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1 Introduction and main result

In this work we study the asymptotic behavior of a heterogeneous ε-thin domain with periodic microstruc-
ture of period ε, as ε goes to zero, through a Γ-limit analysis. Techniques of two-scale convergence and a
decoupling procedure between the oscillating variable and the in-plane variable are used to derive the relaxed
two-dimensional energy from its three-dimensional counterpart.

Let ω be an open and bounded subset of R2. For each 0 < ε � 1 define Ωε := ω × (−ε, ε). Consider a
deformable thin body occupied by a hyperelastic material with a periodic microstructure of period ε whose
reference configuration is given by the thin domain Ωε, and whose stored energy density W (ε) : Ωε ×R3×3 → R

is assumed to be a Carathéodory function satisfying some p-growth and coercivity conditions (1 < p <∞). We
assume that the body is clamped on the lateral boundary, that is u(x) = x on ∂ω × (−ε, ε) for all admissible
deformations of the body, and that it is submitted to the action of regular surface traction densities g(ε) on
Σε := ω × {−ε, ε} and regular dead loads f(ε). The total energy of this body under the action of this forces is
nothing but the difference between the elastic energy and the work of external forces. More precisely

E(ε)(u) :=

∫

Ωε

W (ε)(x;Du) dx−
∫

Ωε

f(ε) · u dx−
∫

Σε

g(ε) · u dH2,

for u ∈ V(ε) := {u ∈ W 1,p(Ωε; R
3) : u(x) = x on ∂ω × (−ε, ε)}, and where H2 stands for the two-dimensional

Hausdorff measure. It may occur that the minimization problem associated with this energy admits no solution
over the set of kinematically admissible fields V(ε). However, we can introduce the notion of quasi-minimizer
of E(ε), u(ε) ∈ V(ε), by requiring that

E(ε)(u(ε)) 6 inf
u∈V(ε)

E(ε)(u) + ε h(ε),

where h(ε) ↘ 0+ when ε → 0. Note that if the minimization problem admits a solution – for instance if W (ε)
is quasiconvex in its second variable – then we can take h ≡ 0.

As usual, in order to study this problem as ε→ 0 we rescale the ε-thin body into a reference domain of unit
thickness (see e.g. Anzellotti, Baldo and Percivale [3], Le Dret and Raoult [17], Braides, Fonseca and Francfort
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[10]), so that the resulting energy will be defined on a fixed body, while the dependence on ε turns out to be
explicit in the transverse derivative. For this, we consider the change of variables

Ωε → Ω := ω × I, (x1, x2, x3) 7→
(

x1, x2,
1

ε
x3

)

,

and define v(xα,
x3

ε
) = u(xα, x3) on the rescaled cylinder Ω, where I := (−1, 1) and xα := (x1, x2) is the in-plane

variable. It is well known that the membrane theory arises at the order ε of a formal asymptotic expansion (see
Fox, Raoult and Simo [16]), provided that the body forces are of order 1 and the surface loadings are of order
ε. Since this energy is of order ε we divide the total energy by ε and, in addition we assume that

{

f(ε)(xα, εx3) = f(xα, x3),
g(ε)(xα, εx3) = ε g(xα, x3),

where f ∈ Lp′

(Ω; R3), g ∈ Lp′

(Σ; R3) (1/p+1/p′ = 1) and Σ := ω×{−1, 1}. If Wε(xα, x3; ·) = W (ε)(xα, εx3; ·),
for fixed ε minimizing E(ε) on V(ε) is equivalent to minimizing

Eε(v) :=
E(ε)(u)

ε
=

∫

Ω

Wε

(

x;Dαv(x)
∣

∣

∣

1

ε
D3v(x)

)

dx−
∫

Ω

f · v dx−
∫

Σ

g · v dH2

on Vε := {v ∈ W 1,p(Ω; R3) : v(x) = (xα, εx3) on ∂ω × I}. Denote by Di = ∂
∂xi

for i ∈ {1, 2, 3} and Dα =

(D1, D2). In the sequel, we identify Rd×N with the space of real d × N matrices. For all ξ = (z1|z2) ∈ R3×2

and z ∈ R3, (ξ|z) is the matrix whose first two columns are z1 and z2 and whose last one is z. Denoting a
quasi-minimizer of the rescaled energy by uε(xα, x3) := u(ε)(xα, εx3), we obtain

Eε(uε) 6 inf
v∈Vε

Eε(v) + h(ε). (1.1)

Our aim is to study the asymptotic behavior of the equilibrium problem (1.1) as ε→ 0 via a Γ-convergence
method (we refer to Braides and Defranceschi [9], Braides [11] and Dal Maso [13] for a comprehensive treatment
and bibliography on Γ-convergence).

The motivation for studying problem (1.1) comes from the work of Braides, Fonseca and Francfort [10]
who have established an abstract dimensional reduction variational convergence result in a general setting for
a family of stored energies of the form Wε(x; ξ) and derived specific characterizations for particular cases. In
Section 3 of [10] a heterogeneous nonlinear membrane model is derived by Γ-convergence, and heterogeneity in
the transverse direction is considered. Precisely, the authors treat the case where the stored energy density is
of the form W (x3; ξ), generalizing the previous work of Le Dret and Raoult in [17] who treated a homogeneous
material, i.e. when W depends only in ξ. Later, Babadjian and Francfort [4] considered energies of the form
W (x; ξ) with a general heterogeneity. Furthermore in Section 4 of [10], a 3D-2D analysis coupled with a
homogenization in the in-plane direction is studied in the case where Wε(x; ξ) = W (x3, xα/ε; ξ). Shu [22] also
investigated similar problems, in the framework of martensitic materials, with different length scales for the film
thickness and the material microstructure.

Here we propose to establish a dimensional reduction and homogenization result, where both scales are
identical, by adding in the stored energy density an explicit dependence on the in-plane variable xα. Namely,
we assume that Wε(xα, x3; ·) = W (xα, x3, xα/ε; ·) for some function W : Ω×R2 ×R3×3 → R whose hypotheses
will be introduced later.

Two features differentiate our approach from what is available in most of the literature in the subject.
The first one is the use of a two-scale convergence argument (see Nguetseng [20, 21] and Allaire [2] for the
notion and properties of two-scale convergence). The same argument was used by Báıa and Fonseca in [5]
in a pure homogenization context, i.e. without considering the dimensional reduction problem. The second
feature is connected with the definition of the homogenized stored energy in which two independent variables
are occurring : Firstly the integration variable yα and secondly xα on which this function is explicitly depending.
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To take into account this structure, we are led to decouple the oscillating variable from the in-plane variable.
This procedure is possible thanks to a continuous extension of Carathéodory functions result introduced by
Babadjian and Francfort in [4].

For a comprehensive treatment on the homogenization of integral functionals via a Γ-limit approach, we refer
to Braides and Defransceschi [9] and references therein. We will denote by LN the N -dimensional Lebesgue
measure in RN (in the sequel N will be equal to 2 or 3).

