E. ACERBI, I. FONSECA, AND G. MINGIONE

If w € SBV then the jump set has a normal v at H"!-a.e. point, and the traces
of u from the two sides are denoted u™ and u~. We will later use without further
description the precise definition and several properties of the space SBV, and we
refer the reader to [3] for a comprehensive treatise on the subject.

We may now relax the requirements in (3.2) to read m; € SBV(Q;; R?); in this
setting the energy may be written in a form which is different, but not much simpler
than before, as we cannot charge all surface terms on the jump set of the overall
magnetization, because some parts of the surface ¥ may then be missing: Indeed,
in two adjacent grains (); and {2; one may well have m; = mj, thus the saturation
magnetization might have no jump across the interface, although some energy has
to be taken into account (due to the electric disturbances we mentioned). Then,
at this stage it is impossible to replace the extra term on ¥ by an integral on the
jump set J, since, in general, ¥ ¢ J.

In order to overcome this problem, we will rescale the magnetizations m; in order
to obtain an auxiliary magnetization field u which will contain all the information,
and which will allow us to write the energy in an easy, implicit form. We change
m; so that the magnetic saturation intensity in 2; becomes equal to %, thus the
norm of the new magnetization will jump on 3. Moreover, the same norm at any
point of Q\ ¥ will tell us in which of the subsets ; the point lies.

We set fori=1,..., K

K K
. m;
w =1 —, u:= g u;lg, , m:= E m;1g, ,
1 1

S
m;

so that u € SBV(Q;R?) and
(33) U={r:fu@) =1 and Io)= (1 u@|-i)* = p(uE).,

m = m(w) = (3 1, )u = (3 % (ruh)u = Aupu,

and now the jump set J, of u consists exactly of the union of both the interfaces
between grains and the inner magnetic cracks. We remark that given u one easily
deduces m and may also decide whether a jump of u represents an interface or an
inner crack: The former is also a jump of |u|, the second is not.

We may now rescale the other factors. Fix any bounded, positive, continuous
function a satisfying

ms

2
a: [0, +00[—]0,+o0[ , a(i) = (T’) a; fori=1,... K

and we have

K
Exch:Z/ a,-|Vmi|2d:c:/a(|u|)|Vu|2d:c.
i=17% Q

Note that the definition of the function a outside the numbers 1,..., K, allows
us to extend naturally this energy to all SBV. Analogously, take any bounded,
non-negative, continuous function satisfying

S

¢:R> —[0,+o00], ¢|33.(z)_¢i<miiz) fori=1,...,K
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and

Anis:zll{:/m ¢i(mi)d$:/9¢(u) dz .

Now, since the mapping u — m(u) = A(Ju|)u is continuous in every L?, so is the
mapping

u — hm(u)] =: h[u],
although it is no longer linear because A is not: Only additivity with disjoint
supports is preserved. We may write the total energy as

E(u) = / [a(|u])|Vul? + ¢(u) — f - m(u) — hlu] - m(u)] da:—l—/ y(ut,um,v)dH?,
Q u
where the function v encompasses all the surface terms we described before.
In order to have semicontinuity of the energy on the set

{veSBV(Q):|v|=1iae in Q},

or simply in SBV (), one has to impose on « a restriction of elementary geomet-
ric nature, equivalent to saying that if (as we did above) one interposes between
two adjacent grains an infinitesimal layer of another material, the energy will not
decrease. Mathematically this leads to the introduction of jointly convex functions
(see [3], Section 5.3).

Although the results in the next section hold for the general case of a jointly
convex v satisfying v > ¢ > 0 and the standard assumptions in [3] Chapter 5, we
opt to consider in the sequel

vy=1.
This will considerably reduce the amount of writing while leaving intact the main
points in the proof. To keep the balance even, we generalize to the n-dimensional
case in the obvious way (e.g. replace 2 and 3 by (n — 1) and n respectively), only
h needs some care, as h was defined in terms of Maxwell’s equations and in the

general case we take it to be a continuous function mapping from every LP(2) into
LP(R™).

