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Abstract

Lack of regularity of local minimizers for convex functionals with non-
standard growth conditions is considered. It is shown that for every ¢ > 0
there exists a function a € C*({2) such that the functional

Fium / (IDul? + a()|Dul?) do
(9

admits a local minimizer u € W1?(£2) whose set of non-Lebesque points is
a closed set X with dimy(X) > N—p—¢,and where L<p< N < N4+a <
q < 4o00.

Key words. Gap, non standard growth conditions, regularity, Hausdorff
dimension
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1. Introduction

The aim of this paper is to present an example of a convex regular
integral in the Calculus of Variation which admits a minimizer with a very
wild singular set. The striking features of the example are that the problem
is scalar and the Hausdorff dimension of the singular set is quite big; in fact,
the set of non-Lebesgue points is of Cantor type.

We consider the functional

7 UH/ f(o,Du)dz, ue WP (), (1)
(7

where 2 C RV is a bounded domain and f: 2 x R¥ — R is a nonnegative
Carathéodory function.
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A classical result due to Giaquinta & Giusti ([GG]), resting on De
Giorgi’s iteration method ([DG1]), states that any local minimizer u €
WbHP(£2) of a functional of type (1) satisfying, for some p > 1 and 1 <
L < 400, the growth assumptions

L_1|§|p_LSf($=€) SL(|§|IJ+1)7 T e ‘Qv geRNa (2)

is locally Holder continuous. This result holds true even without any con-
vexity assumption on f. Observe that this is not the case in the vectorial
setting u : 2 — R* |k > 1 (see for instance the counterexamples in [DG2],
[N], [SY1], [SY2]). If the functional does not meet the condition (2), but
satisfies only the more flexible (p, q)-growth conditions (following the ter-
minology introduced by Marcellini in [M2])

L¢P —L< f(x,6) <L("+1), 1<L, 1<p<g<-+oo, (3)

then the continuity of minimizers generally fails, provided p and ¢ are not
near enough, as shown by counterexamples (see [Gia], [H], [M1], [M2]).
In particular, in the paper [M2], Marcellini presents a minimizer of an au-
tonomous functional within the structure (3) exhibiting a singular set which
is a line. In [M3] he raised the question of finding a minimizer of a regular
functional (that is, with f being a Holder or Lipschitz continuous function)
with an isolated singularity. This problem was solved in a sharp way in
[ELM]. All these examples require that the ratio ¢/p is not very close to 1.
Indeed, in [ELM] it was shown that if f(-,&) is Holder continuous with an
exponent a € (0,1], then a sufficient condition for a minimizer (which, by
definition, is a priori only in WI})’C”(Q)) to be in W,-%(R2) is that

loc

q o)
- <14+ —=. 4
’ <1+ (4)
This condition is sharp, as proved in [ELM], what shows that for this type
of functionals the regularity of minimizers depends on a subtle interplay
between the size of the ratio ¢/p and the regularity of f(z,&) with respect
to the variable z.

In what follows, we will be particularly interested on functionals of type
(1) of the form

f(@,8) =& + a(x)l]*,  a(z) 20.

In this setting it is possible to conctruct examples of singular minimizers of
functionals with coefficients having a cone type singularity. In the two di-
mensional case, Zhikov [Z] constructed an example exhibiting the Lavrentiev
phenomenon. A similar geometry has been used in [ELM] to produce sharp
examples of minimizers with isolated singularities in arbitrary dimension.
This is the starting point of this paper where, based on the construction in
[ELM] and via an iterative process, we build local minimizers having fractal
singular sets.
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Since until now all known examples provided singularities which were
either isolated or concentrated on a line, we found it natural to ask how
“bad” the singular set of a minimizer of a functional with (p, ¢) growth can
be. Our aim is to show that under natural assumptions (that is, as soon as
the sufficient condition for regularity in (4) is violated) minimizers may have
very wild singular sets of Cantor type, with Hausdorff dimension “touching”
the borderline case. Indeed, we have

Theorem 1. For every choice of the parameters:

2<N, a € (0,+00), l1<p<N<N+a<qg<+o, >0,
(5)

there exist a functional
Fiuo / (IDu + a(@)|Dul?) dz,  we W'P(Q), (6)
Q

with 2 C RN being a bounded Lipschitz domain, a € C*(£2), a > 0, a local
minimizer u € WHP(02) of F and a closed set X C 2 with

dimy(X) >N -p—-c¢

such that all the points of X are non-Lebesgue points of the precise repre-
sentative of u.

