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Abstract. The global method for relaxation in BV spaces recently introduced by the authors is
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1. Introduction. ,

In recent years there has been considerable effort invested in the search of
integral representations for relaxed (or effective) energy functionals, motivated in
part by the study of problems in physical and materials sciences where interesting
phenomena and properties of equilibria result from lack of convexity.

Often, lower energy contributions are either present in the model from the onset
or are created at metastable states, and one is naturally led to the study of free
discontinuity problems where the jump set of the admissible fields is not a priori
specified. A wealth of literature dedicated to such variational issues is available
nowadays (see e.g. [ADG]}, {BBBF], [BC], [BF], [BFM], [FF], [FM2]).

Here we are concerned with the situation where a fixed surface energy contribu-
tion is assigned from the start in order to take into account the contact energy on
part of the boundary of an open, bounded container 2 C RY, or to charge a smooth
surface 3 which decomposes {1 into several connected components. Precisely, let
F: BV(Q;RY) x A(RY) — [0, +00] be defined by

Jo(z,u, Vu)dz
ANQ

F(u; A) = .;_f Bo(z,ut,u") dHN 1 if weWwh(Q\I;RY,
ANE
+ 00 otherwise,

(1.0)



where A(RY ) denotes the class of bounded open sets of RY, ¥ ¢ @ is a prescribed
N —1 dimensional oriented interface, and 4+, 4™, represent the traces of v on both
sides of ¥ ; whenever & coincides with 8Q, we consider ut = u~.

The main goal of this paper is to characterize the inner regularization F :
BV (4 R?) x A(RY) — [0, 400,

Flu; A) :=sup {Fo(u; A'): A’ cC 4,4’ € A(RY)}, (1.1)
of the energy Fo : BV (% R?) x A(RN) — [0, +00] given by
Folu; A) = inf { Lig_‘i_an(u; A) Jup — v in LN (Q; RY), uw, € BV (S ]Rd)} . {1.2)

In order to accommodate several applications, ranging from the study of
nucleation (see Subsection 4.2 and [FL]) to equilibria problems under Dirichlet
boundary conditions, we will be forced to assume that the surface energy density
may take the value +co at places, and so no upper bound will be available. This
sets these variational problems outside the traditional framework of the Calculus
of Variations.

Immediate applications of this setting include the study of parametric minimal-
surfaces where the relaxation of the boundary condition plays a fundamental role
(see [G], [MM]) and, in a similar way, the vectorial treatment of elasto-plastic
energies (see [Te]). Recently energies of the form (1.0) were considered by Auber,
Deriche and Kornprobst [ADK] in the context of optical flow modelization when
Bo depends on the traces wt,u~ on both sides of a time dependent interface. Also
in their case §y does not depend only on the jump vector ut —u™,

An integral representation formula for (1.1) will be obtained under the following
hypotheses :

(H1) fo : @ x B x RN 5 [0,400], B : T x (R¥)? = [0, +00] are Borel
integrands;

(H2) there exists C' > 0 and a,@ € L'(; [0, +co[) such that

2l = a(e) < fola, 1,6) < ala) + Ol

LY ae. z € Qand for all £ € RIXN ;

(H3) there exist C' > 0,0 < m < 1, L > 0 such that

z,u,t C
(g - EBBE) O
for all £ € RN fig]| = 1, ¢ > L, u € R? and for LY a.e. z € ), where the
recession function f§° is defined by

15 (@, u,€) 1= limsup 2L EE),
t—t 400 t
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(H4) there exist C' > 0 such that
’é"l)\ - 0' -C < ﬁﬂ(x)/\:a))

for H¥-1ae.z € L andforall \,8 € R%:

(H5) there exists up € W11(Q2 \ £; R?) such that Ag 1= ug and 8 := ug satisfy
(i) Bo(-, Mo, 60) € L (Z),

(il) for every & > 0 there exists € > 0 such that

lz—y| < &= |Bo(2, Mo (z)+r, bo(z)+5)— Boly, Ao (y)+7,0o(y) +5)| < 8(1+]r]+|s),
for all (z,y,7,s) € £% x (R*)?, under the convention +o0o — 0o = 0.

Note that (H4) and (H5) do not provide an apriori control from above on
Bo. This flexibility turns out to be crucial in the study of the Dirichlet problem
(see Subsection 4.1). Precisely, for fixed ®; € W11(f};R?) consider the energy
functional

/ fo(Vu)dz ifueWh(Qn A;R?) and v = & on TN A4,

F(u; A) :=¢ Jann
+ o0 otherwise,

where fy satisfies hypotheses (H1)-(H3). It is clear that F' may be re-written as in

(1.0), with ,

0 if X=6=&y(z),

Bl 0. 6) ;:{ i o(z)

+ o0 otherwise,

and hypotheses (H4) and {(H5) are verified with ug := @y .

Here we adopt the classical localization procedure by introducing the relaxed
functional F(u;-) as in (1.1). The necessity to consider the inner regularization of
Fo (see (1.2)) appears in Section 2, where we prove that F(u;.) is actually the
trace on open sets of a measure supported on {). Note, however, that considering
F instead of Fy has no implications from the practical viewpoint since Fo(u; R )
coincides with F(u; RY). We establish also that F(-; A) satisfies coercivity and
upper bounds. These properties allow us in Section 3 to exploit the global method
of relaxation developed by the authors in [BFM] and adapted to the present setting.
We obtain a representation formula for F (see Theorem 3.4), and, in particular,
we are able to give an explicit characterization of the surface energy density on
the fixed hypersurface X, even in the case where part of ¥ lies on the boundary of
the domain 0. '

As it is usual, with this generality, it is difficult to explicitly characterize in
closed form the local densities of the effective energies, as these arise naturally
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by solving local variational problems. So it is worth it to pause for a moments
time and to search for friendlier formulas in simple examples of interest. Two such
examples are treated in Section 4, and the first concerns a Dirichlet condition
ut=u~ =& assigned on ¥ , where it is shown that

Flu; 4) = fA _Qf(Vw) do+ f( (QFo)*([u] ® ) AN

A\Z)INS(u)
dC'(u)

* /Ang(Qf“)w (dw(u)l) diCtu)|
+ ﬁ(:c,u"’,u")d?-l”‘l,

ANZ
with
(Qf0)** (A — @o(0)) ® o) + (@0) ((@o(z) — 6) & o)
Blzo, \,8) = froe N,
(Qf0)™((@o(z0) — 6) @ vo)
if zg €0 NE.