4. EXISTENCE AND REGULARITY FOR AN OPTIMAL DESIGN PROBLEM

We test our model by applying it to an optimal design problem. Assume that
H1 : Qis a bounded, open, domain of R”;
H2 : f is a given vector field in L'(Q; R™);
H3 : a is a positive, continuous real function defined on [0, +00];
H4 : ¢ is a non-negative, continuous real function defined on R";
H5 : h is a mapping from L?(Q;R") to L?(R™; R™) which is continuous in
every strong LP topology (on both domain and target), and such that if u
and u’ have disjoint supports then h[u + u’] = h[u] + h[u'];
H6 : m3,...mj are positive real numbers;
H7 : f € LI(;R™) for some ¢ > n.
Set
(4.1) w2 [0,+00[—= R, pit) =1 —|t—i)* fori=1,...,K
K S
m:R* 5 R, m(z) := (Z &Mz(|z|))z forz e R™ .
— i
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Define for every u € SBV (;R™)
£(u) = /Q [a(jul)|Vul? + ¢(u) — £ - m(u) — Blu] - m(w)] dz + K"~ (Ju)

and consider the set of admissible functions
A:={ue SBV(ER"*):|ul=1,...,K ae. in Q}.

The optimal design problem consists in finding a partition of Q into K open sets
Q;, a (n—1)-dimensional (relatively) closed set C, and a function u : Q@ — R", such
that H"~1(C) < +oo, [u| =i in each ;, u is regular in each §; and u minimizes

OPT(v,{:},C) = /Q - [a(Iv]) |V [+ 6(v) —£-m(v) — h[v]- m(v)] dz+H""}(C)

among all possible choices of (v,{;},C) satisfying the constraints above.

We first relax the problem to that of finding a minimizer u € A of the functional
&, we prove an existence result, and then we show using a regularity argument that
a solution to the original optimal design problem actually exists. Precisely,

Theorem 4.1. Assume that H1,..., H6 hold, and let m, &, A be defined as above.
There exists u € A such that

E(u) < &(v) forallve A.

Theorem 4.2. Assume that H1,..., H7 hold, let u € A be the minimizer given
by Theorem 4.1 and set C = QN Jy. Then H" 1(C\ Ju) = 0, the function u is
harmonic inside each connected component of Q\ C, and its modulus takes only the
values 1,..., K in Q\ C. Finally, setting Q; :={z € Q\ C : |u(z)| =i}, the triple
(u, {Qs}, C) minimizes OPT .

Now that the results have been stated, we make a typographic simplification,
dropping the boldface vectorial notation and reverting to the standard one, thus
u, f,m, 71, z will appear in place of their boldface equivalents. We also remark that
by our requirements on the admissible functions, we may assume without loss of
generality that for some L > 0

(4.2) %<a(t)§L, 0<d(z)<L,

SIE
IN
e
IA

™~

We now prove Theorem 4.1.
Proof. Clearly, the set A is not empty. Let {up} be a sequence in A such that
& — inf £.
(ur) inf
Denoting by ¢ any constant depending only on n, L, K, f, €2, and whose value may

vary from line to line and expression to expression within a line, and remarking
that ||up|leo < K, we have

(4.3) /Q|Vuh|2d3: FH () < cEun) + el fllh 4 e <.
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We apply the Compactness Theorem 4.8 of [3] to obtain that, up to a subsequence,
up, = u € SBV(Q;R™) in the following sense:

(4.4) up — u a.e. and in every LP, p < +o00,
Vup — Vu weakly in Ll,

(4.5) H" N wnJ,) <liminf H* Y (w N Jy,,),

(4.6) / |Vu|? dz < liminf/ |Vuy|? dz,

where (4.5), (4.6) hold for every w C €. Since |up(z)| € {1,...,K} ae., (44)
implies that u € A. Moreover, if we set

