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Abstract

We describe a dissipation principle/variational principle which may be useful in modeling
motion in small viscous systems and provide brief illustrations to brownian motor or molecular
rachet situations which are found in intracellular transport. Monge-Kantorovich mass transport
and Wasserstein metric play an interesting role in these developments. Some properties of the
system that ensure the presence of transport are discussed.

Introduction

Here we describe a dissipation principle that describes transport in a typical molecular motor
system, like conventional kinesin, [20], [22]. As background to this application, we recount that
intracellular transport in eukarya is attributed to motor proteins that transduce chemical energy
into directed mechanical motion. Muscle mysosin has been known since the mid-nineteenth century
and its role in muscle contraction demonstrated by A.F. Huxley and H.E. Huxley in the 1950’s.

∗Partially supported by the National Science Foundation Grants DMS 0072194 and DMS 0305794.
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Kinesins and their role in intracellular transport were discovered around 1985. These nanoscale
motors tow organelles and other cargo on microtubules. They function in a highly viscous setting
with overdamped dynamics; the Reynolds’ number is about 5 × 10−2. The dissipation principle
begins a chain of events. It suggests, in a natural way, a variational principle and an implicit scheme
in the sense of Otto [14], [15] and Jordan, Kinderlehrer and Otto [9]. This determines, in turn,
a system of equations analogous to that proposed by Adjari and Prost [1] or Peskin, Ermentrout,
and Oster [18]. Viewed as an ensemble, this system occupies configurations that are distant from
conventional notions of equilibrium. This means that to understand the stability properties of
the process we must discover an appropriate environment for its kinetics. The novelty in our
development is that the dynamical process is set in a weak topology as described by a Kantorovich-
Wasserstein metric. This owes in part to a result of Brenier and Benamou, [3]. It illustrates the
feasibility of mesoscale modeling for these systems.

The flashing rachet, a different type of Brownian motor, was discussed in [10]. One explanation
of this was given in [2] and it has been suggested as a description of processivity in the KIF-1A
family of kinesins, [12], [13]. There is a discussion in [6] as well as the Parrondo Paradox, a coin
toss game somethimes thought to mimic molecular motor behavior, in [7].

With a thermodynamically consistent system of differential equations in hand, we inquire of condi-
tions that ensure transport. In the example we describe, a model for conventional kinesin, diffusion
and conformational change collaborate with transport in periodic potentials. This model is highly
over simplified. Asymmetry of the potentials within their period intervals is critical for transport,
and a particular such condition based on this property is explained.

This is a description of joint work with Michal Kowalczyk, Michel Chipot, and Jean Dolbeault, to
whom we are grateful for their collaboration.

1 A variational principle

Consider an ensemble of statistically homogeneous non-interacting particles in a highly viscous
medium, thought of simply as spring-mass-dashpots. For our setup, suppose we have probability
densities f∗(x) and f(x), x ∈ Ω = (0, 1), and interpolating densities f(x, t), x ∈ Ω, 0 ≤ t ≤ τ with
f∗(x) = f(x, 0) and f(x) = f(x, τ). For this ’Eulerian’ description, there is a ’Lagrangian’ descrip-
tion in terms of a family of measure preserving mappings, transfer functions, homeomorphisms of
the interval into itself, φ(x, t), x ∈ Ω, 0 ≤ t ≤ τ related by∫

Ω
ζ(y)f(y, t)dy =

∫
Ω
ζ(φ(x, t))f∗(x)dx.

The velocities in the two descriptions satisfy φt(x, t) = v(φ(x, t), t). For f(x, t) there is

ft + (vf)x = 0 in Ω, 0 < t < τ (continuity equation) (1)

and likewise in the ’Lagrangian’ version

f(φ(x, t), t)φx = f∗(x). (2)
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This is actually the Monge-Ampere Equation. For example, if v is given and we wish to solve (1),
(2) corresponds to a characteristic equation.