For each ε > 0 we define Iε : Lp(Ω; R3) → R by

Iε(u) :=















∫

Ω

W

(

xα, x3,
xα

ε
;Dαu(x)

∣

∣

∣

1

ε
D3u(x)

)

dxα dx3 if u ∈W 1,p(Ω; R3),

+∞ otherwise,

(1.2)

with 1 < p <∞, where we assume that W : Ω × R2 × R3×3 → R satisfies the following hypotheses:

(H1) W (x, · ; · ) is continuous for a.e. x ∈ Ω;

(H2) W ( · , · ; ξ) is L3 ⊗ L2-measurable for all ξ ∈ R3×3;

(H3) there exists 0 < β < +∞ such that

1

β
|ξ|p − β 6 W (x, yα; ξ) 6 β(1 + |ξ|p), for a.e. x ∈ Ω and for all (yα, ξ) ∈ R2 × R3×3;

(H4) W (x, · ; ξ) is Q′-periodic for a.e. x ∈ Ω and all ξ ∈ R3×3, where we denote by Q′ = (0, 1)2 the unit cube
of R2.

Remark 1.1. We remark that due to hypothese (H1) and (H2) the function W is a Carathéodory integrand
as W (x, ·; ·) is continuous a.e. x ∈ Ω and W (·, yα; ξ) is measurable for all yα ∈ R2 and ξ ∈ R3×3. This
implies (see e.g. Proposition 3.3 in Braides and Defranceschi [9] or Proposition 1.1, Chapter VIII in Ekeland
and Temam [14]) that W is equivalent to a Borel function, that is there exist a Borel function W̃ such that
W (x, · ; · ) = W̃ (x, · ; · ) for a.e. x ∈ Ω. As a consequence the integral in (1.2) is well defined. As noted by
Allaire in [2], Section 5, the measurability of W in the pair (x, yα) does not let us conclude that, for fixed ξ,
the function x 7→ W (x, xα/ε; ξ) is measurable. The continuity of W (x, yα; ξ) in at least one of the variables x
or yα turns out to be sufficient to guarantee the measurability of this function. In the present paper, we decide
to impose the continuity in the yα variable. Note that we could also have considered W to be continuous in x
and measurable in yα but the proof of our main result does not hold anymore in this context.

As for notation, we will identify W 1,p(ω; R3) with the set of functions u ∈W 1,p(Ω; R3) such that D3u(x) = 0
for a.e. x ∈ Ω and we will use the notation Γ(Lp(Ω))-limit whenever we refer to the Γ-convergence with respect
to the usual metric in Lp(Ω; R3). We prove that

Theorem 1.2. If W satisfies (H1), (H2), (H3) and (H4), then the family {Iε}ε>0 Γ(Lp(Ω))-converges to the
functional Ihom : Lp(Ω; R3) → R defined by

Ihom(u) :=















2

∫

ω

Whom(xα;Dαu(xα)) dxα if u ∈W 1,p(ω; R3),

+∞ otherwise,

(1.3)

where Whom is given by
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Whom(xα; ξ) := lim
T→+∞

inf
ϕ

{ 1

2T 2

∫

(0,T )2×I

W
(

xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)
)

dyαdy3 :

ϕ ∈W 1,p((0, T )2 × I; R3), ϕ = 0 on ∂(0, T )2 × I
}

(1.4)

for a.e. xα ∈ ω and all ξ ∈ R3×2.

We note that the p-coercivity condition in (H3) ensures that the Γ-limit of Iε remains unchanged if we
consider the weak W 1,p-topology in place of the strong Lp-topology.

As a consequence of Theorem 1.2 we deduce the usual convergence of (quasi-)minimizers as stated in the
following corollary.

Corollary 1.3. Let {uε} be the sequence of quasi-minimizers defined in (1.1). Then {uε} is weakly relatively
compact in W 1,p(Ω; R3). Furthermore, any limit point u of this sequence is a solution of the minimization
problem

min
v−(xα,0)∈W

1,p
0

(ω;R3)

{

2

∫

ω

Whom(xα;Dαv(xα)) dxα −
∫

ω

(f + g+ + g−)(xα) · v(xα) dxα

}

,

where f := 1
2

∫

I
f(·, x3) dx3 and g± := g(·,±1).

This departs from the classical result (see Proposition 7.2 in Braides and Defranceschi [9]) due to the presence
of the boundary conditions. This difficulty is overcome thanks to Remark 3.2 which says that we can prescribe
the lateral boundary condition of the recovery sequence. We do not include the proof of this corollary because
it is similar to that of Corollary 1.3 in Bouchitté, Fonseca and Mascarenhas [8].

The plan of this work is as follows: In Section 2 we will discuss some properties of Whom, namely that it is
well defined, proving that the limit on the right hand side of (1.4) exists, and that Whom(xα; · ) is continuous
for a.e. xα ∈ ω. Section 3 is devoted to the proof of our main result, Theorem 1.2. The starting point of our
analysis is the Γ-limit integral representation result, Theorem 2.5 in Braides, Fonseca and Francfort [10]. Our
objective is to identify the integrand, showing that is coincides (almost everywhere) with Whom. An argument
of two-scale convergence will be used to prove that the integrand of the Γ-limit is less than Whom in Lemma 3.4,
taking an oscillating sequence of test functions for the Γ-limit (see also Báıa and Fonseca [5]). On the other hand,
since the problem at fixed ε and the asymptotic problem are of different nature (a three-dimensional problem
becoming a two-dimensional one), it appears a new difficulty to prove the converse inequality in Lemma 3.5.
Indeed, arguing like in classical relaxation, we would use the Scorza-Dragoni Theorem (see assumptions (H1)
and (H2)) to find a compact set K ⊂ Ω, the complement of which has arbitrarily small Lebesgue measure and
such that W is continuous on K×R2×R3×3. To localize our functional on small cubes so as to apply a uniform
continuity argument, we fix x0

α in ω and for all (xα, x3) ∈ K we must ensure that (x0
α, x3) ∈ K. But since

K is compact, we cannot expect this to be true, and this argument fails. To overcome this difficulty (see also
Babadjian and Francfort [4]), we need to replace W by a function which is (separately) continuous everywhere.
That is the aim of Lemma 4.1 which provides a continuous extension of Carathéodory functions and will be
proved in the Appendix in Section 4.

2 Preliminary results

In this section we will prove some properties of the stored energy Whom that will be of use in the proof of
Theorem 1.2.

Remark 2.1. To prove Theorem 1.2 we may assume, without loss of generality, that W is non negative. Indeed,
in view of (H3) it suffices to replace W by W + β.
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We begin by showing that in the definition (1.4) of Whom the limit as T → +∞ exists. The proof of this
property is a direct consequence of a result due to Licht and Michaille [18], Theorem 3.1 (see also Lemma 4.3.6
in Bouchitté, Fonseca and Mascarenhas [7]). We introduce the following new condition :

(H ′
1) W (x, yα; ·) is continuous for a.e. x ∈ Ω and all yα ∈ R2.