2. Notations and preliminary results. In what follows BV (£; R?), W1-2(Q; R%)
and LP(Q; R?) denote, respectively, the spaces of functions of bounded variation,
Sobolev and p-integrable functions mapping ! into R?, where § is an open,
bounded, Lipschitz domain of RV (see [EG], [F], [G], [Z]). The Lebesgue measure
and the Hausdorff (N-1)-dimensional measure in R are designated by £V and
HN-1) respectively. C' will stand for a generic constant which may vary from line
to line.

To each v € SN! = {z € RY | ||z|| = 1} we associate a rotation R,
such that R,(ey) = v, where (€;)i=1,.. n is the canonical basis in RY. We
may choose v — R, so that R,, is the identity and v — R,(e;} is continuous
on SN-1\ {en}, for all i = 1,---,N ~ 1. We define Q, := R,(Q), where
Q:={zcR" ||z-e] <1/2, i=1,---,N}, and we set Q,(z,¢) := z + €Q,, for
e > 0. We will omit the subscript ¥ whenever v coincides with ey,

As usual we represent by Vu the density of the absolutely continuous part of
Du with respect to the Lebesgue measure (or Radon Nikodym derivative), and
S(u) is the jump set, i.e. the set of points £ where the approximate upper limit

u; (x) is different from the approximate lower limit u; (z), for somei € {1,...,d},
k3 i
namely
d
S(u) = U {:a €EQ|u;(z) < uf(m)}
i=1

It can be shown that S(u) and the complement of the set of Lebesgue points of u
differ by a set of H"~1 measure zero.



Choosing a normal v, (z) to S{u) at z (defined uniquely, up to sign, for V!
a.e. z), we set [u](z) := uT(z) — u(z) the difference between the traces of v at
z € S(u), oriented by v, (). Representing by C'(u) the Cantor part of the measure
D, the following decomposition holds :

Du=Vu LY O+ ([u] ® v) HY 1S (u) + Clu).

We represent by SBV (£); R?) the space of special functions of bounded variation
introduced by De Giorgi and Ambrosio (see [ADG]), i.e. the space of all functions
in BV(Q; R?) such that C(u) = 0.

Suppose that © has Lipschitz boundary, and consider a closed and connected
C! hypersurface ¥ C (. Select a unit normal vector vs: so that if & intersects 892
then vy agrees H™ ! almost everywhere with the exterior normal to 8. For each
u € BV (Q; R?) we define u* (z) and u~(z) as the traces of v on %, oriented by vg,
with the convention v+ = u~ = tru on ZNaN. If HY~1(S{u)NX) > 0 we choose
v S0 that it coincides with vg HV~! a.e. on S(u) N . Let A(RY) be the class of
bounded open subsets of R, and denote by A (RY) the subclass of those open
sets which are Lipschitz.

It is easy to see that v € WH1(Q\ Z;R?) if and only if © € SBV(Q; R?) and
S(u) C T. Moreover Du = Vu LV |Q + ([u) @ vg) HY (2.

In order to establish the main result of this section, Proposition 2.5 below, first
we need some technical lemmas.

Lemma 2.1. Let A € Ax(RY). For every w € BV(A;R¢) and 6 € L(84; R%),
there exists a sequence {w.) in WY1 (A; R?) such that

weloa =8, w. - w in L'(4;R%)

limsup[ |V | dz < |Dw|(A) +f 8 — trw| dHN L,
e—=0 A 0A

where trw denotes the trace of w on GA.

Proof. Using a refinement of [BFM, Lemma 2.4] due to L. Tartar [T] (see also
[G]) applied to 6 := § — trw, we may find h, € W' (4;R?) such that
he =6 on aA,/ the| da Se/ 0] dHN L, / [Vhe| dz < (1+e)f ||dHN 1.
A 84 A 8A
By [BFM, Lemma 2.5] there exists a sequence (v:) € W1(A4; R?) such that
v = w on 8A,v. — win L'(4;R?) and li_r}rsf |Ve| dz = |Dw|(A).
€ A
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Set we = ve + he. Then w, € WHH(A; RY), trw =6,
limsupf |V |dz < [Dw|(A) +/ |6 — trw| dHN 1,
e—0 A A

and, since

/lwg-—w| dm§/|v£—w| d:c+£f |8 — trw|dHN L,
A A 84

we have that w, = w, ase = 0.
|

Definition 2.2. We say that A € A (RY) is transversal to T if ANT # §,
HN-1(BANX) = 0 and there exist two disjoint Lipschitz open sets A;, Az C A
such that A\ (4; U Ay) is a regular oriented hypersurface ¥, containing AN X,

We denote by T(RY ) the set of all A € A (RV ) such that either A is transversal
toZorANT = 0.

Remark 2.3. The set 7(R") is dense in A(RY) in the sense that, for all
A A" € A(RM) such that A' CC A, there exists a B € T(RV) satisfying
A' CcC B CC A. Recalling that fy and f; are nonnegative, the set function
A = Fo(u; A) is monotone nondecreasing and therefore

F(u; A) =sup {Fo(w; B) : BCC A, B € T(IRN)} < Folu; 4) , {2.0)
for every A € A(RY).

The following slicing result proved on open subsets of the class 7(RY) will play a
crucial role in the matching of boundary conditions in an energetically economical
way.

Lemma 2.4. Let F, defined by (1.2), satisfy hypotheses (H1}, (H2), (H4) and
(H5)(1). Let u € BV(Q; R?) and let (v,) be a sequence in BV ($};R?) such that
vp, = u in LY(Q;R?). For every A € T(RY), there exists a sequence (wy) in
Wh(Q\ T; RY) such that

llwn ~ ullprrey = 0, wp=u on @ANK, limsup F(w,; A} < liminf Flv,; A).
n—+o0o n—++o0

Proof. Without loss of generality we may assume that
]’ir_l;l_{l_lgg Flug; A) = nll&lm Flug; A) < 400

and, consequently, v, belongs to W1(Q \ X;R%). It is convenient to consider an
extension of u to a fixed neigbourhood V of ! U A, still denoted by u, such that
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|Du[(682) = 0. Thanks to Lemma 2.1, we may also extend each vy, to V in such a
way that the extension ¥, satisfies 3, € WI1(V\{; R?), 9, — u in L} (V \ Q; RY),
tr ¥, = tr v, on O and so that

Eup; A) = F(in; A).