For the ensemble of spring-mass-dashpots, the viscous dissipation moving from f∗ to f via f(x, t)
is simply

γ

∫ τ

0

∫
Ω
v2fdxdt

for a parameter γ. When the system moves in response to a potential ψ, its free energy at a density
ϕ is

F (ϕ) =
∫

Ω
(ψϕ+ σ ϕ log ϕ )dx

In this way, we arrive at a simple mesoscopic dissipation principle. The state f is admissible from
f∗ provided

γ

∫ τ

0

∫
Ω
v2fdxdt+ F (f) ≤ F (f∗) (3)

for some interpolating density f(x, t) with f∗(x) = f(x, 0) and f(x) = f(x, τ). We regard τ as a
relaxation time. To connect this to a variational principle, we observe that [3]

1
2τ
d(f, f∗)2 = infA

1
2

∫ τ

0

∫
Ω
v2fdxdt (4)

where A is the family of interpolating densities and d is the Kantorovich-Wasserstein metric defined
by

d(f, f∗)2 = infP

∫
Ω×Ω

|x− y|2dp(x, y)

P = joint distributions with marginals f, f∗.

The optimality condition for f, v in (4) is

vt + vvx = 0 in Ω, 0 < t < τ (Burgers′Equation)

Its ’Lagrangian’ form is the geodesic equation, [3], [16],

d2

dt2
d(φ(x, t), φ(x, τ))2 = 0

which implies

φ(x, t) = x+
t

τ
(φ(x, τ)− x), x ∈ Ω, 0 < t < τ

The metric d delivers the weak* topology on measures, i.e., its topology as the dual space of C(Ω),
and the ’Lagrangian’ form suggests that the optimality condition describes a geodesic path in this
space.

For convenience we set γ = 1
2 . Our variational principle is now: given f∗, determine f such that

1
2τ
d(f, f∗)2 + F (f) = min (5)

The variational principle (5) provides an implicit scheme: Given f (k−1), set f∗ = f (k−1) and
determine fk from the minimum principle. Then define f (τ)

f (τ)(x, t) = fk(x) kτ < t ≤ (k + 1)τ
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The great merit of the Wasserstein metric is that it may be, in essence, differentiated. Thus, in the
limit as τ → 0, f (τ) tends to the solution f of the ordinary Fokker-Planck Equation, [9], [14], [15],

∂f

∂t
= σ

∂2f

∂x2
+

∂

∂x
(ψ′f ) in Ω, t > 0 (6)

σ
∂

∂x
f + ψ′f = 0 on ∂Ω, t > 0 (7)

Variational principles such as (5) above may be considered without discussing natural systems, of
course, and there is now a significant literature in this topic, and even traditional problems have
unexpected interpretations, [21]. (5) establishes that the coarse graining of the microscopic system
gives rise to weak topology dynamics at the mesoscale. For situations, like the one below, where
equilibrium is never achieved, this may provide additional insight into their metastable nature.

From the analysis point of view, one observes that the basic variational principle is convex and
superlinear, so existence of the iterates in the implicit scheme is not usually a difficulty. Convergence
as τ → 0 could be, especially for nonlinear problems.

2 A look at conventional kinesin

Conventional kinesin has two identical head domains (heavy chains) which walk in a hand over hand
fashion along a rigid microtubule. This is an intricate process with a complicated transformation
path comprising both the ATP hydrolysis (chemical states) and the motion (mechanical states),
[8], [22]. For a crude reckoning, at a gross combinatorial level, each head is attached or in motion
and is nucleotide bound or not. Assuming that a given motor has one head bound and one free at
any instant leads to eight possible pathways for each cycle. We shall give a simplified description
by considering the nucleotide binding and then the subsequent motion. Our dissipation/variational
principle is flexible enough to accomodate this process.

