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In 1985, J. M. Ball and V. J. Mizel raised the question of whether there ex-

ist nonlinearly elastic materials possessing a physically natural stored energy

density [one which is independent of an observer’s coordinate frame (objec-

tive) and is invariant under a group of linear transformations (isotropic)] as

well as physically reasonable boundary value problems for such materials,

such that the infimum of the total stored energy for continuous deformations

of the material meeting the boundary conditions (admissible deformations)

and belonging to a Sobolev space W 1,p2 for some p2 > 1 is strictly greater

than its infimum for those admissible deformations which belong to a Sobolev

space W 1,p1 with p1 < p2, despite the density of the former Sobolev space

in the latter. The question was motivated by M. Lavrentiev’s 1926 demon-

stration of such a gap for 1-dimensional variational boundary value problems

on a bounded interval whose smooth integrand satisfied the conditions of

Tonelli’s existence theorem - as well as improved versions developed in the

1980’s. Thereafter, M. Foss demonstrated in 2000 that there are (nonphysi-

cal) model problems in which the infimum over W 1,p varies continuously with

p. The positive (2-dimensional) resolution of the 1985 Ball/Mizel question

was achieved by Foss, Hrusa and Mizel in 2003.
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The present article constructs for each given positive continuous increas-

ing function i on a compact interval [p0, p1] of the half axis (1,∞) a “compos-

ite” of 2-dimensional hyperelastic materials such that for a certain continuous

deformation of the composite satisfying prescribed boundary conditions the

relation

(∗) E|W 1,p = i(p) for all p in [p0, p1].

for the minimal stored energy E holds. The continuous deformation u will

be constructed as the sum of an infinite series of mappings associated with

i(·), each of which is defined on a proper subdomain of the domain Ωα of

u. That is, for specified α > β > 0 (with α < 2π) we present examples

in 2-dimensions of deformations u ∈ Aα,β
1 = ⊕

α′∈(0,∞]
W 1,1(Ωα′ , R2) where (in

polar coordinates) the domains Ωα, Ωα′ and Ωβ are given by

Ωα = {x ∈ R
2\{(0, 0)} : r(x) < 1, θ(x) ∈ (0, α)} ,

Ωα′ = {x ∈ R
2\{(0, 0)} : r(x) < 1, θ(x) ∈ (0, α′)} ,

Ωβ = {u ∈ R
2\{(0, 0)} : r(u) < 1, θ(u) ∈ (0, β)} ,

and Γ3,α, Γ3,α′ , Γ3,β denote the curvilinear boundaries of these domains. The

deformations under consideration depend on a parameter q with q ∈ [q0, q00]

for some specified q00 > q0 > 1 and, using complex value notation, are defined

by

(1)















uPM,q(x) = r(x)δqeiγqθ(x)

uAM,q(x) = r(x)γqeiγqθ(x)
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where

γq = 1 − 1
q
− εq, δq = 1 − 1+γq

2q−1
= 1 − 1

q
+ εq

2q−1
for a small εq > 0. We put

α′

q = α when γqα > β, and we put α′

q = β/γq otherwise, so α′

q < α.

Thus the associated stored energy E := Jq[u] is expressed in terms of the

first derivatives of u = u + iv [employing complex notation] with

∂
∂z

(u + iv) = (ux − vy) + i(vx + uy) as

Jq[u] =
∫

Ωα′
q

([∣

∣

∣

∣

(

cos θ(x)
∂u(x)

∂r(x)
−

sin θ(x)

r(x)

∂u(x)

∂θ(x)
− sin θ(x)

∂v(x)

∂r(x)
−

cos θ(x)

r(x)

∂v(x)

∂θ(x)

)

+i

(

cos θ(x)
∂v(x)

∂r(x)
−

sin θ(x)

r(x)

∂v(x)

∂θ(x)
+ sin θ(x)

∂u(x)

∂r(x)
+

cos θ(x)

r(x)

∂u(x)

∂θ(x)

)∣

∣

∣

∣

2
]q)

dxdy

which leads to

(2)

Jq[u] =

∫

Ωα′

q

[

(

∂u(x)

∂r(x)
−

1

r(x)

∂v(x)

∂θ(x)

)2

+

(

1

r(x)

∂u(x)

∂θ(x)
+

∂v(x)

∂r(x)

)2
]q

dxdy

where α′

q = α ∧
β

1 − 1
q
− εq

for εq > 0 sufficiently small. Hereafter we refer to

the stored energy density integrand in (2) as Wq(∇u), where u = (u, v).