In the previous statement, and using standard notation, C* denotes the
space of all functions with continuous derivatives up to the order [a] (the
integer part of a, whereas {a} := a — [a] is the noninteger part of a),
with the [a]-th derivative being {a}-Holder continuous. We use the symbol
dimy,(A) for the Hausdorff dimension of a set A C RV .

Observe that the results of the previous theorem are sharp in more than
one respect. Indeed, the choice of the parameters made in (5) is necessary
(at least when a € (0,1]) in order to violate the condition (4). Moreover,
because u is a Sobolev function in W?({2), the Hausdorff dimension of the
singular set cannot exceed N — p, and here we can reach N —p — ¢ for every
€ > 0, while all the counterexamples presented up to now exhibited singular
sets of dimension at most 1. Note that from condition (6) it follows that the
more we want the integrand function f to be smooth the more we need p
and ¢ to be far apart. Furthermore, the Hausdorff dimension of the singular
set X' does not depend on the choice of the parameters a and ¢ (but, of
course, it does depend on N, p and ¢). Finally, if we allow the function f
to be only Hélder continuous with respect to z, then we can ensure that u
is regular outside X, in the sense that u € I/Vlth(() \ X). Precisely,

Theorem 2. For every choice of the parameters

1
2<N, ac(0,1), 1<p<N<N+a<q<<1+N)p, £>0,
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there exist o functional
F:ouw / (|Dul? + a(z)|Du|?) dz, u € WHP(02),
Q
with 2 C RN being a bounded Lipschitz domain, a € C*(£2), a > 0, a local
minimizer u € WHP(02) of F and a closed set X C 2 with
dlmH(Z) > N —p—Eg,

such that all the points of X' are non-Lebesgue points of the precise repre-
sentative of u. Moreover,

ueWhi(n\ %),

loc

and, in particular, the function u is continuous at every point of 2\ X.

2. Preliminaries

Recall that a function u € T/V]icl (£2) is said to be a local minimizer of a
functional F of type (6) if

/ f(z,Du) dr < / f(z,Dv) dz
supp (u—v) supp (u—v)

for every function v € W' (£2) with supp (u — v) C £2.

loc
We will use the following result from [ELM, Theorem 3.1 and Sections
4 and 5]

Theorem 3. Let u € T/Vlf)cp(ﬁ) be a local minimizer of the functional
wrs [ (Dul? +a@IDult)ds, e Wh(®),
Q

where a € Lip(£2), a > 0. Suppose that the exponents 1 < p < q < +o00, are
such that

1
% <1+~
Then
u € W2 (£2).
We say that u is precisely represented if
u(z) = lim _1 u(y) dy

r—0+ |B('Z'7 T)' B(z,r)

whenever the limit on the right exists.
In what follows, C' denotes a generic constant which may vary from
expression to expression.
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3. Construction

3.1. Underlying geometry

We will work in the space RV, and we set
Ko = (_17 1)N7 V= {_17 1}N_1 X {0}

We will construct sequences of sets and functions on the unit cube Ky. Fix
a parameter A € (0,1/2) and use the powers A" as radii in our construction.
We define inductively a countable family of finite sets Z, C (—1,1)¥ "1 x
{0}, for n =0,1,2,..., whose elements will be used as centers for cubes in
our construction. We start by letting

ZO = {ORN}.

Let n € N and suppose that we have constructed Z; for £ = 0,...,n — 1.

Define
Zi={z+A"V:VeV}, zeRY, neN,

Z,= |J 2

2€EZn_1

Since Zy N Z, = 0 for k¥ < n, without any ambiguity and in order to
simplify the notation, we will use often z € Z,, also as a subscript, and
the information about the integer n under consideration will be implicitly
contained in the symbol z. We set

K, =2+ (=A", 2"V,
K := 2+ (—2A"FE 2XmH )N = o (bt ),

If z € Z, then we consider in each cube K, a concentric block K/ which
we split into 2V ! cubes K., 2’ € ZZ, ;.
For any z € K, we write

~ A~

n__yn41
¢ (@) = max{ X", AN

Am At
T Ploo T Xn—2xn AT [

~

where we denote by 2 the projection of z onto (—1,1)V"! ie. 2 :=
(21,---,2N—1), and

|;r|<>o = max{|z1|, |z2], -, |Zk|}, for = (x1,22,...,2;) €ERF, keN.

Now, we partition each cube K, into the “p-domain” P, and the “g-domain”

@, precisely
P,:={z€eK,: |zn| < ¢.(2)},

Qj ={reK,: zy > ¢.(x)},
QF ={zeK,: —zn > ¢,(2)},
Q. =QfuQ; .
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3.2. Construction of the functional
We consider the functional (6) with 2 = Ky and
f@,8) =[¢PP +a(@)lg]!, wekKo, E€RY,
where the function a is constructed below. Let z € Z,,. We set
LF i=z 4 (=AM AN =L a2\,
M =z 4 (=27 2AnH)N=1 5t \n=ly
L7 o=z (AT AN o (227, 2\,
M7 =z 4 (24", 20" )N =1 (—nmt i),
and, finally,
L,:=LfuUlL;, M, :=MIuM;.