Qb= {zeQ:|up(z) =i}, Qi:={zeQ:|uz)=1:}

(where it is understood that we are using the precise representatives here and
elsewhere) we have, recalling (3.3) and (4.1),

(4.7) Ign(z) = pi(lun(@)]) — 1g, (z)

strongly in every LP. Since clearly
v /Q[¢>(v) — f-m(v) — hfv] - m(v)] dz
is continuous in the L? topology on L>®, we deduce that
(4.8) /ﬂ [6(un) — f-m(un)—hfun]-m(up)] dz — /Q [6(w)— f-m(w)—h[u]-m(w)] dz .
The last term in £ is dealt with using (4.5), which yields

(4.9) H"L(J,) < liminf H™ "1 ( Ty, ).

By (4.2), (4.3), (4.6) we have a(|u|)Vu € L?(f), and so given ¢ > 0 find § > 0 so
small that if |Q \ w| < § then

(4.10) / a(ju))|Vu|? dz < € .
Q\w

By (4.7) one also has (again up to subsequences) that the characteristic functions
converge quasi-uniformly, i.e., if § > 0 is chosen as above then there exists ws C
such that |Q\ ws| < § and

1or — 1, wuniformly in ws for:=1,..., K.
However, for characteristic functions uniform convergence reduces to equality (for
large h), thus
Q?ﬂwg =0 Nws -
Then |up(z)| = |u(z)| in ws and we have

K

/a(|uh|)|Vuh|2dz2/ a(|u|)|Vuh|2d:c:Za(i)/ Vun|? dz |
Q ws

i=1 Q;Nws
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and (4.6) implies

v

liminf/ a(|un|)|Vun|? dz
Q

K
Za(i)/ |Vu|2d:v=/ a([u))[Vu|? dz
i=1 Q;Nws ws

v

/ o([u))|Vul2 dz — ¢
Q
by (4.10). This, together with (4.8),(4.9), yields

E(u) < liminf &(up) = iI}th ,

which concludes the proof. (I

Remark 4.3. The existence theorem we just proved holds under more general con-
ditions: The exponent 2 plays no special role and may be replaced by any p > 1,
and the surface term may include an appropriate jointly convex function, in which
case we would apply the Lower Semicontinuity Theorem 5.22 in [3]. We also remark
that the latter part of the proof could have been supplied by Ioffe’s theorem, but we
preferred to show here how we take advantage of the special partition-like structure.

Remark 4.4. Since the characteristic functions of the sets QF converge in L', in
particular |QF| — |Q;| for all i. Thus, if we modify the optimal design problem to
account for fized volume fractions, i.e., if we take K non-negative numbers o; such
that a1 + - - - + ax = |, and if we consider as admissible only the functions in the
set
Aoy ,.axe = {u € SBV(GRY) : [{z: Ju(z)| = i} = i},

then the limit u of a minimizing sequence is still in the same class, and so also the
fized volume fractions optimal design problem has a solution.

5. A ROAD MAP TO THEOREM 4.2

In Theorem 4.2 the only assertion to be proved is that
(5.1) H QN T\ J) =0,

since all subsequent statements are immediate. This estimate has been treated in
full detail in the unconstrained case (see Chapter 7 of [3]) and in the case of a single
constraint (i.e., K = 1, see Sections 3 and 4 of [7]). Here we will not reproduce
those parts in the proof which reduce to obvious adaptations of those in [3] and [7].
Instead, we will sketch the proof, highlighting the points where departing from the
existing results needs an explanation, and finally we will prove a decay lemma.