It follows from (1) that

uPM,q ∈ Aα,β
p , ∀p ∈

[

1,
2

1 − δq

)

=

[

1,
2q

1 − εq
q

2q−1

)

,

uAM,q ∈ Aα,β
p , ∀p ∈ [1,

2

1 − γq

) =

[

1,
2q

1 + qεq

)

.

Thus if we put p∗q = 2q

1+qεq
, p∗∗q = 2q

1−εq
q

2q−1
it follows that p∗q < p∗∗q
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with

(3) p∗∗q = p∗q + 2q

(

1

1 − εq
q

2q−1

−
1

1 + qεq

)

≈ p∗q +
4q3

2q − 1
εq.

In addition (cf. [15]):

(4) ∇uPM,q = r(x)−
1+γq

2q−1









(

1 − 1+γq

2q−1

)

cos γqθ(x) −γq sin γqθ(x)

(

1 − 1+γq

2q−1

)

sin γqθ(x) γq cos γqθ(x)









det ∇uPM,q = γq

(

1 − 1+γq

2q−1

)

r(x)−
2(1+γq)

2q−1 > 0

Now it is easy to verify that (cf. [15]) the form of Jq for each

q ∈ [q0, q00] ⊂ (1,∞) is given by

(5)



























Jq[uPM,q] =
∫

Ωα′
q

[r(x)2(δq−1) [(δq − γq)
2]q dxdy =

α′

q

[

(δq − γq)
2]q 1

2q(δq − 1) + 2
=: Kq ∀p ∈ [1, p∗∗q )

Jq[uAM,q] = 0, ∀p ∈ [1, p∗q),

whereby, as indicated in [15], the infimum of Jq, for q ∈ [q0, q00] for some

q00 > q0 > 1 is given by

(6)






infÃp,α′

q
Jq[u] = Jq[uAM,q] = 0, ∀p ∈ [1, p∗q)

infÃp,α′

q
Jq[u] = Jq[uPM,q] = Kq,∀p ∈ [p∗q, p

∗∗

q ) [actually, for ∀p ∈ (p∗

q,∞)].
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In view of the constancy of “Jq[uPM,q]”(·) we will henceforth express this

function in terms of the characteristic function I[c,∞) of an associated half

axis. Now suppose that [p0, p1] ⊂ (1,∞) is a prescribed closed interval and

that i : [p0, p1] → R is a prescribed positive increasing continuous function.

Our goal is to produce a “composite hyperelastic material of type I” such

that its minimal stored energy function E satisfies

(∗∗) E|W 1,p = i(p) ∀p ∈ [p0, p1].

The strategy to be utilized involves constructing an infinite series of func-

tions with terms of the form

1

qk

∫

Ωα′

(

|∇uPM,qk
|2
)qk

dx dy qk ∈
[

q0, q00
]

⊂ (1,∞),

where it is known (cf. [15]) that for each q > 1

“

∫

Ωα′

|∇uPM,q|
2q dx dy”(·)

is constant along the half axis p ∈ [q,∞). Thus, our method is along the

lines of an exercise in chapter 7 of Principles of Mathematical Analysis (3rd

edition) by W. Rudin.

Utilizing the fact that uPM,q is a solution of the Euler-Lagrange system for

our variational problem we obtain
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(7)

inf
Ãp,α′

q

Jq[u] = “Jq[uPM,q]” = Kq, ∀p ∈ [p∗q,∞);

inf
Ãp,α′

q

Jq(u) = Jq[uAM,q] = 0, ∀p ∈ [1, p∗q) where p∗q =
2q

1 + qεq

.

We proceed as follows under the assumption (to avoid a trivial conclusion):

(#) r = i(p∗q0) < i(p∗q00) := r + S with r ≥ 0, S > 0.

Step 1 Select an integer n0 > 1 and let q0,1 be the smallest value in [q0, q00]

satisfying

(i)0 r + 1
2n0

SI (·)
[p∗q0,1

,∞)

≡ i(p∗q0,1
),

(ii)0 Next let q0,2 denote the smallest value in [q0,1, q
00] satisfying

r + 2
2n0

SI (·)
[p∗q0,2

,∞)

≡ i(p∗q0,2
),

(iii)0 Next let q0,3 denote the smallest value in [q0,2, q
00] satisfying

r + 3
2n0

SI (·)
[p∗q0,3

,∞)

≡ i(p∗q0,3
)

and continue this procedure until we arrive at

(2n0 − 1)0. Let q0,2n0−1 denote the smallest value in [q0,2n0−2, q
00] satisfying

r + 2n0−1
2n0

SI (·)
[p∗q0,2n0−1

,∞)

≡ i(p∗q0,2n0−1 ).