Let 7, be a C* cut-off function between L, and M,,ie.0<n,<1,7,=1
in L, the support of 7, is contained in M, and

[Ven,| < CA™™ VseN, (7
where C' = C(N, A) is independent of n € N. We set
a(z) = Z Z A", (), x € K. (8)
neNzeZ,

3.3. Hélder estimates for the coefficient a

We claim that
a(z) € C*(1) . 9)

We first check that a(x) € C*(12), where k := [a]. Note that by the definition
of 77, the sum (8) locally reduces to the sum of no more than three functions,
so it suffices we reduce ourself to prove a uniform (with respect to z €
Z,, n € N) bound for A\**||V*9,||eo. This follows immediately from (7)
applied to s = k, precisely

[A"nllor(@) < CAM@"H) <C ¥neN.

In the case where « is not an integer we must prove that V¥a(z) is Holder
continuous with exponent {a}. For any z,y € Ky, we have

Vra(e) - Via@)| < 30 30 A" VEn.(2) - VEn)l,  (10)
neNzez,

where, arguing as before, there are at most six nonvanishing terms in the
sum (10). Therefore, it suffices to prove that there exists an absolute con-
stant such that for every z € Z,, n € N,

A |VEn, (z) = V. (y)] < Clz —y[ ).
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We distinguish two cases. If |z — y| < A" then, using the Mean Value The-
orem and (7) with s = k + 1, we have
A"V, (@) — VEn. (y)] < A" [VE D, ||z — g
= X"\ VD [[oo|z — y[ 71z — g1
< C/\na)‘—n(k+1)|m _ y|1—{a}|$ _ yl{a}
< Clz —y|tet.
If |x —y| > A™ then, again by the Mean Value Theorem and (7) with
s =k + 1, we obtain
A"V (x) — VEn. ()] < A VEH D, ||oo |2 — o]
< C)\na)\—n(k—i-l)'w _ y|
< CAn(afk)
< C|IL’ - y|{a} )

where C' is the absolute constant appearing in (7). The proof of (9) is now
complete.

3.4. Low energy competitor

We construct recursively a sequence of functions {uy, }nen. First we set

q;g—é"z) ifx € P,
up(z) :=1¢ 1 ifr € Qf,
-1 ifzeqyq.
For a general n € N, and assuming that wy, us, ..., u,_1 have been deter-

mined, we define the corrector function ¢, as

JH‘;) ifx € P,,
cx(x) =<1 ifreQf,
-1  ifze@y.

We now correct u,_1 with ¢, in each of the blocks K,, z € Z,, as

n— 'f z KZ)
Up(x) == {u (@) iz Uz, z € Z,.

c.(x) ifre K, ,

Note that ug = ¢p and that ||us||eo < 1. With n € N fixed and z € Z,, a
direct calculation shows that

Ve (z)] < CAT™, reK,



8 IRENE FONSECA, JAN MALY, GIUSEPPE MINGIONE

where C = C(N, p, ) is an absolute constant. Hence

/ Ve, [P de < CAMN=P)

z

and thus

/ [Vip_1|P de < CA"N-P) . p > 1. (11)

z

Taking into account the cardinality of the construction, by (11) we obtain
/ |Vun — V’U.n_1|p dx < CQ”(N—I))\n(N—p).
Ko

This shows that u, — u in W1 for some u € W1?(2) provided
A< 285 (12)
Moreover, we observe that by the definitions of a(z) and ¢, it follows that
a(z)|Ve,(z)|] =0 foreach ze€ K,\K,.

Since

‘I@\(U U(KAKQ))‘:(),

n z€EZ,

it follows that
a(z)|Vu(z)|]? =0 foreach z€ Ky .

Therefore if we set
Cr = / IVl do = / (IVul? + a(@)|Vul?) dz,
Ko Ko
then for any ¢ € R we have
/ (IV(cu)P + a(z)|V(cu)|?) dz = PC; . (13)
Ko

The latter equality will be used in the sequel.



Scalar minimizers with fractal singular sets 9

3.5. The minimizer and its singular set.

Set
vo(x) == cxn

where ¢ > 0 is a constant to be suitably chosen below. We define v €
v + WO1 "P(0) as the unique solution to the following Dirichlet problem:

Min F(w)
w € vy + WP ().