For simplicity of notations, we still denote by v, its extension @,. For every ¢ > 0
set A; := {z € A | dist(z,8A4) > t} and define L; := A\ A;. Clearly, we have
Ls € T(RY) for § small enough.

Assume first that Ls N E # 0 so that, in view of Definition 2.2, we may split L;
into two sets L}' and Ly with common boundary . We may choose also § so that

Hm |tr vn, — tr u] = 0. (2.1)

n—+co A,

For fixed n we apply Lemma 2.1 in L}' and Ly, with w replaced by «, and ¢
given by
u on 8A

Ao on XNk
Un on JA;

gt .

in L}, and with 8 equal to

u on JA
g, =4 6 on XLNLs
Up, on 0A;

in Ly . We find, then, two double indexed sequences (w ) and (w;; ) in L} and
Ly , respectively, yielding a sequence (wp ;) such that wy, € Whi(L; \ Z;R?) and

Wnk = U ON OAs, Wnp =won OA, wl, =X, uw; ;=6 onL;NE, (2.2)

kﬂgloo ”wﬂ;k - u”Ll(Lg;Rd) =0, (23)

and

lim sup | Dwn, & [(Ls) 5|Du|(L,5\2)+f (X —uw™| + |60 —u™|) dHN?
k—+oo

LNk

+/ [tr vy, — tr w| dHN L. (2.4)
8As

In view of (2.1) and (2.4), using a diagonalisation argument we may construct
a new sequence (@y) = (Wn4, ), satisfying the same boundary and convergence

conditions as in (2.2), (2.3), and such that, passing to the limit in n,

7



lim sup | D1, |[{(Ls) <|Dul(Ls \ T) + f (JAo —ut| + 00 —u~[) dHV
n—+oo .

LNk
(2.5)
Set.
Wy in Lg
Wy 1= 4 U, in As
u in Q\A

Clearly (wy;) converges to u in L1(§};R?), satisfies w, = u on 84 N N and
w, € WHHQ \ Z;R%). In addition, in view of (H2) and (H4) and since
HN-YBL;NE) =0,

F(wy; A) = Flun; As) + F(i,; Ls)

< Flog; A) -E-/L Ifm(a(:r:) + C|Viy,|) dz (2.6)

+/ Bo(z, ho, B0) dHN L,
LsNE

By (2.5), and passing to the limit in n, we obtain

lim sup F(wp; A) < IiT Fup; A) +[ a(z) dz + C|Dul(Ls \ X)

n—+00 n—too LN

+C (120 —ut|+ 100 —u~|) dHN?
LsNE

+/ ﬁo(ﬂ:,z\o,ao) d’HN_l.
LsNE

Since }irr(x) HN"YLsNE) =0 and Bo(-, Ao, o) € LX), letting & go to 0 and using
—3

again a diagonal argument, we conclude the proof.

The case where Ls N ¥ = ( can be proved in a similar way, where now
+_ o _ Ju ondA,
O =bn = {vn on 84;. -

Proposition 2.5. Under hypotheses (H1)}, (H2), (H4) and (H5)(i}, the functional
F satisfies the following conditions :

F(u;-) is the restriction to A{R") of a Radon measure; (2.7)

there exists C > 0 such that, for all A € A(RY)

%IDUI(A na) — f @(z) de — CHN"HANZ) < Fluy; A) (2.8)
ANG



and
Flu; A) S/A o a(z) dz+ C’(|Du|(A N +{  (alz)+|ut|+ |u"|)d’HN*1), (2.9)
0 ANz

where a(z) 1= fo(z, Ao{(z), 0o (x)) + |Me{z)| + [86(z)-

Proof. Estimate (2.8} is a straightforward consequence of hypotheses (H2) and
(H4) and of the definition of F.

We prove (2.9). In view of (2.0) (see Remark 2.3), it is enough to prove (2.9)
for Fo instead of F and for all A € T(RY) and u € BV(§};R?*). The case
where ANY = § is a staightforward consequence of (H2). We consider now A
transversal to X. By Definition 2.2 we may split 4 into two sets A* and A~ with
common boundary ¥ containing X N A; we fix At to be the one whose outward
normal coincides with vs, on . Extend u to a fixed neigbourhood V of { so that
| Dul|(882) = 0 and define

gt LY on AT U(Z\I)
o Ao on XA,

PR on AT UE\D)
o 6o on XYLNA.

Applying Lemma 2.1 tow =u and # =0T in A¥, andtow =wv and § = 6~ in
A~ , we contruct a sequence (v,,) in Whi (4 \ £;R?) such that

flun — ullp1amey = 0, v = Ao and v, =6 on TN A,
and

Iimsupf |Vugldz < |Dul(A\ Z) +/ (2o —ut| + 60 —w”|) aHN .
A Ans

n—+4o00

Since |Du}(8Q) = 0 and |Dul(4 \ ) < liginf |Vu,ldz, the previous
inequality yields
limsupf [Vug|dz < limsu [ |V, |dz — |Dul(A\ Q)
n-r+00 JANQ n-+4+00 JA
§|Du|(AﬂQ\E)+[ (|Ao = ut| + |60 ~ w~|) dHNL.
AN

Also, by virtue of hypotheses (H2) and (H4), we have

Flun; 4) < f

a(z) dz + C |V | + / Bol(z, Ao, Bo}dHN 1.
ANQ ANQ ANE
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Consequently

Folu; A) <liminf F(vn; 4)
5/ a{z) dx+f Bo(z, ho, fo)dH N1
ANG AN
+C (1Du[((AnQ) \ %) +f (Iho —ut| + 180 —u7|) d%”"‘) ,
AN

which yields (2.9).

Next we prove (2.7). We claim that for every v € BV(Q;R?) and for every
A, B,U in A(RY), the following implication holds :

UCCBCCA = F(u;A) < F(u; B) + F(u; A\ U). {2.10)

In view of (2.0), by considering subsets A’, B’ and U’ such that A, B', A'\T" ¢
T(RY) and U cC U’ cC B' CcC B CC A’ CC A, we may substitute F with Fp
in (2.10).