Remark 2.2. Note that (H1) implies (H ′
1). Furthermore, if W satisfies (H ′

1) and (H2), W is a Carathéodory
function in the following sense : W (·, ·; ξ) is L3 ⊗ L2-measurable for all ξ ∈ R3×3 and W (x, yα; ·) is continuous
for L3 ⊗ L2-a.e. (x, yα) ∈ Ω × R2. As a consequence, there exists a Borel function W ′ on Ω × R2 × R3×3 such
that W (x, yα; ·) = W ′(x, yα; ·) for L3 ⊗ L2-a.e. (x, yα) ∈ Ω × R2. Thus the integral in (1.4) is well defined. We
insist on the fact that, in principle, W ′ and W̃ (see Remark 1.1) need not to be equal.

Lemma 2.3. If W satisfies (H ′
1), (H2), (H3) and (H4), then

Whom(xα; ξ) = lim
T→+∞

inf
ϕ

{ 1

2T 2

∫

(0,T )2×I

W
(

xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)
)

dyαdy3 :

ϕ ∈W 1,p((0, T )2 × I; R3), ϕ = 0 on ∂(0, T )2 × I
}

exists for a.e. xα ∈ ω and all ξ ∈ R3×2.

Proof. Let xα ∈ ω be such that (H ′
1), (H3) and (H4) hold and let ξ ∈ R3×2. Define µ : A(R2) → R+ by

µ(A) := inf
ϕ

{1

2

∫

A×I

W (xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)) dyαdy3 :

ϕ ∈W 1,p(A× I; R3), ϕ = 0 on ∂A× I
}

,

where A(R2) stands for the family of open subsets of R2.
In view of Remark 2.2, µ is well defined and, thanks to (H3), it is a finite function. Moreover this set function

satisfies the assumptions of Theorem 3.1 in Licht and Michaille [18]. Indeed firstly, by (H3), µ(A) 6 β(1 +
|ξ|p)L2(A) for all A ∈ A(R2). Secondly, µ is subadditive, that is µ(C) 6 µ(A) + µ(B) for all A, B, C ∈ A(R2)
with A ∩ B 6= ∅ and C = A ∪ B. Finally, by (H4), for any i ∈ Z2, µ(A + i) = µ(A) for all A ∈ A(R2). As a
consequence the limit

lim
T→+∞

µ((0, T )2)

T 2
= Whom(xα; ξ)

exists. �

Remark 2.4. It can be proved that the limit as T → +∞ in (1.4) could be replaced by an infimum taken for
every T > 0 (see Braides and Defranceschi [9] or Báıa and Fonseca [5]).

Now that Whom is well defined, we will show that Whom(xα; ·) is continuous for a.e. xα ∈ ω for later use
in Theorem 1.2. To prove this property directly it seems that we would need a little bit more than only the
continuity condition imposed on W (x, yα; ·) (e.g. a p-Lipschitz condition). We remark that if W (x, yα; ·) was
quasiconvex, then by the p-growth condition (H3), W (x, yα; ·) would satisfy a p-Lipschitz condition (see Lemma
2.7 below). Since we do not want to a priori restrict too much the stored energy density, in order to compensate
for this lack of regularity we prove first in Lemma 2.6 that the value of Whom does not change if we replace W
by its quasiconvexification QW (see Remark 2.5 below).

5



Remark 2.5. For a.e. x ∈ Ω, all yα ∈ R2 and all ξ ∈ R3×3 define

QW (x, yα; ξ) := [QW (x, yα; · )](ξ)
where QW (x, yα; · ) stands for the usual quasiconvexification of W (x, yα; · ). Then, the function QW (x, yα; · )
is quasiconvex (see e.g. Dacorogna [12]) and if W satisfies (H1), (H2), (H3) and (H4), so does QW except that
QW (x, ·; ξ) may only be upper semicontinuous (as the infimum of continuous functions) for a.e. x ∈ Ω and all
ξ ∈ R3×3. In particular, since QW satisfies (H ′

1), (H2), (H3) and (H4), by Lemma 2.3 it follows that

(QW )hom(xα; ξ) = lim
T→+∞

inf
ϕ

{ 1

2T 2

∫

(0,T )2×I

QW
(

xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)
)

dyαdy3 :

ϕ ∈W 1,p((0, T )2 × I; R3), ϕ = 0 on ∂(0, T )2 × I
}

exists for a.e. xα ∈ ω and all ξ ∈ R3×2.

Lemma 2.6. If W satisfies (H1), (H2), (H3) and (H4), then (QW )hom(xα; ξ) = Whom(xα; ξ) for a.e. xα ∈ ω
and all ξ ∈ R3×2.

Proof. Let xα ∈ ω be such that both (QW )hom(xα; · ) and Whom(xα; · ) are well defined. Since W > QW ,
we have Whom(xα; ξ) > (QW )hom(xα; ξ) for all ξ ∈ R3×2. Let us prove now the converse inequality. Let
ξ ∈ R3×2. For each n > 0, let Tn ∈ N and ϕn ∈ W 1,∞((0, Tn)2 × I; R3) satisfying ϕn = 0 on ∂(0, Tn)2 × I, be
such that

(QW )hom(xα; ξ) +
1

n
>

1

2T 2
n

∫

(0,Tn)2×I

QW (xα, y3, yα; ξ +Dαϕn(y)|D3ϕn(y)) dyα dy3.

The Lipschitz regularity of ϕn may be ensured because of the density ofW 1,∞((0, Tn)2×I; R3) inW 1,p((0, Tn)2×
I; R3) together with the p-growth condition (H3). Thus

(QW )hom(xα; ξ) > lim sup
n→+∞

1

2T 2
n

∫

(0,Tn)2×I

QW (xα, y3, yα; ξ +Dαϕn(y)|D3ϕn(y)) dyα dy3. (2.1)

For each n ∈ N fixed, by Acerbi-Fusco Relaxation Theorem (see Lemma III.1 and Statement III.7 in [1]) and
Remark 2.1, there exists a sequence {ϕn,k}k ⊂ W 1,∞((0, Tn)2 × I; R3) satisfying ϕn,k = ϕn on ∂[(0, Tn)2 × I]
with ϕn,k −−−−⇀

k→∞
ϕn and such that

1

2T 2
n

∫

(0,Tn)2×I

QW (xα, y3, yα; ξ +Dαϕn(y)|D3ϕn(y)) dyα dy3

= lim
k→+∞

1

2T 2
n

∫

(0,Tn)2×I

W (xα, y3, yα; ξ +Dαϕn,k(y)|D3ϕn,k(y)) dyα dy3.

From (2.1) we have

(QW )hom(xα; ξ) > lim inf
n→+∞

lim inf
k→+∞

1

2T 2
n

∫

(0,Tn)2×I

W (xα, y3, yα; ξ +Dαϕn,k(y)|D3ϕn,k(y)) dyα dy3

> lim inf
n→∞

inf
ϕ

{ 1

2T 2
n

∫

(0,Tn)2×I

W (xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)) dyαdy3 :

ϕ ∈W 1,p((0, Tn)2 × I; R3), ϕ = 0 on ∂(0, Tn)2 × I
}

= Whom(xα; ξ).

�

We are now in position to prove the continuity of Whom in its second variable :
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Lemma 2.7. Let W satisfying (H1), (H2), (H3) and (H4), then Whom(xα; · ) is continuous on R3×2 for a.e.
xα ∈ ω.