The ensemble of motor heads may be divided into two sets, set 1 and set 2; for example, the set
1 motors bind to odd labled sites on microtubules and the set 2 motors bind to even labeled sites
at a given time t.. This permits distance along the microtubule to be used as a process variable.
Regard the conformational change and nucleotide binding to be the result of first order chemistry
and the motion to be the result of interaction with potentials, diffusion, and dissipation. Let ρ1 and
ρ2 denote the relative densities of the set 1 and set 2 motors in the powerstroke state. Introduce
potentials and coefficients for conformational change,

σ > 0 constant

ψi ≥ 0 and νi ≥ 0, i = 1, 2, smooth and periodic of period
1
N
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with supp ν1 = supp ν2 and ν1 + ν2 ≤ 1. Let

P = 1 + τ

(
− ν1 ν2

ν1 − ν2

)
where τ is a relaxation time. Denote the free energy of this system by

F (ρ) =
2∑
i=1

∫
Ω

(ψi ρi + σ ρi log ρi )dx (8)

We may envision a cycle starting with density ρ∗ = (ρ∗1, ρ
∗
2) and proceeding by

ρ∗ → ρ∗P → ρ

subject to the dissipation principle: given ρ∗ with∫
Ω
(ρ∗1 + ρ∗2)dx = 1 and ρ∗i ≥ 0 in Ω, (9)

determine ρ by

2∑
i=1

1
2τ
d(ρi, (ρ∗ P )i)2 + F (ρ) = min (10)∫

Ω
ρi dx =

∫
Ω
(ρ∗ P )i dx (11)

The variational principle (10) separates the roles of the dissipation, conformational change, and free
energy in the system. It gives the incremental state of the system in terms of a step in a Markov
chain from its prior state. Although there are some subtleties, (10) admits an Euler Equation which
is the system [5]

∂ρ1

∂t
=

∂

∂x
(σ
∂ρ1

∂x
+ ψ′1ρ1 )− ν1ρ1 + ν2ρ2 in Ω, t > 0 (12)

∂ρ2

∂t
=

∂

∂x
(σ
∂ρ2

∂x
+ ψ′2ρ2 ) + ν1ρ1 − ν2ρ2 in Ω, t > 0 (13)

σ
∂ρ1

∂x
+ ψ′1ρ1 = 0 on ∂Ω, t > 0

σ
∂ρ2

∂x
+ ψ′2ρ2 = 0 on ∂Ω, t > 0

ρi(x, 0) = ρ0
i ≥ 0, in Ω, i = 1, 2∫

Ω
(ρ1 + ρ2 ) dx = 1

and moreover this system has a solution for all time. The general program to obtain (12), (13)
from the variational principle (10) consists of two parts. First there is some type of estimate of
iterates and second an approximate Euler Equation. When estimating the left hand side of (5), we
choose f∗ as a test function, which gives

1
2τ
d(f, f∗)2 + F (f) ≤ F (f∗)
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When applied to the sequence of iterates (fk), this provides the basic estimate

1
2τ

∞∑
k=1

d(fk−1, fk)2 ≤ F (f0) and

F (fk) ≤ F (f0), k = 1, 2, 3, ...

In our variational principle (10), ρ∗P is an admissible competitor but ρ∗ is not. Hence

2∑
i=1

1
2τ
d(ρi, (ρ∗ P )i)2 + F (ρ) ≤ F (ρ∗P ) (14)

To replace ρ∗P by ρ∗ in (14), we use the simple property of Markov chains that relative entropy
of successive states decreases. Namely, for a probablity matrix P with stationary state µ], given a
vector of non-negative components µ,

n∑
j=1

(µP )j log
(µP )j
µ]j

≤
n∑
j=1

µj log
µj

µ]j

For the 2 matrix P , the (x-dependent) stationary state is just proportional to (ν2, ν1) so we obtain

2∑
i=1

1
2τ
d(ρi, (ρ∗ P )i)2 + F (ρ) ≤ F (ρ∗) + const.τ (15)

This estimate is sufficient to establish the approximate Euler equation

|
∑
i=1,2

∫
Ω
{ (

1
τ
(ρi − ρ∗i )− (ρ∗ν)i )ζi − σρiζ

′′
i + ψ′iρiζ

′
i}dx|

5
1
2
max sup|ζ ′′i |(F (ρ∗)− F (ρ) + Cτ), ζ ∈ C∞0 (Ω) (16)

and to prove that the sequence ρ(τ),

ρ(τ)(x, t) = ρk(x) kτ < t ≤ (k + 1)τ,

converges as τ → 0 to a solution of (12), (13). Along the way, we are assisted by a novel maximum
principle. Suppose that ρ is the solution of the (10) for ρ∗. If