As we will frequently refer to results in Chapter 7 of [3] (all quoted as 7.x) and
in Sections 3 and 4 of [7], we will abbreviate the quotations to read 7.x and 3.x, 4.x,
respectively. The key to (5.1) is the density lower bound (Theorem 7.21 or Lemma
4.9), stating that if u is a minimizer (and in a more general context, see Definition
5.1 below) then in every sufficiently small ball B,(z) C  whose center is in J, the
amount of jump set is not too small, i.e.,

(5.2) H" 1 (By(z) N Jy) > oo™ !

for some fy > 0. This implies, in particular, that the #™ '-density of J, at all
points in J, is not zero. However, a standard measure theoretic result ensures that
this density is zero H"!-a.e. outside J,, and thus (5.2) implies (5.1). We must
therefore concentrate on establishing the density lower bound (5.2).
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In the standard non constrained case this is proved via a blow-up and comparison
methods, considering a sequence of balls with vanishing radii, rescaling the balls
to the same radius, say 1, and comparing the rescaled minimizer in each ball with
suitable modifications of the same function. This requires some ingredients which
we introduce now: Since bulk and surface terms rescale with different powers of the
radius, one is forced to considering not only the functional

(bulk part) + H" 1(J,) ,
i.e., with “one” times the area of the jump, but also more generally
(bulk part) 4+ cH™ ' (J,,)

with any ¢ > 0. When rescaling a function in a ball to have radius 1, we also have
the choice of either leaving the integral of [Vu|? intact or leaving the values taken
by u intact, but not both. Thus, in the constrained case either we change the main
contribution in the bulk energy, or we take into account that the rescaled functions
will satisfy not the original constraints, but a rescaled version of the constraints,
say

lu(z)| € {¢,2¢,...,Kt} a.e.
instead of |u(z)| € {1,2,..., K} ae.
Now we define for every c,t > 0, every Borel set E C 2, and every u €
SBV (Q;R™) such that [Vu| € L*(9)
F(u,c,E,t) := / G(M)|VU|2d$+CHn_1(JuﬂE)
E t
if |u(z)| € {¢,..., Kt} a.e. in E.

In situations where the exact values of ¢ and ¢ are irrelevant, we omit the dependence
of F' on these parameters and we use the simplified notation
F(u,E) = a(|u))|Vul? dz +H"" (], N E)
(5.3) B
if |u(z)| € {1,...,K} a.e. in E.

Another useful tool is the deviation from minimality, which measures how far a
function u is from being a minimizer,

Dev(u,c, E,t) := F(u,c, E,t) —inf{F(v,¢, E,t) : {v#u} CC E}.

Clearly the deviation from minimality is zero if and only if u is a minimizer on E.
We apply to Dev the same convention regarding the meaning of the abbreviated
Dev(u, E). The next definition, see [3], is crucial to link the energy F' to our full
energy £.

Definition 5.1. Let 0 < v < 1. A function u € SBVipc(;R™) is a v-quasi-
minimizer of F if there exist a constant k > 0 and a radius o9 > 0 such that for
every ball B, C Q with ¢ < g

Dev(u,B,) < ko" ™" .
If v = 0 we simply say u s a quasi-minimizer.

Proposition 5.2. A minimizer of £ is a v-quasi-minimizer of F(-,Q) withv = n/q.
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Proof. It is enough to remark that if u is a minimizer of £ and {v # u} CC B, C Q
then we may write the inequality £(u) < £(v) as

F(u, B,) - < [ 006+ (mie) ~ m(e) de

+/Qh[u] -m(u) — h[v] - m(v)de .

Now H4 and (4.2) yield, as in (2.3),

/ |6(v) — $(u)| dz < e(L)g" ,

from H2, H7 and (4.2) we deduce that

/ 7+ (m(w) = m(w))] do < (L@l flge™"”
and finally H5 with the same ¢ as in H7 gives by (2.2)

[ Fiul ) = ] - m(v) de] < e(L,)e™

Collecting these estimates we have (for ¢ < 1)
F(u, By) — F(v, B,) < ch/q' )

thus
Dev(u, B,) < co™ ™1
(]

Remark 5.3. We note that the integrability condition ¢ > n required in HT is
needed to ensure that v :=n/q € (0,1) will conform with Definition 5.1.