Proof. We observe that by the p-growth condition in (H3) and Remark 2.5, QW satisfies a p-Lipschitz condition
(see Marcellini [19]): There exists β > 0 such that for all yα ∈ R2 and a.e. x ∈ Ω,

|QW (x, yα; ξ1) −QW (x, yα; ξ2)| 6 β(1 + |ξ1|p−1 + |ξ2|p−1)|ξ1 − ξ2|, ξ1, ξ2 ∈ R3×3. (2.2)

Take xα ∈ ω such that both (QW )hom(xα; · ) and Whom(xα; · ) are well defined. By Lemma 2.6 we have
(QW )hom(xα; · ) = Whom(xα; · ). Given ξ ∈ R3×2 let ξn → ξ in R3×2. From the definition of Whom(xα; ξ), for
fixed δ > 0 choose T ∈ N and ϕ ∈W 1,p((0, T )2 × I; R3), ϕ = 0 on ∂(0, T )2 × I, such that

Whom(xα; ξ) + δ >
1

2T 2

∫

(0,T )2×I

W (xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)) dyαdy3. (2.3)

Therefore, Remark 2.4 yields

lim sup
n→+∞

Whom(xα; ξn) 6 lim sup
n→+∞

1

2T 2

∫

(0,T )2×I

W (xα, y3, yα; ξn +Dαϕ(y)|D3ϕ(y)) dyαdy3

=
1

2T 2

∫

(0,T )2×I

W (xα, y3, yα; ξ +Dαϕ(y)|D3ϕ(y)) dyαdy3

due to hypothesis (H1), the p-growth condition in (H3) and Lebesgue’s Dominated Convergence Theorem. So
by (2.3) and letting δ → 0 we conclude that

lim sup
n→+∞

Whom(xα; ξn) 6 Whom(xα; ξ). (2.4)

Similarly, for each n ∈ N consider Tn ∈ N (Tn ↗ +∞) and ϕn ∈W 1,p((0, Tn)2×I; R3), ϕn = 0 on ∂(0, Tn)2×I,
such that

Whom(xα; ξn) +
1

n
>

1

2T 2
n

∫

(0,Tn)2×I

QW (xα, y3, yα; ξn +Dαϕn(y)|D3ϕn(y)) dyαdy3

=
1

2

∫

Q′×I

QW (xα, y3, Tnyα; ξn +Dαϕn(Tnyα, y3)|D3ϕn(Tnyα, y3)) dyαdy3

=
1

2

∫

Q′×I

QW (xα, y3, Tnyα; ξn +Dαψn(y)|TnD3ψn(y)) dyαdy3,

after a change of variables and where ψn(y) := 1
Tn
ϕn(Tnyα, y3). Clearly the function ψn belongs to W 1,p(Q′ ×

I; R3) and ψn = 0 on ∂Q′×I. By the p-coercivity hypothesis in (H3) and (2.4), the sequence {(Dαψn|TnD3ψn)}
is bounded in Lp(Q′ × I; R3×3) uniformly in n. We can write that

lim inf
n→+∞

∫

Q′×I

QW (xα, y3, Tnyα; ξn +Dαψn(y)|TnD3ψn(y)) dyαdy3

> lim inf
n→+∞

∫

Q′×I

[

QW (xα, y3, Tnyα; ξn +Dαψn(y)|TnD3ψn(y))

−QW (xα, y3, Tnyα; ξ +Dαψn(y)|TnD3ψn(y))
]

dyα dy3

+ lim inf
n→+∞

∫

Q′×I

QW (xα, y3, Tnyα; ξ +Dαψn(y)|TnD3ψn(y)) dyαdy3.
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Using (2.2), Hölder inequality, the fact that {‖(Dαψn|TnD3ψn)‖Lp(Q′×I;R3×3)} is bounded and ξn → ξ, we
obtain

lim inf
n→+∞

∫

Q′×I

[

QW (xα, y3, Tnyα; ξn +Dαψn(y)|TnD3ψn(y))

−QW (xα, y3, Tnyα; ξ +Dαψn(y)|TnD3ψn(y))
]

dyα dy3 = 0,

and consequently

lim inf
n→+∞

Whom(xα; ξn) > lim inf
n→+∞

1

2

∫

Q′×I

QW (xα, y3, Tnyα; ξ +Dαψn(y)|TnD3ψn(y)) dyαdy3

= lim inf
n→+∞

1

2T 2
n

∫

(0,Tn)2×I

QW (xα, y3, yα; ξ +Dαϕn(y)|D3ϕn(y)) dyαdy3

> (QW )hom(xα; ξ)

= Whom(xα; ξ). (2.5)

From (2.4) and (2.5), we conclude that Whom(xα; ·) is continuous at ξ. �

3 Proof of Theorem 1.2

We start by localizing our functionals. Representing by A(ω) the class of all open subsets of ω, define
Iε : Lp(Ω; R3) ×A(ω) → R by

Iε(u;A) :=















∫

A×I

W

(

xα, x3,
xα

ε
;Dαu(x)

∣

∣

∣

1

ε
D3u(x)

)

dxα dx3 if u ∈W 1,p(A× I; R3),

+∞ otherwise.

We will prove that the family of functionals {Iε(·;A)}ε>0 Γ-converges with respect to the Lp(A × I; R3)-
topology to the functional Ihom(·;A) : Lp(Ω; R3) → R

Ihom(u;A) :=















2

∫

A

Whom(xα;Dαu(xα)) dxα if u ∈W 1,p(A; R3),

+∞ otherwise,

(3.1)

for all A ∈ A(ω). As a consequence, taking A = ω yields Theorem 1.2.
For any A ∈ A(ω) and any sequence {εj} ↘ 0+, consider I{εj}(·;A) : Lp(Ω; R3) → R the Γ-lower limit of

{Iεj
(·;A)}j∈N,

I{εj}(u;A) := inf
{uj}

{

lim inf
j→+∞

Iεj
(uj ;A) : uj → u in Lp(A× I; R3)

}

. (3.2)

Remark 3.1. In view of the coercivity condition (H4), for all A ∈ A(ω) we have that I{εj}(u;A) = +∞
whenever u ∈ Lp(Ω; R3) \W 1,p(A; R3), hence our objective is to characterize I{εj}(u;A) for u ∈W 1,p(A; R3).

By virtue of Remark 3.1, together with Theorem 2.5 in Braides, Fonseca and Francfort [10], it follows that
every sequence {εj} admits a subsequence {εjn

} ≡ {εn} such that I{εn}( · ;A) defined in (3.2) is the Γ(Lp(A×I))-
limit of {Iεn

( · ;A)}n∈N for all A ∈ A(ω). Further there exists a Carathéodory function W{εn} : ω × R3×2 → R

such that
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I{εn}(u;A) = 2

∫

A

W{εn}(xα;Dαu(xα)) dxα, (3.3)

for all A ∈ A(ω) and all u ∈W 1,p(A; R3).
Our aim is to show that I{εn}(·;A) = Ihom(·;A) on W 1,p(A; R3) for all A ∈ A(ω). Given A ∈ A(ω), in view

of the integral representation (3.3) and (3.1), it is enough to show that W{εn}(xα; ξ) = Whom(xα; ξ) for a.e.

xα ∈ A and all ξ ∈ R3×2, and thus to work with affine functions instead of general Sobolev functions. We will
prove that W{εn}(xα; ξ) = Whom(xα; ξ) for a.e. xα ∈ ω and all ξ ∈ R3×2.