Let (u,) and (v,) be two sequences converging to u in L'(Q; R?) and such that

Jim P(uwiB)=Fo(iB) and lim Flun; A\T) = Fo(us A\ D).
We may assume, as in the proof of Lemma. 2.4, that the sequences (u,) and {(v,),
as well as u, are defined in a fixed neighbourhood V of QU A, in such a way
that |Du|(69Q) = 0, and (u,) and (v,) still converge to u in L'(V;R?). Since the
measures F(u,;-) and F(vg;-) have their support on Q U X, the choice of these
extensions will not affect the energies under consideration.

Choose an open Lipschitz domain By € T(RM) such that U cc By cC B.
Using Lemma 2.4 we find two other sequences (u,) and (v} ), both converging to
uin LYV;R%), !, = v!, = u on 8By, and satisfying

limsup F(v},; A \ Bo) < lim inf F'(v; A\ Bo),

n—+oo
limsup F'(u,,; Be) < liminf F'(uy; Bg).
n—++oo nt—3+00

Defining wy, = v/, in V \ By and wy, = up, in By, we get wy, — u in L} (V;RY)
and w, € WHH(V\E; R?). Since By C B, A\ By C A\U, and HV~1(8B,NZ) = 0,
we also obtain

Folu; A) < lim inf Fwn; A) = lim inf [F(up; Bo) + F(vn; 4\ Bo)]
. . [ . i, )
< Lfr_nHl_rg(f> F(u,,; By) + 1:3-?-1;5 F(v; A\ By)
< n~1-i>I-II-loo Flup; B) + nEr—i[-]oo Fug; A\U)

= Folu; B) + Fo(u; A\ D),

10



which proves (2.10). _ :
Now we fix a bounded open subset V such that ¥V O 2, and we consider a
sequence (uy) such that

un —u in LY R?), Jm Fun; V) = Fo(w V) - (2.11)

Let 7 be a Radon measure in RV defined, up to a subsequence, as the weak-*
limit of 7, := F(uy;-). Clearly r is supported on £ and, in view of (1.1), noticing
that the equality in (2.11) holds if we replace V by any open V' such that
Qcc V' CV, we have

Flu V) > 7(Q) = r7(RY). (2.12)

On the other hand, by definition of F, for all ¢ > 0, A € A(RY), there exists
A’ € A(RM) such that A’ CC A and

Flu; A) < Folu; A +¢ SggirgF(un;A') < 1A +e < T(A)+e.

Letting € = 0F, we get for all A € A(RY)

Flu; A) < 7(4). {2.13)
We complete the proof of (2.7) by showing that

T(A) < Flu; A). (2.14)
holds for all A € A(RM), which, together with (2.13), yields the equality 7 =
J:(Tlft;a;:).A € A(RN). It is not restrictive to assume that A CC V. Let ¢ > 0 and
find U € A(RY) such that

Uccd, A\U)<e. (2.15)

By (2.10), (2.12), (2.13) and {2.15), we have

7(A) <T7U)+e <7(V)—7(V\DU) +¢
< Fw V)~ Flu; VD) +¢
< Flu; A) + €.

Hence, (2.14) follows by letting € — 0t.

To conclude this section we prove the following result
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Proposition 2.6, Under hypotheses (H1), (H2) and (H3),

QU5°) = (Qfo)*,
where Q f stands for the quasiconvex envelope of f.

Proof. Since Qf < f we obtain (@) < f* and Q((Qf)™) < Q(f*). Using
(H2), (H3) and Fatou’s Lemma, we get that (Qf)* is quasiconvex, which yields
(@) < Q).

Conversely,

(QF)° (&) = limsup QFtE) = lim sup
t—+oo t t—+400

f M, (2.16)
Q t

for some ; € W1°(Q; R?). Defining h;(z) := |£ + Vip; /|, hypothesis (H2) yields
that ||2|z1 gy < €', for a constant ¢’ independent of t. By (H2), (H3), and in
light of (2.16), we get

. h 1-m
(QN)°() 2 limsup (7€ vourn - P00 a0
t—+o0 JQn{z|thi(z)>L}
> lim supf F€ + Vi /t) — limsup C hy(z) dz
oo JQ t—r4o0 Qn{z|th:(z)<L}
1

—limsup = [ (h())'™™ da
{400 g Q

- ) 1 I—-m
>Q(f )—lgfgopt;( fQ hy(zx) dw)

>QUF*)(&) - limsup CL_
{00 tm

2Q(f*)E).

3. The global method of relaxation. The main theorem. Our goal here
is to find an integral representation for the relaxed energy F introduced in (1.1),
(1.2) and (1.3). Following [BFM], we introduce for u € BV (Q; R?) the following
set, functions on A, (RY) :

mplu; A) ;= inf {F(v;A)I v=uondANN, ve WH{(Q\ E;Rd)} , (3.1)

m{u; A) := inf {.’F(v;A)| v=uondANQ, ve BV Rd)}. (3.2)

12



Thanks to the upper bound (2.9) and Lemma 2.1, we can prove exactly as in
[BFM]

Lemma 3.1. There exists a constant C > 0 such that for all u;,u3 € BV (§}; RY)
and A € As(RY),

[m(ug; A) — mlug; A) < C’f [tr (uy —ug)] dHN L,
8AND

In the remaining of this section, we fix an element « € BV ({3; R?) and consider
the Radon measure ¢, with support on QU X,

pi=LNQ + | Dy [(Q\2) + HV 1 Z . (3.3)

Propositions 3.2 and 3.3 below enable us to apply the representation formula of
the global relaxation method introduced in [BFM)]. In particular, we will be able to
decouple and characterize separately the density of the relaxed energy F(u; -) with
respect to the surface density on ¥ and the density with respect to £V + |D,u| on
1\ 2 (the latter was already treated in [BFM]).

Proposition 3.2. Let u € BV (S R?) and let i be defined by (3.3). Then, under
hypotheses (H1), (H2), (H4) and (H5)(i), we have

mo(u; A) = m(u; A) _ (3.4)
for all set A € Ax(RY).