The existence of v follows via the direct methods of the Calculus of Vari-
ations. The uniqueness follows by the fact that the functional F is strictly
convex. The function v is obviously a local minimizer of F. We are going to
show that for suitable large values of the parameter ¢, the function v is the
local minimizer we are looking for and its singular set is given by

s=N U &,

n z€EZ,

which is a closed set. Let us note that in the proof of the singular behavior
we do not use the full strength of the information that v is minimizer, but
only the boundary data and the property that v has lower energy than the
competitor u.

Fix y € X. Then there exists a sequence z,(y) — y such that z,(y) € Z,
and y € K (), and with 2, := 2,(y) we define

Tr=Jiw, T, =UL.W-.

Set

£y = liminf wo(z), {_ = limsup v(z).
w—>$0a$€Ty+ z—zo,2E€T,

Considering the precise representative of v, we have, by Morrey’s theorem

(see eg. [B, Theorem IX.12])

1q (1 N
oscv := esssup |v(z) —v(y)| < C(/ [Vo|? da:) B (1 q)
o8 Lt

LG w,yeL;"n
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with C independent of n € N. Notice that the closures fjn of LT overlap
the corresponding subsequent ones and thus

c—€+§029§rcu
—~I

Zn

< C;(A"(Q_N) /Li—n |VU|II d.CL') s
e . 1/q wlgen—oy\ /4
< C(;/\ /L+ |V dx) (;)\ a-1 ) (14)

Zn

< CA(/Q+ a(z)|Vu|? d:c) Ve
< CA(/Q+ IV ()P + a(z)|V (cu)|? dx)l/q

< CLAC) 1ep/a,

where

A= (Z /\"(q;ivl_“))l/q’

and u is the low energy competitor constructed in Subsection 3.4. Note that
this last series converge because of our choice

N+a<gq.

This is the only point in the proof where we need to use this condition.
Also, observe that in the last two estimates in (14) we have used the local
minimality of v and (13). Now, if ¢ is chosen suitably large, (14) implies
that £, > 0. Taking into account a symmetric estimate for the lower part,
we obtain for the same choice of ¢

Uy —0_ > 2c—2C,AC cP/1 > 0. (15)
The estimate

1
|ng_ N (y + (_2)‘n72)‘n)N)| Z |Ljn| Z 5 )\nN

shows that the lower Lebesgue density of both sets Ty+ , T at y is strictly
positive. Therefore the point y cannot be a Lebesgue point for v (no matter
what is the value v(y)).

Remark 1. Observe that we actually proved that the size of the jump (see
(15)) at singular points is bounded away from zero by a constant indepen-
dent of y € X', and depending only on the boundary data wg.

If we take into account the convention on precise representative, we can
evaluate the values v(y) at the singular points, namely v = 0 on X. This
follows from the symmetry properties of the minimizer.
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3.6. Estimate of dimy(X).

Let 1, be the linear function mapping Ky onto K,, z € Z;. Then the
restriction of 1, to X maps X' onto X’ N K. Hence X is self-similar in the
sense of the discussion in Section 8.3 of [F] and, in view of (8.21) in [F],

0<HYE) < 0
for d computed from the equation
2N-1\d = 1.

By (12), the only restriction we put on A is that 0 < A < 211\’__—];, which
enables to make the Hausdorff dimension of X' arbitrarily close to N — p,
choosing A in a suitable way.

Proof of Theorem 1. It suffices to summarize the considerations made
above in this section.

Proof of Theorem 2. The only part of the statement that remains to be
proven is the one asserting that the minimizer v, found in the proof of
Theorem 1 is actually in W,29(2\ X). In order to do this, we consider an
arbitrary open subset A CC 2\ X. There exists an integer n € N such that

AcB=0\|{J U k-

s>nzEZ,

Now, we observe that a is smooth on B. Indeed, the sum appearing in (8)
reduces on B to the following:

n+2

a@) =3 3 N (a), r€B,

s=1 z€Z,

therefore, on the set B the function a is a finite sum of smooth functions
and so it is also smooth. We are now in position to apply Theorem 3 (with
{2 replaced by the open subset A) to assert that the function v belongs to
Wl’q(A). Since A was arbitrary, this concludes the proof.

loc

Remark 2. The functionals that we considered in Theorems 1 and 1 may
be replaced by their non-degenerate analogs

/ [(1+ [DuP)® + a(z)(1 + | Duf?)}] do
Q
with a slight modification of the proofs given here (in particular, the choice

of the coefficient a(z) remains the same). Therefore, we can consider energy
densities f which are smooth also with respect to the gradient variable.
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