Remark 3.2. Lemma 2.6 of Braides, Fonseca and Francfort [10] implies that I{εj}(u;A) is unchanged if the
approximating sequences {uj} are constrained to match the lateral boundary condition of their target, i.e.
uj ≡ u on ∂A× I.

From now onward, {εn} will denote a subsequence of {εj} for which the Γ(Lp(A×I))-limit of {Iεn
(·;A)}n∈N

exists and coincides with I{εn}(·;A) for all A ∈ A(ω).

For each T > 0 consider ST a countable set of functions in C∞([0, T ]2 × [−1, 1]; R3) that is dense in

WT = {ϕ ∈W 1,p((0, T )2 × I; R3) : ϕ = 0 on ∂(0, T )2 × I}.

Definition 3.3. Let L be the set of Lebesgue points x0
α for all functions

W{εn}(·; ξ), Whom(·; ξ) (3.4)

xα 7→
∫

Q′×I

W (xα, y3, T yα; ξ +Dαϕ(Tyα, y3)|D3ϕ(Tyα, y3)) dyα dy3, (3.5)

with T ∈ N, ϕ ∈ ST and ξ ∈ Q3×2 where Whom(x0
α; · ) is well defined.

We have that L2(ω \ L) = 0. Given x0
α ∈ L, we denote by Q′(x0

α, δ) the cube in R2 centered in x0
α and of

side length δ > 0 where δ is small enough so that Q′(x0
α, δ) ∈ A(ω).

To prove that W{εn}(xα; ξ) = Whom(xα; ξ) for a.e. xα ∈ ω and all ξ ∈ R3×2 we first show in Lemmas 3.4 and
3.5 below that both functions coincide on L × Q3×2. The general case will only be treated at the end of that
section using the Carathéodory property of both integrands.

Fix ξ ∈ Q3×2 and set v(x) := ξ · xα. By (3.3) and (3.4)

W{εn}(x
0
α; ξ) = lim

δ→0

1

δ2

∫

Q′(x0
α,δ)

W{εn}(xα; ξ) dxα

= lim
δ→0

I{εn}(v;Q
′(x0

α, δ))

2δ2
. (3.6)

Lemma 3.4. W{εn}(x
0
α; ξ) 6 Whom(x0

α; ξ) for all x0
α ∈ L and all ξ ∈ Q3×2.

Proof. Given k ∈ N, let Tk ∈ N and ϕk ∈ STk
with ϕk = 0 on ∂(0, Tk)2 × I, be such that

Whom(x0
α; ξ) +

1

k
>

1

2Tk
2

∫

(0,Tk)2×I

W (x0
α, y3, yα; ξ +Dαϕk(y)|D3ϕk(y)) dy.

This is possible because of the continuity properties (H1) of W , the growth conditions (H3) and the density of
STk

in WTk
. Extend ϕk periodically with period Tk to R2×I. For x ∈ R2×I, define uk

n(x) := ξ·xα+εnϕk(xα

εn
, x3).

For fixed k, uk
n → v in Lp(Q′(x0

α, δ) × I; R3) as n→ ∞, hence, by (3.6)
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W{εn}(x
0
α; ξ) 6 lim inf

δ→0
lim inf
n→+∞

1

2δ2

∫

Q′(x0
α,δ)×I

W

(

xα, x3,
xα

εn

;Dαu
k
n

∣

∣

∣

1

εn

D3u
k
n

)

dxαdx3

= lim inf
δ→0

lim inf
n→+∞

1

2δ2

∫

Q′(x0
α,δ)×I

W

(

xα, x3,
xα

εn

; ξ +Dαϕk

(

xα

εn

, x3

)

∣

∣

∣
D3ϕk

(

xα

εn

, x3

))

dxαdx3.

Define

hk(xα, yα) :=

∫ 1

−1

W (xα, x3, Tkyα; ξ +Dαϕk(Tkyα, x3)|D3ϕk(Tkyα, x3))dx3, for xα ∈ ω and yα ∈ R2.

The continuity of W with respect to yα, its measurability and periodicity properties, and the fact that Tk ∈ N

lead us to conclude that the function hk ∈ L1(Q′(x0
α; δ); Cper(Q

′)) for fixed δ > 0, where Cper(Q
′) denotes the

space of Q′-periodic and continuous functions defined on R2 (see Lemma 5.3 in Allaire [2]). Lemma 5.2 in [2]
together with Fubini’s Theorem yields to

lim
n→+∞

∫

Q′(x0
α,δ)×I

W

(

xα, x3,
xα

εn

; ξ +Dαϕk

(

xα

εn

, x3

)

∣

∣

∣
D3ϕk

(

xα

εn

, x3

))

dxαdx3

= lim
n→+∞

∫

Q′(x0
α,δ)

hk

(

xα,
xα

Tkεn

)

dxα

=

∫

Q′(x0
α,δ)

∫

Q′

hk(xα, yα) dyα dxα

=

∫

Q′(x0
α,δ)

∫

Q′×I

W (xα, x3, Tkyα; ξ +Dαϕk(Tkyα, x3)|D3ϕk(Tkyα, x3))dyα dx3 dxα.

Using (3.5) we have

W{εn}(x
0
α; ξ)

6 lim inf
δ→0

1

2δ2

∫

Q′(x0
α,δ)

∫

Q′×I

W (xα, x3, Tkyα; ξ +Dαϕk(Tkyα, x3)|D3ϕk(Tkyα, x3))dyα dx3dxα

=
1

2

∫

Q′×I

W (x0
α, x3, Tkyα; ξ +Dαϕk(Tkyα, x3)|D3ϕk(Tkyα, x3))dyα dx3

6 Whom(x0
α; ξ) +

1

k
.

Letting k → ∞ we assert the claim.

�

Note that the same proof could be used to prove Lemma 2.5 in Babadjian and Francfort [4].

Lemma 3.5. W{εn}(x
0
α; ξ) > Whom(x0

α; ξ) for all x0
α ∈ L and all ξ ∈ Q3×2.

Proof. Let {vn} ⊂W 1,p(Q′(x0
α, δ) × I; R3) be a recovering sequence of the Γ-limit, i.e.

vn → 0 in Lp(Q′(x0
α, δ) × I; R3)

and
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I{εn}(v;Q
′(x0

α, δ)) = lim
n→+∞

∫

Q′(x0
α,δ)×I

W

(

xα, x3,
xα

εn

; ξ +Dαvn

∣

∣

∣

1

εn

D3vn

)

dxαdx3.

