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Abstract. Simulation is becoming an increasingly important tool, not only in materials science in a
general way, but in the study of grain growth in particular. Here we exhibit a consistent variational
approach to the mesoscale simulation of large systems of grain boundaries subject to Mullins
Equation of curvature driven growth. Simulations must be accurate and at a scale large enough to
have statistical significance. Moreover, they must be sufficiently flexible to use very general
energies and mobilities. We introduce this theory and its discretization as a dissipative system in
two and three dimensions. The approach has several interesting features. It consists in solving
very large systems of nonlinear evolution equations with nonlinear boundary conditions at triple
points or on triple lines. Critical events, the disappearance of grains and and the disappearance or
exhange of edges, must be accomodated. The data structure is curves in two dimensions and
surfaces in three dimensions. We discuss some consequences and challenges, including some ideas
about coarse graining the simulation.

Introduction

We discuss the mesoscale simulation of large networks of grains or interfaces in two and three
dimensions. We give a brief introduction to the format and explain our algorithm. Evolution is
governed by the Mullins Equations of curvature driven growth, discussed below, which consist of a
system of evolution partial differential equations for each boundary curve, in two dimensions, or
facet, in three dimensions. Grain boundaries typically meet at triple junctions, in two dimensions,
or on triple lines, in three dimensions, where a boundary condition is required. Here we enforce the
Herring Condition, a force balance. This is the natural boundary conditon for equilibrium of the
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Mullins Equation, a fact that may not be well known. The resulting system is dissipative for the
energy and the coarsening process may be viewed as a modified steepest descent for the total grain
boundary energy. Certain critical events, such as grain disappearance and the exchange or
disappearance of facets, must be accomodated. We describe our strategy for this which conserves
the dissipative character of the process. A special feature of our approach is that the data structure
consists only of curves, in two dimensions, and surfaces in three dimensions, which offers an
opportunity to work with large systems. It offers the opportunity to employ experimentally derived
energy densities and mobilities. Initial configurations may have statistically representative
properties derived from experimentally characterized microstructures.

For general perspectives, references, and methods relative to the area, we refer to [1].

Since, generally, the result of such a simulation must be interepreted in some statistical terms, we
are led to the companion issue of coarse graining in mesoscale simulation. By this we mean
understanding what distributions are reliable properties of the computed ensemble and what
equations they themselves satisfy. For reasons of space, we defer discussion of this to a future
work, but we present some results in this direction. We also refer to [2], where this simulation is
implemented to investigate anisotropy.

Mullins Equation and Herring Condition

The form of the Mullins Equation and the Herring Condition useful for algorithmic implementation
in large scale simulation may be derived by a variational procedure. Consider a network of grains
with facets which meet in triple lines. To begin, suppose given three facets represented as graphs
overan x = (x;,Xx) planein (x;,x,x3) space meeting along a triple line T,

Sz =u®(z), z€Qy,i=1,2
8Bz =ul®(z), ze_
v = 4@ =y®  on TV

where T" denotes the projection of T' onto the x-plane, Q" denotes the regions above and below
I"". The energy of just a single facet,

S:z=ulz),zre L =0

is given by
1

v(n), n= W(_pl’ —pe,1), the normal to S

ou
pi=6$_s W=\/1+|p|2

(for the moment , misorientation parameters are suppressed). The energy of S is

E = / v(n)W dzidzy
Q

and equilibrium is determined by
OE=0 or div(Vp,y(n) —7v)=01in Q

This means that for a time varying family of surfaces S; the Mullins Equation takes the form
S Up = —p div(Vyy(n) — v{) in Q
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The Herring Condition is the natural boundary condition connected to the equilibrium status of
three surfaces meeting on the triple line I' . It arises in a straight forward variational manner, cf.
also [3], [4], by allowing unrestricted variations on the arc I" in the calculation of 8E. To express
this quantity, for a surface S(‘), with normal n(‘), let / denote the tangentto I' and
76 791 789
Ty =7 x 1 and  TE = (WD) (01 + o))
Clearly, Ti, is the isotropic and 7, the anisotropic contribution to 7. We obtain the Herring
Condition

7O 7@ L 7G) — ¢
For example, when y is independent of n, the familiar condition below is easily verified:

The merits of this format are that the dissipative nature of the grain growth system is clear and it is
readily transformed into an algorithm for simulation. To check the dissipation, suppose that a

network of surfaces { S' } is evolving according to Mullins with Herring. The total energy is

Et) =Y [ A(n%)ds
{s1”9
When computing dE/dt, the integrals over the triple lines vanish thanks to Herring and we obtain

dE f 1 g
==Y [ =(v)ds <0
dt T

So the total energy is decreasing in the absence of critical events.
Description of the numerical implementation