It is readily seen that the function

f 0 = r +
2n0−1
∑

k=1

k

2n0
SI (·)

[p∗
q0,k,∞)

is a step function on [p0, p1] which agrees with i(·) at the points {p∗

q0,k
} and

that
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(C0) 0 ≤ i(·) − f 0(·) ≤
1

2n0
S;

Step 2 Select an integer n1 > n0 and let q1,1 be the smallest value in [q0, q00]

satisfying

(i)1 r + 1
2n1

SI (·)
[p∗q1,1

,∞)

≡ i(p∗q1,1
)

(ii)1 Next let q1,2 denote the smallest value in [q1,1, q
00] satisfying

r + 2
2n1

SI (·)
[p∗q1,2

,∞)

≡ i(p∗q1,2
)

(iii)1 Next let q1,3 denote the smallest value in [q1,2, q
00] satisfying

r + 3
2n1

SI[p∗q1,3
,∞)(·) ≡ i(P ∗

q1,3
),

and continue this process until arriving at step (2n1 − 1)1:

Let q1,2n1−1 denote the smallest value in [q0,2n1−2, q
00] satisfying

r + 2n1−1
2n1

SI (·)
[p∗

q1,2n1−1
,∞)

≡ i(p∗q1,2n1−1
).

It is clear that the function f 1 = r +
2n1−1
∑

k=1

k

2n1
SI (·)

p∗q1,k
,∞

is a step function

on [p0, p1] such that f 1 ≥ f 0 and f 1 agrees with i(·) at the points p∗

q1,k
and

satisfies

(C1) 0 ≤ i(·) − f 1(·) ≤
1

2n1
S.

By continuing in this fashion we produce a sequence of step functions f j(·)

which converge uniformly to i(·) on [p0, p1] and for which the associated points
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p∗qs,j
are densely distributed outside intervals of constancy of the monotone

continuous function i(·). Now the results described in [14] and [15] imply

that for each q > 1 the associated “pseudominimizer” is given by

uPM,q = r(x)
2q−2−γq

2q−1

(

cos γqθ(x)
sin γqθ(x)

)

= r(x)1−
1+γq

2q−1

(

cos γqθ(x)
sin γqθ(x)

)

which [avoiding complex-valued notation] we abbreviate as

(8)

uPM,q = r(x)δq

(

cos γqθ(x)
sin γqθ(x)

)

, with

γq = 1 −
1

q
− εq, δq = 1 −

1 + γq

2q − 1
= 1 −

1

q
+

εq

2q − 1
, for a small εq > 0.

Thus

∇uPM,q = (r(x))
−(1+γq)

2q−1

(

δq cos γqθ(x) −γq sin γqθ( x)
δq sin γqθ(x) γq cos γqθ(x)

)

whence by equation (2) for u = u + iv we have

(9)

Wq(∇uPM,q) =

[

(

∂u(x)

∂r(x)
−

1

r(x)

∂v(x)

∂θ(x)

)2

+

(

1

r(x)

∂u(x)

∂θ(x)
+

∂v(x)

∂r(x)

)2
]q

.

= [||∇u||2 − 2det ∇(u)]
q

= r(x)
−2q(1+γq)

2q−1 (δq − γq)
2q .

Thus

Jq[uPM,q] =

∫

Ωα′

q

[

(

∂u(x)

∂r(x)
−

1

r(x)

∂v(x)

∂θ(x)

)2

+

(

1

v(x)

∂u

∂θ(x)
+

∂r(x)

∂r(x)

)2
]q

dxdy
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so that by (8)

(10)

E(uPM,q) = “
∫

Ωα′
q

Wq(∇uPM,q)dxdy” =

(δq − γq)
2qα′

q

(

2 −
1

q
+

2

2q − 1
εq

)

−1

=: Mq with α′

q >
β

γq

,

whence α′

q < α for εq > 0 small enough.

It follows from (9) that for all p ≥ 2
1+γq

one has

E(uPM,q)|W 1,p ≡ Mq.