According to Theorem 1.1 in Bocea and Fonseca [6], there exists a subsequence of {εn} (not relabelled) and a
sequence {un} ⊂ W 1,p(Q′(x0

α, δ) × I; R3) such that, upon setting En := {x ∈ Q′(x0
α, δ) × I : un(x) = vn(x)},

then































un → 0 in Lp(Q′(x0
α, δ) × I; R3),

{∣

∣

∣

(

Dαun

∣

∣

1
εn
D3un

)∣

∣

∣

p}

is equi-integrable,

lim
n→+∞

L3([Q′(x0
α, δ) × I] \ En) = 0.

(3.7)

Thus, in view of the p-growth condition (H3) together with (3.7) and Remark 2.1,

I{εn}(v;Q
′(x0

α, δ)) > lim sup
n→+∞

∫

En

W

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dxαdx3

= lim sup
n→+∞

∫

Q′(x0
α,δ)×I

W

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dxαdx3

− lim sup
n→+∞

∫

[Q′(x0
α,δ)×I]\En

W

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dxαdx3

> lim sup
n→+∞

∫

Q′(x0
α,δ)×I

W

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dxαdx3.

For any h ∈ N, we split Q′(x0
α, δ) into h2 disjoints cubes Q′

i,h of side length δ/h so that Q′(x0
α, δ) =

⋃h2

i=1Q
′
i,h

and

I{εn}(v;Q
′(x0

α, δ)) > lim sup
h→+∞

lim sup
n→+∞

h2

∑

i=1

∫

Q′

i,h
×I

W

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dx. (3.8)

For every η > 0 and λ > 0, let Kη ⊂ Ω and W η,λ be given by Lemma 4.1 below (with N = d = 3, m = 2
and f = W ). Then

L3(Ω \Kη) < η. (3.9)

On the other hand, define

Rλ
n :=

{

x ∈ Q′(x0
α, δ) × I :

∣

∣

∣

∣

(

ξ +Dαun(x)
∣

∣

∣

1

εn

D3un(x)

)∣

∣

∣

∣

6 λ

}

.

Chebyshev’s inequality implies that there exists a constant C > 0 – which does not depend on n or λ – such
that

L3([Q′(x0
α, δ) × I] \Rλ

n) <
C

λp
. (3.10)

Since W and W η,λ coincide on Kη × R2 ×B(0, λ), where in the sequel the set B(0, λ) stands for the closed
ball {ξ ∈ R3×3 : |ξ| 6 λ} of R3×3, we get in view of (3.8)
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I{εn}(v;Q
′(x0

α, δ)) >

lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2

∑

i=1

∫

[Q′

i,h
×I]∩Rλ

n∩Kη

W η,λ

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dx.

By virtue of (4.1) below and (3.9),

h2

∑

i=1

∫

([Q′

i,h
×I]∩Rλ

n)\Kη

W η,λ

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dx 6 β(1 + λp)η −−−→
η→0

0,

uniformly in (n, h), so that

I{εn}(v;Q
′(x0

α, δ)) >

lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2

∑

i=1

∫

[Q′

i,h
×I]∩Rλ

n

W η,λ

(

xα, x3,
xα

εn

; ξ +Dαun

∣

∣

∣

1

εn

D3un

)

dx.

Fix yα ∈ Q′. Since W η,λ(·, yα; · ) is continuous, it is uniformly continuous on Ω × B(0, λ), and we define the
modulus of continuity ωη,λ : Q′ × R+ → R+ by

ωη,λ(yα, t) := sup
(x,ξ), (x′,ξ′)∈Ω×B(0,λ)

{|W η,λ(x, yα; ξ) −W η,λ(x′, yα; ξ′)| : |(x; ξ) − (x′; ξ′)| 6 t}.

Then























ωη,λ(·, t) is lower semicontinuous for all t ∈ R+,

ωη,λ(yα, ·) is continuous and increasing for all yα ∈ Q′,

ωη,λ(yα, 0) = 0 for all yα ∈ Q′,

and

|W η,λ(x, yα; ξ) −W η,λ(x′, yα; ξ′)| 6 ωη,λ(yα, |x− x′| + |ξ − ξ′|) for all (x, ξ), (x′, ξ′) ∈ Ω ×B(0, λ). (3.11)

The first property is a consequence of the fact that the supremum of continuous functions in lower semicontin-
uous, while the other ones are classical properties of moduli of continuity.

For all t ∈ R+, we extend ωη,λ(·, t) to R2 by Q′-periodicity. Since W η,λ(x, · ; ξ) is Q′-periodic, inequality
(3.11) holds for all yα ∈ R2. Consequently, for every (xα, x3) ∈ [Q′

i,h × I] ∩Rλ
n and every x′α ∈ Q′

i,h,

∣

∣

∣

∣

W η,λ

(

xα, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

−W η,λ

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)
∣

∣

∣

∣

6 ωη,λ

(

xα

εn

, |xα − x′α|
)

6 ωη,λ

(

xα

εn

,

√
2δ

h

)

.
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We get, after integration in (xα, x3, x
′
α) and summation,

h2

∑

i=1

h2

δ2

∫

Q′

i,h

{

∫

Rλ
n∩[Q′

i,h
×I]

∣

∣

∣

∣

W η,λ

(

xα, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

−W η,λ

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)∣

∣

∣

∣

dx

}

dx′α

6 2

∫

Q′(x0
α,δ)

ωη,λ

(

xα

εn

,

√
2δ

h

)

dxα.

Riemann-Lebesgue’s Lemma applied to the Q′-periodic function ωη,λ( · ,
√

2δ/h) yields,

lim
n→+∞

2

∫

Q′(x0
α,δ)

ωη,λ

(

xα

εn

,

√
2δ

h

)

dxα = 2δ2
∫

Q′

ωη,λ

(

xα,

√
2δ

h

)

dxα,

and by Beppo-Levi’s Monotone Convergence Theorem

lim
h→+∞

2δ2
∫

Q′

ωη,λ

(

xα,

√
2δ

h

)

dxα = 0.

Hence, denoting by lim sup
λ,η,h,n

the successive lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

,

I{εn}(v;Q
′(x0

α, δ)) >

lim sup
λ,η,h,n

h2

∑

i=1

h2

δ2

∫

Q′

i,h

{

∫

[Q′

i,h
×I]∩Rλ

n

W η,λ

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dxαdx3

}

dx′α.