Proof. In view of definitions (3.1), (3.2), and since F(u; A) < F{u; 4), it suffices
to prove the inequality
mo(u; 4) < m(u; 4) .

For each § > 0 choose v € BV (Q; R?) such that v =« on 8AN N and
m(u; A) > Flu; A) — 8 > Fo(v; Ae) — 4, (3.5)

where A, := {z € A} dist (z,0A4) > ¢ }, and € > 0 is such that A, € T(RV) and
IDv|(BA.) = 0.

Let (v5) be a sequence in WL\ &;RY converging to v in LY R% and
satisfying

lim F(v}; A} = Fo(v; AL), v, =von84.NQ, (3.6)
n—+-+4co

where we have used Lemma 2.4. By Lemma 2.1, let wg, € W10\ Z; R?) be such
that
v, in A, N,
v in 2\ A4,
GE)F =2 onTN(A\A4),
(W5)" =8 onTN(A\A),

P
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and
Fuwi; A\A:) <

50([ (s - Dol T - [ ﬂo(m,/\g,eo)d?{‘”"l)
(A\ANQ (A\AL)ND

= O(e).

_ (3.7)
From (3.5), (3.6), (3.7}, and since w% = v on 84 N, we conclude that
mu; A) > limsup F(wi; A) — § + Ole) > mo(u; A) — § + O(e).
n~—r400
Letting € — 0% and then § — 071, the result follows. O

By replacing the measure i and the growth conditions on F used in [BFM] by
the ones introduced in (3.3), (2.8), (2.9), arguments similar to those exploited in
[BFM] yield the following two results :

Proposition 3.3. Under hypotheses (H1), (H2), (H4) and (H5)(i),

dF(u;-) (o) = lim m(u; Qy(zo,£))

= ae zp €, forallve V1. (38
i i Qy(mo,e) P (38)

We now state our representation result. For the sake of simplicity in the
presentation of the formulz, as well as for simplification of technical details in the
proof, we will consider only the case where the initial bulk energy fo is independent
of (z,u). However, Theorem 3.4 may be extended to more general cases (see {BFM],
Section 4}, provided continuity conditions are imposed on fq.

Theorem 3.4. Under hypotheses (H1)-(H5) the functional F introduced in (1.0),
(1.1} and (1.2), admits the following integral representation

Fad)= |  Qfo(Vu) do+ [ (@) (u] ® vas) dHN
ANQ {A\DINS(u)
+ Blz,ut,u”) dHN 1 (3.9)

AN
w { dC()
N [A @) (W) 4o,

for all v € BV (S;R?) and A € A(RY), where @Qfy is the quasiconvexification of
fo, and B: T x (R?)? — [0, +00) is defined as follows

per0 = ot @

veWi11{Q, NITp\ Eqird}
v=uy g,y OR 8QugNIlyg (3 10)

+f Bo(zo, vt,v7) dHN 1},
Qvonzo

14



, A ifyv>0,
with v = vx(zo), o = {y-vo = 0}, urg(y) := 9 Jothyer;jse

Ho :=RN ifz € ONT, and Mo :={y € RN | y -1y < 0} if 2o € HAN E.

and

Proof. By Proposition 2.4, for any given v € BV (}; R?), F(u;-) is the trace in
A(RYN) of a Radon measure and its restriction to BV (2 \ Z; k%) x A( \ ) falls
within the framework of the global method for relaxation introduced in [BFM]
(Section 4.1, Theorem 4.1.3 and Remark 4.1.4) (see also [FM2] or [ADM)] when fy
is assumed to be quasiconvex) ; hence, for all 4 € A(RY), we obtain

Fluy A=F(u; ANT) + Fu; A\ X)

p— . &0 N_l
=F(u; ANI)+ AnﬂQfo(Vu) dx +4/(A\z)ns(1§)Qf0) ([u] ® v} d# (3.11)
dC(u)

+ [ @ (150 dowl

where we have used the fact that |C(u)|(Z) = 0.
It remains to to identify the trace of the measure F(u;-) on T which, by (2.9), is
absolutely continuous with respect to #¥~!| . Hence the proof reduces to show

that the density d;i{j:(u; ) agrees with 8(z,u™,u~), where 8 is defined in (3.10).

LESTP>
This identity will be etablished in the following two steps.

Step 1. Here we assume that in hypothesis (H5} the funtion ug is identically zero.

By Propositions 3.2 and 3.3, and using a blow-up argument combined with
Lemma 3.1, we derive in the same way as in [BFM, proof of Thm. 3.7] that, for
HN-1 ae. 29 € L, there holds

dF(u;-)
dHN-1]T

Fu; - d

cg,u )(fﬂo) dHNi_ll = (o)
= lim m(u; Qv (Z0,€)) lim #(Qu, (zo,€))

e=0 [ Qg (0,€)) €0 HN=U(E N Quy (20,€)) (3.12)
m(w; Qu, (%o, €))

(z0) = 2

= gl—r}r{ll eN-1 ’
iy Tl = 200 Qnf20,6)
£-0 £ -t

. 1 .
and sh_r’% oNTT /Q.,o a(z) de = 51_1}1(1} N

unit normal vector vy to ¥ at zg,

/ a(z) dz = 0, where vy stands for the
Qv .

(+]

o ’U.+(£E0) if y-19>0,
T lu (=) if yovo <O0.
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Using the change of variables z = z¢ + ey and defining %, := (£ — xp) /e and
Q¢ := (- zo) /&, (3.12) reduces to

dF(u;-) e . [ Vo
FEAET =D o Ly £ ()

u=ugy on BQ"D Ne

-i-f Bo(zo + ey, vt,v7} dHN‘l}
QugNZe

WL SR A0
£20 vew Ll QuonRaZerY) L/g, Qe
v=uzgy on BQUO Nlle (3. 13)

+ f Bo(zo +ey,vt,v7) d’HN_l}
QuyNZe

= lim int { Qf5°) (V) dy+
e=30 vew L1(Qua N0\ B R D)
v=uggy on BQyonﬂe

+/ Bo{zo + ey, vt,v7) d?{N‘l}.
QuoNZ,

v N8

where, for the second equality, we have used (H2) and (H3) to replace ¢ fo (Y;_) by

o (VU , and, in the last equality, we have substituded fg° by its convexification