We now focus on proving the density lower bound (5.2) for v-quasi-minimizers
of F. We resume our road map: The proof of (5.2) for quasi-minimizers is largely
independent on the particular features of the functional (see Theorem 7.21 and
Lemma 4.9), and it rests solely on an energy upper bound (Lemma 7.19, which
is obviously true in our situation) and on a decay lemma. In fact, [3] only deals
with quasi-minimizers but the proof for v-quasi-minimizers is entirely identical, and
exhibiting the same technical difficulties (see [2], [4]).

This decay lemma (Lemma 7.14 and Lemma 3.9) states that if in a certain
ball the amount of jump set (in the 7"~! sense) is small and the deviation from
minimality is also small (compared with the size of the functional), then on smaller
concentric balls the value of F' decays as a power of the radius. Its proof in turn
is based on an auxiliary lemma (Theorem 7.7 and Theorem 3.6 with Corollary 3.7)
which is the true keypoint: Its statement is exactly what comes out when trying to
prove the decay lemma by contradiction.

The one big difference from the unconstrained to the constrained case is the
limitation in the comparison methods. In the unconstrained case one may compare
the minimizer u with suitable modifications of u in two ways: Either by cutting
away a part of u and replacing it with any function (this is permitted in BV, and
clearly makes no harm if image constraints are added), or by patching the two via
a smooth cut-off function. In the single-constraint case |u| = 1, the latter method
produces a function whose image no longer lies on the boundary of the unit ball, but
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with care (and using the fact that this has to be done only when the amount of jump
set is small) the key Lemma 3.5 provides a projection on dB; of the comparison
function (which must be kept not too far from the correct value) which satisfies a
Poincaré-Wirtinger inequality.

This road is not allowed in our case, because the image is not on By but on the
union of many such spheres, and there is no way to be sure that the comparison
function is always not too far from a single allowed value.

The remaining of this paper is dedicated to the proof of the decay lemma which
in our situation reads

Lemma 5.4. Let1/L < a(i) < L fori=1,...,K, and let F be defined as in (5.3).
There is a constant Cy, depending on (n,L), such that for every 0 < 7 <1 there
exist €,0 > 0, both depending on T, such that if By(xz) C Q, F(v,B,) < 400 and if
H (T, B,) < g™t Dev(v,B,) < 0F(v,B,)
then o o
F(v,Br,) < Com"F(v,B,) .

Proof. We argue by contradiction, assuming that for the value of Cy (that will be
specified later) and for a certain 7 there exist a sequence of balls B,, and a sequence
of functions v, € SBV(Q2) such that

H" '(Ju 0 Bg) ,,  Dev(vs, By)

- — =0
QZ ! F(vh7BQh)

but L
F(Uh,B.,—gh ) > C()TnF(’Uh,BQh )

Note that the latter justifies the division by F'(vp, By, ) in the line before. In order
to set the relevant quantities for rescaling, we define

_ Dev(vh7B—0h)
F(vh’B—Qh)

)

si = g,ll_"H”_l(Jvh N B—Qh) , o -

and also L
Oh ‘= Q:_I/F(UhaBQh ) ) th 1= v/ Jh/@h-
Remark that in view of (5.3) €20 < 1 and thus
0 = oD Ly

Note also that
en—>0, 6pb—0, t,— +oo.

The latter holds because F(vp, By, ) is bounded from above by a constant times
gz_l. Indeed, vy is “almost” a minimizer in the sense that

(1 = 6n)F(vh, B, ) = F(vn, By, ) — Dev(va, By, )
= inf{F(vaB—gh) :{v # vn} CC B,,}

n—1

<co, 7,

where in the last inequality we used as test functions for £ € N

[0 ifzeB, 14
wk(2) := { vn £z € By, \ Byy_1/ks

and we let £ — +o0.
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With zj, the center of B,,, set
uh(:c) = thvh(xh + th).