ρ∗i
e−ψi/σ

≤ Mi

then
ρi

e−ψi/σ
≤ Mi(1 + ατ) i = 1, 2

for a suitable α > 0. The interesting feature is that the proof is a truncation argument involving
joint distributions. The first use of the idea was by Otto, [15], and new ingredients have been added
to it by Petrelli and Tudorascu, [19]. There is a similar minimum principle. These estimates do
not permit us to deduce the behaviour of the system as t→∞, which will be dealt with elsewhere.

The foregoing may be generalized easily to n species with potentials ψi and a matrix ν = (νij), with
νij > 0 for i 6= j and

∑n
j=1 νij = 0. i.e., P as defined above a probability matrix. Allowing more

complex interactions among the species requires more thought about the form of the interactions
and their statistical properties.
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3 The stationary solution

There is, in addition, a unique stationary solution ρ] of (12), (13) provided

ν1 ≥ 0 and ν2 ≥ 0

and neither are identically zero. Namely, ρ] is the solution of the system of ordinary differential
equations [4]

d

dx
(σ
dρ]1
dx

+ ψ′1ρ
]
1 )− ν1ρ

]
1 + ν2ρ

]
2 = 0 in Ω (17)

d

dx
(σ
dρ]2
dx

+ ψ′2ρ
]
2 ) + ν1ρ

]
1 − ν2ρ

]
2 = 0 in Ω (18)

σ
dρ]1
dx

+ ψ′1ρ
]
1 = 0 on ∂Ω

σ
dρ]2
dx

+ ψ′2ρ
]
2 = 0 on ∂Ω∫

Ω
(ρ]1 + ρ]2 ) dx = 1

Note that in general ρ] does not minimize (8). There are two ways to attack this, one starting with
the Schauder Fixed Point Theorem and one by a shooting method, based on writing (17),(18) as a
first order system, [4].

Figure 1: Interdigitated asymmetric potentials ψ1 and ψ2 (left) and stationary state ρ] demonstrat-
ing about 0.9 of its mass on the left half of the interval.

We would like to briefly discuss the origins of transport and the role of the asymmetry of the
potentials. Assume that ψ1 and ψ2 are periodic of period 1/N , in fact, for purposes of discussion,
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Figure 2: For this pair of ψ1 and ψ2, there is no interval where both are decreasing and transport
to the left is anticipated

let us take
ψ2(x) = ψ1(x−

1
2N

)

so that they interdigitate each other. Assume that ψi decreases monotonely from its maximum
to its minimum and then increases monotonely to its maximum in each period interval. Choose a
period interval, max to max, for ψ1, say [ξ1, ξ1 + 1/N ] and suppose we are in the situation where

ξ1 < a < ξ2 < b < ξ1 + 1/N and

ψ1(ξ1) = ψ1(ξ1 + 1/N) = max ψ1, ψ1(a) = min ψ1 = 0

ψ2(ξ2) = max ψ2, ψ2(b) = min ψ2 = 0

Think of σ as very small. Now we have that

1. in (a, ξ2), ψ′1 > 0 and ψ′2 > 0, so ρ]1 and ρ]2 are both exponentially decreasing regardless of νi.

2. in (ξ1, a), there is a large population of ρ]1, and, because of the equations (17), (18), some is
passed to ρ]2 because ν2 > 0. Little is passed from ρ]2 to ρ]1 because we are not close to the
minimum of ψ2.

3. the net effect is movement to the left

8



The condition for the balance in 2, and for similar behavior near the minima of ψ2, is that

• ψ1 is increasing where ψ2 is decreasing and ψ2 is increasing where ψ1 is decreasing.