We now consider a final issue in demonstrating the continuity of the mapping

from the composite to the region Ωβ. For all exponents p∗qj,k
∈ [p0, p1] which

arose in connection with the construction associated with i(·), we wish to

ascertain those values q ∈ [q0, q00] which are associated with these exponents.

Recall that for a given q ≥ q0 > 1 we have γq = 1 − 1
q
− εq, δq =

1 − 1
q

(

1 − εq

2q−1

)

for some εq > 0 so that uPM,q = r(x)δq

(

cos γqθ(x)
sin γqθ(x)

)

must be such that the p values in [p0, p1] for which E|W 1,p 6= 0 must include

p∗q = 2
1−γq

= 2q

1+qεq
.

Thus for a given p∗l ∈ [p0, p1] one obtains

(11) qp∗
l

=
p∗l
2

(1 −
p∗l
2

εq)
−1 so that qp∗

l
=

p∗l

2
(

1 −
p∗

l

2
εqp∗

l

)

This ensures that on Γ3,α αqp∗
l

> β, so that on choosing α′

qγqp∗
l

= β one

finds α′

q < α. It follows that Wq(∇uPM,q) ∈ L1 if and only if
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γq = 1 − 1
q
− εq, δq = 1 − 1

q
+ εq

2q−1
, whence δq − γq = 2q

2q−1
εq.

Thus E|W 1,p 6= 0 for all those values γql
with p∗ql

= 1
1− 1

q−1
ε

corresponding to

qp∗
l
∼

p∗
l

2

(

1 + εqp∗
l

)

. This ensures that pl 7→ q∗pl
is a continuous mapping from

Γ3,α′ onto Γ3,β. Thus [for the case where i(·) has no interval of constancy] the

mapping described here when applied to the dense sequence of exponents in

[p0, p1] yields a dense sequence on a subinterval of [q0, q00], from which the

continuity result for the mapping from the composite to Ωβ follows. [An

adaptation to the case where i(·) has intervals of constancy can be easily

achieved.]

In view of the brevity of the description provided for the construction

which was referred to as a “final issue” it seems worthwhile to discuss matters

in a bit more detail. First, given a small number e1 > 0 it follows from our

construction of the step functions f 0, f 1, . . . approximating the monotone

continuous function i(·) on [p0, p1] (cf. (C0), (C1)) that for some sufficiently

large k the step function f k will satisfy the requirement

(12) fk(p) =
2k

−1
∑

l=1

(r+
l

2nk
SI (p)

[pqk,l−∞)

= i(p) for pqk,1 ∈ [p0, p1], 1 ≤ l ≤ 2k −1

as well as

0 ≤ i(·) − f k(·) ≤
1

2nk
S in [p0, p1], qk,l+1 − qk,l < e1

Since by (8)
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uPM,q = r(x)δq

(

cos γqθ(x)
sin γqθ(x)

)

, ∇uPM,q = r(x)δq−1

(

δq cos γqθ(x) − γq sin γqθ(x)
δq sin γqθ(x) γq cos γqθ(x)

)

with γq = 1 −
1

2
− εq, δq = 1 −

1 + γq

2q − 1
= 1 −

1

q
+

εq

2q − 1
, for some εq > 0, (9) yields

Wq(∇uPM,q) = [||∇uPM,q||
2−2det ∇uPM,q]

q = r(x)2q(δq−1)(δq−γq)
2q ∈ L1(Ωα′ ; Ωβ)

so that (10) yields

(13)

Jq[upM,q] = α′

q

2q − 1

2qεq

(

2q

2q − 1
εq

)2q

= α′

q

(

2q

2q − 1
εq

)2q−1

=:Kq. Thus by (∗∗) and (7)

E|W 1,p = “Jq[uPMq](p)” = K1 for all p ∈ [p∗q, p
∗∗

q ) [actually for all p ∈ [p∗

q,∞)]

We now consider one further item. For those exponents pqk,l
∈ [p0, p1]

associated with the entries qk,l ∈ [q0, q00] involved in constructing the function

fk we find p ≥ p∗q = 2q

1+qεq
= 2

1−γq
so that

1+εqk,l

qk,l
< 2

pqk,l

This leads to qkl ≈
pqk,l

2
so that the q values corresponding to the given

p values are close to one another – thus ensuring the claimed continuity of

the q mappings.
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