Clearly uy, is defined in the unit ball B; and

(5.4) H" M (Ju, NB1) = €5,
(55) F(uhuahaEa th) = ]-7
(5.6) Dev(un, oh, B1,tn) = On,
(5‘7) F(uhuahaB_‘ra th) > COTn .

In particular, as Jj, C Ju, and since Jj,| contains the sets where |u| jumps from
one to another of the permitted values, we have

forall 1 <i< K, H" ' (0{|lup| =itn}NB1) <e; =0,

so by the isoperimetric inequality (3.43) of [3], denoting by ~ the isoperimetric
constant for balls, we have that for all 7 one of the two sets

Pi={z € By : |Jup(z)| = it} Q: = {x € By : |un(z)| # itn}
has n-dimensional measure not exceeding 'ysin/ =1 We claim that for h large
there exist i € {1,..., K} such that the measure of Qi does not exceed 'ysin/ (n=1),
Indeed, if this was not the case then for all 7 € {1,..., K} and for a subsequence
(not relabeled)
[Pi] < e/

and thus
i 2n/(n—1
|Bi| = UK, Pi| < Krep 7Y,
what is cleary impossible since €5, converge to zero. This asserts the claim. As the

i’s are in finite number, we may assume (up to the extraction of a subsequence, not
relabeled) that this happens always with the same i, say ¢ = 1, thus for all h

{z € By : Jun(z)| # ta}| < ye2/ 1)

In particular for any 0 < Ry < 1

1
e/ Y > / H™ 1 ({|un| # tn} N OB,) dr ,

Ry

thus for a suitable rp, € (Rp,1)

2n/(n—1
n—1 Vén /(D
(5.8) H* ({|un| Zth}NOB,,) < ,
1— Ry

and also (this happens for a.e. ry)
H* ' (Ju, NOB,,) =0.

Choose Ry, such that
1— Ry = 'ye}/("*l)
and remark that Rp — 1 and that the inequality (5.8) above reduces to

(5.9) H* ({|un| # tn} N OB,,) < e/
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We change the function up in B, to get rid of all values of |uy| different from
ty, by setting

up(z) if || > 7
wi(z) := < up(z) if |z| <7p and |up(z)| =ty
tre otherwise,

where e is any unit vector.
We claim that

(5.10) F(wh, O'h,B_-,—, th) > Cot™ — 205 — 20;1.

First note that in the interior of the ball B,, we added no jump set because all
possible jump points of wp, were already jump points of |up|, thus we may have
added jump points only on the boundary of B,,. Hence for any £ C B,

Jun VE C (Ju, N E) U ({[un| # th} N0B.,) ,
so by (5.4), (5.9),
(5.11) H (Joy, N By ) < 2(1 44/ ")
(5.12) o H" (Ju, NE) < o1 Y (Ju, N E) + 65,

Below we use the bulk part of F', so we define
f(u, E,t) := / a(@)|Vu|2 dz  if |u] € {t,2¢,..., Kt} a.e.
E

Clearly
(5.13) fwn, E,tp) < f(un, E,tp) for any E C B; .
Since {up, # wr} CC B; we have by (5.6)
F(un,0n, B, th) < F(wh, on, B1,ts) + On,
12) and (5.13)
f(un, B1,tn) — f(wh, B1,tn)
ah’H"_l(th NB;)— Uth_l(Juh NB1)+ 64
On + 03, .

ot

which implies by (
0

ININIA

Therefore
orH" (Juy, N B1) +6n > onH" (Ju, N B1),
and using this inequality together with (5.12) we obtain
onH" Y (Jw, NB;) = o H™ 1 (Jw, N By)
o HY (1, (1 (BY\ B)
> opH" 1 (Ju, NB1) — bh
— oW (T, 0 (BI\ 7))
(5.14) > opH" 1 (Ju, NB1) — by
- o H" (L, N (BI\ BY)) - 6
=opH" (Ju, N B;) — Oy — 6}.
Moreover, by (5.13) we may split the left hand side of the inequality
f(un, B, tn) — f(wn, Bi,tn) < 0 + 6},
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into two non-negative terms (the integrals inside and outside B;), and we deduce
that

f(wh,B‘rath) > f(uh,B‘rath) - 0h - 0;1
This inequality, (5.14), and (5.7), imply that
F(whao-haB_‘r; th) > F(uhao-haB_‘ra th) - 29h - 20;—,, > COTn - 20h - 20;15

and the claim is asserted.
Remark that r, — 1, so that with no loss of generality we may suppose r, > 7.
Using (5.10) we get