We give a brief description of the approach. The objects involved in the three dimensional
simulation are grain boundaries, triple lines, and grains (in two dimensions, we use grain boundaries
and triple junctions.) Grain boundaries and triple lines are discretized and are the objects evolved.
Grains themselves are not discretized. The data structure is streamlined in this way, permitting
more grains in a simulation. Moreover, boundaries are actual boundaries, not very thin three
dimensional arrays of elements. Our intention is that this will lead to improved accuracy. The
discretization uses second order finite difference approximations, with either explict or implicit time
steps. The time evolution is executed in two steps: first grain boundaries are moved by Mullins
Equation and second triple lines are moved to enforce the Herring Condition. As grain boundaries
and triple lines move, critical events must be considered to reflect actual changes in the physical

topology.

An important feature of the critical event implementation is that it is designed so that the discrete
form of the dissipation inequality above is automatically satisfied. This leads to an extremely stable
simulation.
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We conclude this section with a description of the critical events. Three types occur in three
dimensions: loss of grains, loss of facets, and loss of triple lines. The cristical events are detected
by monitoring the size and rates of changes of topological components. Components that are
shrinking quickly with respect to their size trigger critical events, a scheme which follows Kuprat

[5].

Loss of grain: some neighboring grain Gy will absorb a small target grain Gr. Gy is selected as
the grain with the largest (contiguous) facet among all grains sharing triple lines with the smallest
facet of the target grain Gr.

Loss of facet: Implementation of this event involves two processes, 1) creation of a new volume
and 2) a loss of grain event. A new volume is constructed as a small cylinder about the target facet.
Then a restricted loss of grain event is applied.

Loss of triple line: This is similar to loss of facet. A new volume is created by constructing a small
cylinder about the target triple line.

There are challenges to implementing this strategy. Tuning the parameters for the various critical
events is difficult and, although the physical configuration may vary depending on the parameters,
we do not expect this to influence the statistical properties.

In two dimensions we are able to verify some important diagnostic criteria. The first of these is the
so-called parabolic growth law for isotropic, y = constant, energy densities. The second is the
correct rate of growth for 'circular grains', up to quadratic error in discretization parameter. Finally,
the Mullins-von Neumann n — 6 rule holds at the level of individual grains, not merely as an
ensemble average, [6].

In three dimensions, we do not have many available for criteria, but we are able to write that
generally grains with less than 13 facets shrink and grains with more than 14 facets grow, in line
with the conclusions of [7],[8].

Discussion

In two dimensions, this algorithm gives rise to an accurate and robust scalable numerical code
which we have tested for initial configurations of 25,000 to 50,000 grains. At this writing, we think
that it is the only code that allows energy densities with dependence both on the normal inclination
of the grain boundary » and the lattice misorientation. We remark that dependence on n poses
some particular difficulties when resolving the Herring Condition. The relative area histogram is a
stable long time statistic, and we report in Fig. 1a a time dependent sequence of histograms. In Fig.
1b we compare our results with an isotropic Potts Model simulation. One may easily conclude that
relative area histograms tend to discriminate poorly among input grain boundary parameters. On
the other hand, the relative area histogram presented now has the status of a reliable diagnostic for
future algorithms.

In three dimensions, we are working toward an numerical code, that includes all five parameters of
normal dependence and lattice misorientation which will have initial configurations of upwards of
15,000 grains. Elsewhere in our group, we have devised methods of generating statistically
representative 3D numerical descriptions of microstructures that are statistically representative (in
terms of grain shape, size distribution, grain orientation and boundary character) of a
experimentally characterized material, [9]. We plan to adapt this type of data set for use here in our
3D simulations of grain network evolution. A portrait of a 3D grain is given in Fig. 2.
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Figure 1. (a) Time dependent sequence of relative area histograms, x = relative area, y = relative
count, at times t = 1, 5, 10, and 15, showing trend to self similarity. This computation is for
isotropic energy. (b) Comparison of relative area histograms for isotropic (lower curve), typical
anisotropic (dotted curve), and Potts-type simulation (upper curve).
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Figure 2. Depiction of a 3 D grain from an ensemble of about 500 grains. The facets are curved but
are rendered as polygons for simplicity.

We are also beginning an analysis and comparison of our simulation with Al thin film experiments
in collaboration with K. Barmak, cf. [10].

Summary
Grain growth is a complex dynamic process. Even the challenge of its simulation according to

established thermodynamic principles is difficult owing to the requirements of accuracy, statistical
significance of scale, and the involved data structure for this large nonlinea system. We exhibit
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here what we consider to be significant progess toward implementing a flexible and reliable
algorithm based on a variational approach which views the ensemble as a dissipative system, both
in theory and in its implementation.
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