Q(f5°). This latter fact is justified since, on one hand, we have Q fy < fy and, on
the other hand, every competitor v in (3.13) can be approximated (see [FM1]) by
a sequence of functions v, € W11(Q,, NN \ B¢; R?) which agree with v on 6Q,,
and on each side of @,, N X, and such that

QUf§°)(Vv) de = lim 5O (Vo) dz.
fQ o, QU de= i [ ()

We claim that (3.13) still holds if we replace fo(z) by fu, (2, &) := fo(Vue(z) +£),
where g is given by hypothesis (H5)}. This fact will be usefuil to justify Step 2. In
fact, since up given by hypothesis (H5) satisfies, HV ! a.e. 20 € I,

lim
e—0 EN_l

f V()| da =0,
(A

0
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we deduce, as before,

dF(u;-) o . Vv
dHN-1[% (zo) = Ell_r,f}) vewl,ltqiﬁgng\zﬁad) {fQuoné fo (Vuo(ﬂ:o +ey) + - )dy
v=ugg on 8QuyNie

-Ir-f Bo(zo +ey,vt,v7) d'HN_l}
QuyOiZe

= lim inf { f 5 (eVue(mo +ey) + V‘U) dy
€30 vew L1 (QuyNie\ B R Y) Q. NSl
v=uzg on OQyonng 0

[ folaa+ey,vt,07) ant1)

ok 0f e X ) )
LSRR SN A rmQ(fe Y eVuo(zo + £y) + Vv )dy
v=ugzg on aq.,onne Ve €

+/ ﬁg(mo+ey,v+,v")d’;‘{N"1}.
Qvonze

(3.13")
Since Q(f§°) is globally Lipschitz (see [Ma]), we obtain, for a convenient C' > 0,

[ 10Us) (e7uofan +ev) + Vo) - QUENVo) dy
Quon.

C
<C [eVug{zg + cy)| dy = ﬂ/ |Vug(z)| dz — 0,
QugNSle € Qup NS £

which allow us to replace Q(f§°) (eVuo(mg +ey) + V'u) by Q{(f§*)(Vv) in the last
equality of (3.13).
By Proposition 2.6, we obtain from (3.13) {(or (3.13')) that, V! a.e. 29 € 3,

dF(u;-) L . oo
dHN_l LE (mﬂ) - 3]_'_1_}‘1) uEWlll{Qierf;ng\SgiRd) {[C‘Qu ﬁSgCQfO) (VU) dy
v=ugg on 8Qup Nl 0 (314)

+f Bo(zo + ey, v, v7) d’HN"I}.

Without loss of generality, we assume in (3.14) that vy = ey and we set
Q = Qey, @ = (—3,3)V 1. For each £ > 0 small enough, let ¢, : Q' — R be
a C! function whose graph coincides with Q N Z;. Consider the C! diffeomorfism
B, : Q@ — RN such that &, (v, yn) == (@', yn — @ (%)), and let Q. := &.(Q). Note
that Ve {0} = 0 and gg}% llee [lw1.00¢@ry = 0.

Representing by Lo the hyperplane {y=(y',yn)|yn = 0}, and defining
Te(y) 1= uao (27 (1)
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(3.14} becomes

dF(u;-) . . o0 ~1
dHN-1 LZ( ) - !1_[}1}) uewl.l(élsr}‘lt;'lp\zg;ﬂd) {-/%gnHD(QfO) (V’U V(I,E(q)s (y)))dy
v=1ug on 8Q;NIg

+ [ Soleo+e@20)0t07) (14 1Ve@ G)R) T aH ) )

«NZo
(3.15)
We claim that (3.15) can be simplified as follows :
dF (u; ) o0
e =lm e A fQ @Ry +
v=tg on 8GNy (316)
+/. ﬁo(ﬂ?o,'u_l- )d?‘[N 1}
Q:nzo

Indeed, fix § > 0 and for each ¢ > O sufficiently small, consider a minimizing
sequence (v,,) realizing the infimum in (3.15). Clearly the traces of v,, on 8Q. NIy
are uniformly bounded and, due to coercivity hypotheses (H2), we have that
(IVv,.]) is bounded in L'(Q. N M) independently of n and e. Therefore, using
hypothesis (H5) (ii) {with uo = 0) and a version of Poincaré inequality in Wb,
we have

[Q  1B0(wo -+ 685,07, 07) = folan, o o7 N
zn 0

<[ (bl + o) dn
Q:NZo

<Cé (1 +./_ | Vg da:)
anno

<C's

where C' is a constant independent of £, n and é. From the above estimates using
the fact that, due to (H2), (€ fo)*° is Lipschitz continuous and that the convergence
of V&, to the identity is uniform, we conclude (3.16) by letting £, then § tend to
ZEero.

Now we remark that (3.16) would reduce to (3.10) if we could replace %, by
15, and Q. by Q. In order to do so, noticing that Q. C 2Q for small £, we set
0 :=2Q Ny, EU =35 ﬂﬂ(}, and deﬁne .

F'w A) =
(Qfo (Vw)d:v+f Bo (mo,wh,w™)dHN L if we W (o \ Th; RY),

ANZy,

otherwise,
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and
mo(w; A) := inf{F(v; A)| v € W (2 \ Z;RY) and v=w on JANN}.

Since (Qfo)*°, Bol{za,,-) satisfy hypotheses (H1), (H2), (H4) and (H5) (i), in
view of all the previous results, Lemma 3.1 and Proposition 3.2 still apply with
(1, % being replaced by £y, X, respectively, and we have

Hm sup [ (Te; Qc) — Tip (g QE)I < C'lim supf i fiz. — "La,,;olcl'){"\"_1 =0.
g0 £—30 8Q Ny

We conclude then, from (3.16), that

dF (u;-)
dHN-1|E
The last step consists in replacing Q. by Q in (3.17). To that aim, we define,
for k € N, Q¢ =} — 1/2 ,1/2[N"1x (1 + 1/k) ] — 1/2 ,1/2[ and @} :=
]-1/2,1/2[¥"1x (1—-1/k) ]| —1/2,1/2[. Since ¢, — 0 uniformly, let (k) be such
that, for all € < e(k), Q{ cC Q. CC Q. Using piecewise constant extensions of
the admissible functions, one obtains

mﬂ(umo; Q'k) - O(l/k) < mO(umo; Qs) < mﬂ(umo; ka’) + O(l/k) (3.18)