(5.15) F(wh,ah,B—rh, th) > F(wh,ah,B_T, th) > Cot™ — 26, — 20;1 .

Since up = wy, in an outer annulus, if {v # wp} CC B; then also {v # up} CC By,
and so using (5.6), (5.12) and (5.13) we have

(5.16)  F(wh,0n, B1,tn) < F(up,0n, B1,tn) + 0}, < F(v,0h, B1,tp) + 60 + 6}, ,
yelding o
Dev(wh,ah,Bl,th) <6y + 0;; .
On the other hand, omitting in the following equation o} and tp,
F(wn, B,, ) —inf{F(v,B,, ) : {v#wy,} CC B,,}
F(wp,B1) —inf{F(v,B; ) : {v #ws} CC B,,}
< F(wp,B1)—inf{F(v,B1):{v#wy} CC B1},

and so
(5.17) Dev(wh, O'h,B—Th, th) < Dev(wh, O'h,B_l, th) <0y + 0;1 .
Also, using (5.5), (5.12) and (5.16), we may write
(5.18) F(wh,ah,?”, th) < F(wh,ah,E, th) < F(uh,ah,E, th) + 92 =1+ 0;1 .
Collecting (5.7), (5.11), (5.17), (5.18), (5.10) and (5.15) we have for h large
enough:
H* (Jun N Br,) < b1 45,/ "7,
F(wh,0h, By, ,th) 1< F(wh,0h, By, ,th)
1+6; = Cor™ — 260}, — 20}’
0, + 92
Cot™ — 26), — 20,

Cot™ — 205, — 20, S
1+ 9;; hF(wh,JhaBrhyth) .

IN

DeV(’LUh,O'h,B—rh, th) S 0h + e;L S F(th,O'h, B'rh,th)a

F(wh,O'h,B_.,-, th) > Com" — 205, — 20;1 >

Setting
Th == T/Th ,
the last line above may be rewritten as

CorPrl — 20, — 26 -
h hl T 0;1 hF(whao-hvBrh,th) .

F(wha Oh, BThrha th) >

Recalling that
en—0, 0,—0, 0,—0, rn—1, 75—,

and performing backwards the change of variables we made to obtain u, from vy,
we get a new sequence of functions vy, each defined in the ball of radius g}, := 740,
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and such that (recall that 7 is fixed, so it does no harm in the inequality relative
to the deviation from minimality)

'7‘-["71(.]1,;1 N B, ) <wh ()" 1, Dev(vﬁl,BiQ;l) < wpF(vy,, By, )
and
(5.19) F(vh, By, ) > (Co — wp) Ty F(vp, By, )
with wp — 0. But now

lvp| =1 ae.

therefore if we set

Fy(w, E) :/ a()|Vw|*de + H"  (J,NE) if jw| =1 ae.
E

and we call Dev; the deviation from minimality relative to Fj, clearly
Devi (vh, B, ) < Dev(th, By ) < wnFs(vh, B )
and by (5.19)
F1 (U;l, B‘Fh@'h ) > (C() — LUh)T,?Fl(’U;” BQ;; )

But for h large enough this violates the decay estimate which is valid for the single
constraint case (Lemma 3.9 of [7]), with the same constant Cy (actually in [7] the
constant is hidden: It may be found two lines before the end of the proof, where it
is transformed into a power of 7 to conform with their statement), and we reached
a contradiction. O
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