Define the following sets which depend on all parameters (η, λ, i, h, n) :























T := {(x′α, xα, x3) ∈ Q′
i,h ×Q′

i,h × I : (x′α, x3) ∈ Kη and (xα, x3) ∈ Rλ
n},

T1 := {(x′α, xα, x3) ∈ Q′
i,h ×Q′

i,h × I : (x′α, x3) 6∈ Kη and (xα, x3) ∈ Rλ
n},

T2 := {(x′α, xα, x3) ∈ Q′
i,h ×Q′

i,h × I : (xα, x3) 6∈ Rλ
n},

and note that Q′
i,h ×Q′

i,h × I = T ∪ T1 ∪ T2. Since W (·, yα; · ) and W η,λ(·, yα; · ) coincide on Kη ×B(0, λ), we
have

I{εn}(v;Q
′(x0

α, δ))

> lim sup
λ,η,h,n

h2

∑

i=1

h2

δ2

∫

T

W η,λ

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dx dx′α

= lim sup
λ,η,h,n

h2

∑

i=1

h2

δ2

∫

T

W

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dx dx′α. (3.12)

We will prove that the corresponding terms over T1 and T2 are zero. Indeed, in view of (3.9) and the p-growth
condition (H3),
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h2

∑

i=1

h2

δ2

∫

T1

W

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dx dx′α

6

h2

∑

i=1

h2

δ2
L2(Q′

i,h)L3([Q′
i,h × I] \Kη)β(1 + λp)

< β(1 + λp)η −−−→
η→0

0, (3.13)

uniformly in (n, h). The bound from above in (H3), the equi-integrability of
{∣

∣

∣

(

Dαun

∣

∣

1
εn
D3un

)∣

∣

∣

p}

and (3.10)

imply that

h2

∑

i=1

h2

δ2

∫

T2

W

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dx dx′α

6

h2

∑

i=1

h2

δ2
L2(Q′

i,h)β

∫

[Q′

i,h
×I]\Rλ

n

(

1 +

∣

∣

∣

∣

(

Dαun

∣

∣

∣

1

εn

D3un

)
∣

∣

∣

∣

p)

dx

= β

∫

[Q′(x0
α,δ)×I]\Rλ

n

(

1 +

∣

∣

∣

∣

(

Dαun

∣

∣

∣

1

εn

D3un

)∣

∣

∣

∣

p)

dx −−−−−→
λ→+∞

0, (3.14)

uniformly in (η, n, h). Thus, in view of (3.12), (3.13), (3.14), Fatou’s Lemma yields

I{εn}(v;Q
′(x0

α, δ))

> lim sup
h→+∞

lim sup
n→+∞

h2

∑

i=1

h2

δ2

∫

Q′

i,h

∫

Q′

i,h
×I

W

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dxαdx3dx
′
α

> lim sup
h→+∞

h2

∑

i=1

h2

δ2

∫

Q′

i,h

lim inf
n→+∞

∫

Q′

i,h
×I

W

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dxαdx3dx
′
α.

Fix x′α ∈ Q′
i,h such that Whom(x′α; ξ) is well defined and set Z(x; ξ) := W (x′α, x3, xα; ξ). It is easy to check

that Z is a Carathéodory integrand hence, applying Theorem 4.2 of Braides, Fonseca and Francfort [10], we get
since un → 0 in Lp(Q′(x0

α, δ) × I; R3),

2
δ2

h2
Z(ξ) 6 lim inf

n→+∞

∫

Q′(x0
α,δ)×I

Z

(

xα

εn

, x3; ξ +Dαun(x)
∣

∣

∣

1

ε
D3un(x)

)

dx,

where

Z(ξ) := inf
T>0, ϕ

{

∫

(0,T )2×I

Z(x; ξ +Dαϕ(x)|D3ϕ(x)) dx :

ϕ ∈W 1,p((0, T )2 × I; R3), ϕ = 0 on ∂(0, T )2 × I
}

.

In view of the previous formula together with (1.4) and Remark 2.4, we have that Z(ξ) = Whom(x′α; ξ). Then

lim inf
n→+∞

∫

Q′

i,h
×I

W

(

x′α, x3,
xα

εn

; ξ +Dαun(xα, x3)
∣

∣

∣

1

εn

D3un(xα, x3)

)

dxαdx3 >
2δ2

h2
Whom(x′α; ξ),
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and so

I{εn}(v;Q
′(x0

α, δ)) > lim sup
h→+∞

h2

∑

i=1

h2

δ2

∫

Q′

i,h

2δ2

h2
Whom(x′α; ξ)dx′α = 2

∫

Q′(x0
α,δ)

Whom(x′α; ξ)dx′α.

Dividing both sides of the previous inequality by δ2 and passing to the limit when δ ↘ 0+, we obtain by
(3.4) and (3.6)

W{εn}(x
0
α; ξ) > Whom(x0

α; ξ).

�

Proposition 3.6. W{εn}(xα; ξ) = Whom(xα; ξ) for a.e. xα ∈ ω and for all ξ ∈ R3×2.

Proof. Let E be the intersection of the set L (see Definition 3.3) with the subset of points x0
α ∈ ω where

W{εn}(x
0
α; · ) and Whom(x0

α; · ) are continuous (see Lemma 2.7). Then L2(ω \ E) = 0 and by Lemma 3.4 and

3.5 we have that W{εn}(x
0
α; ξ) = Whom(x0

α; ξ) for all x0
α ∈ E and for all ξ ∈ Q3×2. Since W{εn}(x

0
α; · ) and

Whom(x0
α; · ) are continuous for each x0

α ∈ E, the equality W{εn}(x
0
α; ξ) = Whom(x0

α; ξ) holds true for all x0
α ∈ E

and all ξ ∈ R3×2.
�

Corollary 3.7. For any A ∈ A(ω), Γ(Lp(A×I))- lim
ε→0

Iε( · ;A) = Ihom( · ;A), where Ihom(·;A) is the functional

defined in (3.1).

Proof. From Proposition 3.6 we can conclude that Ihom(·;A) is well defined and

Γ(Lp(A× I))- lim
n→+∞

Iεn
( · ;A) = Ihom( · ;A)

for all A ∈ A(ω) (see Remark 3.1). Since this limit does not depend upon the extracted subsequence, in view
of Proposition 7.11 in Braides and Defranceschi [9], the whole sequence {Iε( · ;A)}ε>0 Γ(Lp(A× I))-converges
to Ihom( · ;A) for each A ∈ A(ω).

�

The proof of Theorem 1.2 comes as a consequence of Corollary 3.7 taking A = ω.

4 Appendix

We now prove a technical result of extension of Carathéodory functions that was useful in the proof of
Lemma 3.5. The argument used is very close to that of Theorem 1, Section 1.2 in Evans and Gariepy [15].

Lemma 4.1. Let Ω ⊂ RN be a bounded open set and f : Ω × Rm × Rd×N → R a function such that























f(x, · ; · ) is continuous for a.e. x ∈ Ω;

f( · , · ; ξ) is LN ⊗ Lm-measurable for all ξ ∈ RN ;

f(x, · ; ξ) is (0, 1)m-periodic for a.e. x ∈ Ω and all ξ ∈ Rd×N .