Now, by considering a linear change of variables, in the direction ey, mapping
@}, onto @ (respectively Q% onto Q) and since {Q f5)* is Lipschitz, we obtain that,
k E

(370) = E{}%mﬂ(ﬁe;és) = ;E}}) mO(umo;Q-e)- (3'17)

k—lil-lr-loo Mo (Uzo; Q%) = kﬂ{gw o (Uzo; Q%) = Tio(Uae; Q)-

Thus, letting € — 0 in (3.18) and then k — 400,

lim 7720 (ts,; Qe) = Mo (Uay; Q). (3.19)
e—0
Finally, from {3.17} and (3.19), we conclude that
dF (u;- . —
E‘{—ﬁ(%(mﬂ) = Mo (Uzo; Q) :'ﬁ($01u+(m0),u (o)),

where  is defined by (3.10).
Step 2. Consider in hypothesis (H5) a general ug € WH1{Q\ I; R?). Set

Fou,(u; A) i= Flug + u; A)
We have
|t @vw
AN

Fuo(u; 4) =4 | f Buo (m,ut w ) aHN T i weWHH O\ SR,
ANE
+ o0 otherwise,
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where
f'uu (ZB, 5) = fo(VUO("E) + E) and ﬂ‘uo (;E;T’ 3) = ﬂﬁ(ma )‘0 (ﬂ:) +7, 90(3") + S)'

Representing by Fu, (u; A) the corresponding relaxed functional, it follows that,

for each 4 € A(RV),
Fuolui A) = Fluo +u; 4). (3.20)

Since fu, and By, satisfy hypotheses (HI1), (H2), (H4) and {(H5) {i} (note that
B (2,0,0) = B(z, Ao, 0)), by Proposition 2.4 F,, (v — up;-) is the trace of a
Radon measure on A(R"Y), and by (3.20)

dF (u; - dF o (1 = g5
T o) = Do)

= B(@o, (u — uo)* (z0), (u — u0)™ (o))
= B(@o,u™ (z0) — Xo(@o),u™ (z0) ~ Bo(zo)),
where we have used Step 1 on Fy,(u — up; -), and where, according to (3.10),
Blmo, uT (z0) — Mo(@o), u (o) — Oo(x0)) =
- inf { (Qf0)>>(V) dy

veWw 1.1(Qu, NITg\Tg:R ) QueNo
Y=Y H(2g)—Agleg).u— (z0)—Bglzg)wg °° TPv0 o

(3.21)

+[ Bug (o, v, v7) dHN"l}.
Quonzﬂ

It is clear that if w is admissible for B{zo,u™ (zo),u™ (xq)), then

o= w—2Ay if y-vg>0,
T lw—6y otherwise,

is admissible for B(zo,u™ (z0) — Xo(zo),u (zo) — fo(zo)). In light of (3.21) we
conclude that

dFu, (u — ug; ) _
W(%) = Bo(zo,u™t (zo),u™ (o).
O
4, Examples.
4.1, Trace condition.
For fixed & € W (; R?) consider the energy functional
fo(Vu)dz ifueWh(QNA;RY) and u = & on TN A4,
F(u; A) =< fann
+ o0 otherwise,
(4.1.1)

20



where T is a closed and connected C! hypersurface contained in Q. In order to
establish a parallel with the analysis of the previous sections, we remark that F
may be re-written as in (1.0}, with

0 i) = 8 = Bo(z),

. {4.1.2)
+ o0  otherwise.

Bolz, A, 8) := {

Suppose that fp satisfies hypotheses (H1)-(H3). It is clear that {H4) and (H5)
hold with ug := ®y .

We claim that for every 4 € A(RY) and for every u € BV (§; R?), the relaxed
functional F is given by

Flu; 4) = [ Qo(Vee) do + ] (@) (] ® v) dHY
ANQ (A

AEINS(u)
o [ dC(u)
¥ fAnn(Qf ) (d]C’(u)[) dC ()] (4.1.3)
+ ﬁ(m,u"',u_)d’HN_l,
ANE
where
(QfO)OO (()\ - @g(mo)) ® Uo) + (Qfo)oo ((@0(3)‘0) _ 9) ® V())
B(zo, A, 0) := if 2o e 2N,
(Qfo)> ((‘I’o(ﬁﬂo) - ® Vo)
if zg € 80N E.

(4.1.4)
By Theorem 3.4 it suffices to prove that (3.10) and (4.1.4} are one and the same
surface energy density. According to (3.10) we have

veW 1.1{Q,, NMTy;R9)
v=uy gy o0 8QuyNIlp
v=%p(zg) on Ep

A if y-192>0,
(73 =
Mo Vg iE g < 0.

Blzo,1,0) = inf fQ @)V dy, (4.1.5)

where

Recall that if o € ¥ then IIy is defined so that Q@ NIl = § if zp € £ N AQ,
and that @, NIl = @, forall o € .
Note that we may rewrite (4.1.5) as

Blzo, A\, 8) = Ao(BY; QF, NTlo} + Ao(Ts; Q) (4.1.6)
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where

M(wid)i= ot [ (@%o)=(V0) a,
rew it Ja

Qj—o = {yGQu0|y-Vo 20}1 Q;o = {yEngly'VOSO},
and @ € Wh(QF; RY) and Ty € W (Q;;; RY) are defined by

vot

- A on 0@, ﬂQj’o,
@g(mg) on 20 r‘leo,

and
o Dq (o) on  Xg MG,
e on  8Q., NQ;,.