This means, in particular, that the minima of the ψ′is are located asymmetrically in their period
intervals. Unfortunately, the above reads like just one of many plausible scenarios and so does not
serve well for intuition, but it is the correct one. The result may be loosely formulated in this way:

Suppose there is no interval where ψ1 and ψ2 are both decreasing, and

ν1 > 0 and ν2 > 0 in Ω

then
ρ]1(x+

1
N

) + ρ]2(x+
1
N

) ≤ Ke−
C
σ (ρ]1(x) + ρ]2(x) ), x ≥ 1 +

2
N

(19)

To prove this result, we rewrite (12), (13) as the first order system (dropping the ] superscript),
with

φ = σρ′1 + ψ′1ρ1,

σρ′1 = φ− ψ′1ρ1 (20)
σρ′2 = −φ− ψ′2ρ2 (21)
φ′ = ν1ρ1 − ν2ρ2 (22)
φ(0) = φ(1) = 0

or

ρ′ = Aρ, with ρ =

 ρ1

ρ2

φ

 and A =
1
σ

 − ψ′1 0 1
0 − ψ′2 − 1
σν1 − σν2 0

 (23)

Let R(ξ, x) be a fundamental solution to this system with R(ξ, ξ) = 1, say. Write

R =

 ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

φ1 φ2 φ3

 (24)

Thus, in particular,
ρ(a) = R(ξ1, a)ρ(ξ1) and ρ(ξ2) = R(a, ξ2)ρ(a)

Since ρi > 0, the additional function φ can be eliminated from the equation in favor of an inequality.
Indeed,

0 < ρ1(x) = ρ11ρ1(ξ) + ρ12ρ2(ξ) + ρ13φ(ξ), x < ξ (25)
0 < ρ2(x) = ρ21ρ1(ξ) + ρ22ρ2(ξ) + ρ23φ(ξ), x < ξ (26)
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where the ρij are evaluated at x. Hence,

φ(ξ) < −ρ11

ρ13
ρ1(ξ)−

ρ12

ρ13
ρ2(ξ) and

φ(ξ) < −ρ21

ρ23
ρ1(ξ)−

ρ22

ρ23
ρ2(ξ)

Combining this with (25), (26) and reconfiguring gives that

ρ1(x) <
ρ13ρ21 − ρ11ρ23

−ρ23
ρ1(ξ) +

ρ22ρ13 − ρ12ρ23

−ρ23
ρ2(ξ)

ρ2(x) <
ρ13ρ21 − ρ11ρ23

ρ13
ρ1(ξ) +

ρ22ρ13 − ρ12ρ23

ρ13
ρ2(ξ)

A first thought is that when a typical ρij varies with exp(c/σ), the fraction varies like
exp(c/σ)2/exp(c/σ) = exp(c/σ), that is, exponential in 1/σ. Interesting here is that the numerators
in the fractions are the terms (adj R)23 and (adj R)13 and the adjugate itself satisfies an equation
(variation of Abel’s formula)

d

dx
adj R = adj R M, M = (trace A)1−A

which means that the numerator and the denominator are typically of the same order. This is the
starting point of the proof. The details require careful analysis of R and adj R in the appropriate
intervals.

With Bryce McLeod, we are preparing a second approach which would extend to an arbitrary
number of components ρi weakly coupled by matrix N = (νij).

At this writing, the relationship of the supports of the conformational change coefficients νi and
the potentials ψi is still not clear. One obvious situation where no transport can be expected is
when the system (12), (13) decouples. This happens when

ν ∝ (e−
ψ2
σ , e−

ψ1
σ ) (27)

This is sometimes referred to as detailed balance, but it only concerns the balance in part of the
equations. However, even in this case, retaining the σ = σ0 above in (27) but diminishing sufficiently
the diffusion coefficient σ in (12), (13) will result in transport according to our theorem provided
the νi are positive.

A more amazing result is given in the last figure. Here the potentials are the same as before,
although there are eight periods instead of four, but the support of the νi are where one ψj is
decreasing and the other increasing. The result is transport in the reverse, that is the ”wrong”
direction. Much remains to be studied in these problems.
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