Assume also that there exists β > 0 and 0 < p <∞ such that

1

β
|ξ|p − β 6 f(x, y; ξ) 6 β(1 + |ξ|p), for a.e. x ∈ Ω and all (y, ξ) ∈ Rm × Rd×N .
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Then for any η > 0 and λ > 0 there exist a compact set Kη ⊂ Ω and a function fη,λ : RN ×Rm×Rd×N → R

such that







































LN (Ω \Kη) < η,

fη,λ(x, y; ξ) = f(x, y; ξ) for all (x, y; ξ) ∈ Kη × Rm ×B(0, λ),

fη,λ( · , y; · ) is continuous for all y ∈ Rm,

fη,λ(x, · ; ξ) is continuous and (0, 1)m-periodic for all (x, ξ) ∈ RN × Rd×N ,

and

−β 6 fη,λ(x, y; ξ) 6 β(1 + λp), for all (x, y, ξ) ∈ RN × Rm × Rd×N . (4.1)

Proof. Since f is a Carathéodory function, by Scorza Dragoni’s Theorem (see Ekeland and Teman [14])
for all η > 0 there exists a compact set Kη ⊂ Ω satisfying LN (Ω \Kη) < η and such that f is continuous on
Kη ×Rm ×Rd×N . Let Cη,λ := Kη ×B(0, λ) ≡ C (to simplify notation) and U η,λ := (RN ×Rd×N ) \Cη,λ ≡ U .
Fix (s, F ) ∈ C, and for all (x, ξ) ∈ U set

uη,λ

(s,F )(x, ξ) := max

{

2 − |(s, F ) − (x, ξ)|
dist((x, ξ), C)

, 0

}

≡ u(s,F )(x, ξ).

Clearly























u(s,F ) is continuous on U,

0 6 u(s,F ) 6 1,

u(s,F )(x, ξ) = 0 if and only if |(s, F ) − (x, ξ)| > 2dist((x, ξ), C).

Let {sη
j }j>1 ≡ {sj}j>1 and {Fλ

j }j>1 ≡ {Fj}j>1 be a countable dense family of subsets of Kη and B(0, λ),
respectively. Define

ση,λ(x, ξ) :=
∑

j>1

2−ju(sj ,Fj)(x, ξ) ≡ σ(x, ξ) for all (x, ξ) ∈ U.

Since σ is the uniform limit of a sequence of continuous functions in U , then σ is continuous in U . Moreover,
for all (x, ξ) ∈ U , 0 < σ(x, ξ) 6 1. Indeed, assume that σ(x, ξ) = 0 for some (x, ξ) ∈ U . Then, for all
j > 1, u(sj ,Fj)(x, ξ) = 0 and thus |(sj , Fj) − (x, ξ)| > 2 dist((x, ξ), C). The density of {sj , Fj} in C yields that
|(s, F ) − (x, ξ)| > 2 dist((x, ξ), C) for all (s, F ) ∈ C. We obtain a contradiction if we choose (s, F ) to be those
points of C such that dist((x, ξ), C) = dist((x, ξ), (s, F )) so σ(x, ξ) > 0 for all (x, ξ) ∈ U . Consequently, the
function

(x, ξ) 7→ vk(x, ξ) ≡ vη,λ
k (x, ξ) :=

2−ku(sk,Fk)(x, ξ)

σ(x, ξ)

is well defined and continuous in U . Moreover it satisfies that

0 6 vk(x, ξ) 6 1,
∑

k>1

vk(x, ξ) = 1 for all (x, ξ) ∈ U.

Fix y ∈ Rm and define the continuous extension of f(·, y; · ) outside C as
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fη,λ(x, y; ξ) =







f(x, y, ξ) if (x, ξ) ∈ C,
∑

k>1

vk(x; ξ) f(sk, y;Fk) if (x, ξ) ∈ U.

Obviously, we have fη,λ(x, y; ξ) = f(x, y; ξ) for all (x, y; ξ) ∈ Kη × Rm × B(0, λ). On the other hand, if
(x, y, ξ) is such that (x, ξ) ∈ U , in view of the p-growth and the p-coercivity condition on f we get that

−β 6 fη,λ(x, y; ξ) 6
∑

k>1

vk(x; ξ)β(1 + |Fk|p) 6 β(1 + λp).

Since we have that

sup
y∈Rm, (x,ξ)∈U

[

∑

k>n

∣

∣2−ku(sk,Fk)(x, ξ)f(sk, y;Fk)
∣

∣

]

6 β(1 + λp)
∑

k>n

2−k −−−−−→
n→+∞

0, (4.2)

then the function

(x, y; ξ) 7→
∑

k>1

2−ku(sk,Fk)(x, ξ)f(sk, y;Fk)

is continuous on {(x, y, ξ) : (x, ξ) ∈ U, y ∈ Rm}. In particular, for all (x, ξ) ∈ RN × Rd×N the function
fη,λ(x, · ; ξ) is continuous. Further, fη,λ(x, · ; ξ) it is (0, 1)m-periodic because if i ∈ Zm then for (x, ξ) ∈ U

fη,λ(x, y + i; ξ) =
∑

k>1

vk(x; ξ) f(sk, y + i;Fk) =
∑

k>1

vk(x; ξ) f(sk, y;Fk) = fη,λ(x, y; ξ).

Finally we prove the continuity of fη,λ(·, y;·). By (4.2) it suffices to show that for all (a,A) ∈ C

lim
U3(x,ξ)→(a,A)

fη,λ(x, y; ξ) = f(a, y;A).

As {(sj , Fj)}j>1 is dense in C and f(·, y; ·) is continuous on C, for every ε > 0 there exists δ > 0 such that
|f(a, y;A) − f(sj , y;Fj)| < ε for all j > 1 with |(a,A) − (sj , Fj)| < δ. Assume that |(x, ξ) − (a,A)| < δ/4 and
suppose that j > 1 is such that |(a,A) − (sj , Fj)| > δ. Then

δ 6 |(a,A) − (sj , Fj)| 6 |(a,A) − (x, ξ)| + |(x, ξ) − (sj , Fj)| 6
δ

4
+ |(x, ξ) − (sj , Fj)|,

and thus

|(x, ξ) − (sj , Fj)| >
3δ

4
> 2|(a,A) − (x, ξ)| > 2 dist((x, ξ), C).

Consequently, vj(x, ξ) = 0 if j is such that |(a,A) − (sj , Fj)| > δ, and so

|fη,λ(x, y; ξ) − f(a, y;A)| 6
∑

j>1, |(a,A)−(sj ,Fj)|<δ

vj(x, ξ)|f(sj , y;Fj) − f(a, y;A)| < ε,

because non zero terms of the sum are those which satisfy |f(a, y;A) − f(sj , y;Fj)| < ε. The continuity of
fη,λ(·, y; ·) now follows.

�
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(1974).

[15] L.C. Evans, R.F. Gariepy : Measure theory and fine properties of functions, Boca Raton, CRC Press
(1992).

[16] D. Fox, A. Raoult, J.C. Simo : A justification of nonlinear properly invariant plate theories, Arch. Rat.
Mech. Anat. 25 (1992) 257-199.

[17] H. Le Dret, A. Raoult : The nonlinear membrane model as variational limit of nonlinear three-dimensional
elasticity, J. Math. Pures, Appl. 74 (1995) 549-578.

[18] C. Licht, G. Michaille : Global-local subadditive ergodic theorems and application to homogenization in
elasticity, Annales Math. Blaise Pascal 9 (2002) 21-62.

[19] P. Marcellini : Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals,
Manuscripta Math. 51 (1985) 1-28.

18



[20] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM
J. Math. Anal. 20 (1989) 608-623.

[21] G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics, SIAM J. Math.
Anal. 21 (1990) 1394-1414.

[22] Y. C. Shu : Heterogeneous thin film of martensitic materials, Arch. Rat. Mech. Anal. 153 (2000) 39-90.

Jean-François Babadjian
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