Since (Q fo)*°(0) = 0, we have that

Ao(Tg; Quy) = Ao(Uay(a0).8,005 @uo) (4.1.7)

As (Q fo)* is a quasiconvex function with linear growth then (see [FM2])

Ao(Uay(z0),0,003 Buo) = (@ f0)™ ((‘I’o(xo) -0 e Vu),

which, together with (4.1.7), yields
AolTig; Q35) 2 (Qfe)™ ((@o(0) — ) ® 1o ). (4.1.8)

Similarly, if @ NIIp # @ then Ao(T*; Q3 NIIo) > (Qfo)® ((,\ —~ ®¢(20)} ® Vo),
and from (4.1.6) and (4.1.8) we conclude that

(@f)* ((’\ ~ %o(w)) ® ”0) +(Qf) ((‘I’o (z0) —6) ® vo)
Bolz, A, 0) > if zg e N,
T T s ((%(mg) —0)® ,,0)

if zp € QN X,
(4.1.9)
To establish the opposite inequality, for ¢ > 0 small enough consider ¢5 in
WLL(Q- : RY) defined by

vo?

g5 = ¢ ify- vy < -,
87 | Bolzmo) + e HPo(zo) — O)(y - o), otherwise.
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Using Lemma 3.1 we have that
|Ao{d5; Q) — Ao(Ts; Q;)| < C/w:o |65 —Tp| dHN 1 = Oe),  (4.1.10)
. and, since
Mo(65:@2) < [ @A)=(45) dy = (@10)(@o(e0) - ) @),
from (4.1.11} we obtain, as € goes to zero,

KolT@9; Q5,) < (Qfo) ((@o(a0) —0) @ o).

Similarly, if @, NTIo # @ then

Bo(@; Q%) < (Qf0)™ (A — Bo(o)) ® w0 );

hence, by (4.1.6),

(Qf0)> (A - Bo(z0)) ® 1) + (@0)* ((2o(z0) — ) ® 10

if zg € Q2NE,
ﬁO(IB, )\:9) S
(Qf0) ((®o(z0) — 0) @ 10)
if zp €8N,
(4.1.11)
Formula (4.1.4) now follows from (4.1.9) and (4.1.11).

4.2. Trace energy.

Consider now the functional

ANQ

fo(Vuldz + [ Bo(u) dHN~1 if w e WH{2N 4;RY),
Flu; A) = ANT
+ 00 otherwise,

(4.2.1)
where, as before, T is a closed and connected C! hypersurface contained in £.

We assume that fo and fo satisfy hypotheses (H1) - (H5) and, in order to obtain
more explicit formulz, we suppose in addition that they are both convex. This last
assumption falls into the case considered in [ADK], where N = 2, fo(£) := |&|+|&:|

t
and Bolz,s,t) == |s—t]+ ‘s ha

2
functions.

hi(z) + he (m)‘, with hy and hy two suitable Borel
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We claim that the relaxed functional F is given by

Flu; 4) = f fo(Va) da + f £5°([u] ® ) dHN
ANQ (A\B)NS(w) (4.2.2)
oo do(u) + = N—-1
+/Amf° (dio(un)d‘c(“)” o P U

where 3 can be described in terms of a minimization problem in R?, precisely,
: [ - [ _
nf {15 ((-w) @)+ £ ((w-0) ®w) + holw)}

if eln 3,
B(o, \,6) = ne (4.2.3)

inf { & (('w -0 ® VO) +ﬁo(w)}

weRd
if ;o € 82N L.

By Theorem 3.4, (4.2.2) holds if and only if 3, as defined in (4.2.3), agrees with
the formula provided by (3.10). Since fp is convex, (3.10) reduces to

Bz, 1,0) = inf [ o [ s ant),
vEW L1(Quy NIIg:R ) QupNily QuoNZo

Y=y gpg o0 8Qu° NIlg

{4.2.4)
and so
Blzo, N, 6) > inf / (V) dy + f Bo(v) dHN1 ], (4.2.5)
’UE'P()\,B,V()} Quuﬂno QuoﬁEo
where

A if y-vp=1/2,
g if y-vp=-1/2,
and v periodic in the directions R, (e;),¢ = 1,---,N —

P\, 1) = {v € Wh(Qy, NIg; RY)| vly) :=

In order to simplify the notations, set vy = en, @y, = @, Qv N Zp = Q' =
(~1/2,1/2)N 1. Let v € P(), 0, 1) and define

Tyn) := [Q , oy, yn) dy'.

Clearly, v belongs to P(A,8,en). Since f§° and fp are convex and f§° is positively
homogeneous, by Jensen’s inequality we have

1/2

Lt [ weaz [ e[ voar)aes([ ve)
= [ e dy+ [ polo) ay
Q Q
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where we have used the fact that, due to the periodicity of v(-,yn),

vody = | 2L ay = v
Q' Qr 6yN

We conclude, therefore, that the infimum on the right hand side of (4.2.5} may

be calculated whith functions depending only on (¥ - 1o} and, consequently, with
constant trace along Xy. We have then, from (4.2.5),

weRd vEP (X, 8,vp)

v=w on Eg

Blzg, A,0) > inf {( inf fQ . fg"(VU)dy)-i- ,@O(w)}. {4.2.6)

Since f§° is homogeneous of degree one, f§°(0) = 0 and we have, for v € P(}, 8, 1)
and v = w on Xg,

f f5°(Vu)dy = f F5° (Vo )dy + f P (Vu)dy,  (42.7)
Qvonnﬂ Qvonnﬂ Qvonnﬂ

where

* + ) +
po=l? I Q‘i" NIy, and vy =¥ @ Q‘i" N I,
w, in @, v, in@Q,.

Then, from (4.2.6) and (4.2.7}, we get

ﬁ(mg,/\,G) 2

> inf inf *(Vv)d inf (V)
__wlng {(uep(lg\l,w,uo) 'Lvoﬂﬂgfﬂ ( 'U) y+vEP%3,9,uo) Lyonﬂufo ( 'U) y)"'ﬁo(?ﬂ)}

'Jé’éa {fe(O-v)ew)+2(w-0ew) +bw)]
) if m € AN,
= Jgéd{f(?"((w -0 ® uo) + ﬁo(w)}_

\ if m € NT,

where, to obtain the last equality, we have used the fact that (see [FM2])

inf o0 = — .
ot fQ B = (0-0) @)
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To prove the opposite inequality it is enough to remark that we have, from

(4.2.4},
B(zg, A, 0) < inf inf f f{,"’(Vv) dy | + Po(w)
weR4 vewh1(Qu nMg;nd) Q.oNilp
v=uy gy O BonnHO
v=w on Eg
( - oo _ o] _
(20 7= ) ]
ifzge Nk,
=4
. 00 _

(- 0m) 00
L if zp € 8N,

where, to obtain the last equality, we have used the same arguments of example
4.1 to deduce (4.1.6) from (4.1.5).
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