On Duality of an Optimal Transport Problem with
Backward Martingale Constraint

Yan Xu*

July 10, 2019

Abstract

We continue to study the backward optimal transport problem with
backward martingale constraint introduced in [9]. Unlike in [9] where
the problem is investigated from the primal side, here we approach
the problem from a dual perspective. We establish existence of dual
optimizers and absence of a duality gap. Moreover, we show that
a first order condition of the dual problem is given precisely by the
martingale property of a special transport map. For future reference,
we also establish continuity of the value function with respect to the
2-Wasserstein metric.

1 Introduction

In [9], motivated by the classical Kyle(1985) model [10], we study the fol-
lowing optimal transport problem:

minimize/c(:c,y)d’y over vy eI'(v), (1)
where ¢ = ¢(z,y) is the covariance-type cost function

C(Cﬂ,y) = ($1 _yl)(xQ_yZ)v {L‘,yGRQ,

v is a given probability measure on R?, and I'(v) is the family of proba-
bility measures v = 7y(dx, dy) on R? x R? that have v as their y-marginal:
v(R? dy) = v(dy), and make a martingale out of the canonical process
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(X,Y): EY(Y|X) = X. This problem differs from the standard single-period
martingale optimal transport problem studied in [3],[4], [6], and [7], among
others, as the initial marginal p(dx) = v(dx, R?) is part of the solution. In
[9], we establish existence of solutions and provide equivalent characteriza-
tions of optimality in terms of the geometry of their supports. For more
details and references, we refer to this paper.

Problem (1) is a convex optimization problem , as the objective function
is linear and the constraint space is convex. In this sense, it can be regarded
as a primal formulation, who admits the following dual formulation:

maximize/¢g(y) dv, G eMm, (2)

where 91 is the family of maximal monotone subsets of R?, and the function
¢q is given by

= inf R?.
¢G(y) ;IEIG C(.’L’,y), ye

Unlike in [9] where our main focus is on problem (1), the goal of this paper
is to establish a complete duality theory (i.e., existence of dual optimizers
and absence of a duality gap) in this setup.

Duality principle is a common phenomenon in the study of the opti-
mal transport. In the classical unconstrained case, the Kantorovich duality
theorem establishes a strong duality relation for lower semi-continuous cost
functions, as well as existence of primal and dual optimizers provided that
the value function is finite (see, for instance, [12, Theorem 5.10]). In the
case with an additional martingale constraint, a complete duality theory is
obtained in [4] for general measurable cost functions.

Our main results are Theorem 2.1 and Theorem 3.1. In Theorem 2.1, we
show that the dual problem (2) admits a solution. Our arguments rely on
the local compactness of the space of non-empty compact sets equipped with
the Hausdorff metric. In Theorem 3.1, we prove a strong duality relation,
which was obtained in [9] as an immediate corollary of the geometric char-
acterizations of solutions of the primal problem (1) (i.e., [9, Theorem 2.2]).
Here, our proof instead use a well-known minimax principle due to Aubin
and Ekeland [2, Theorem 6.2.7].

Furthermore, in the case where the measure v is regular, we obtain a first
order condition associated with the dual problem (2), which turns out to be
the martingale property of a particular transport map constructed in [9]. We
also prove continuity of the value function with respect to the 2-Wasserstein
metric, which will be used frequently in our study for the multi-period case.



2 Dual Problem

We follow closely the notations in [9]. We shall write a point in R* = R? x R?
as (z,y), where z = (21,72) and y = (y1,%2) belong to R2. We denote by
X (resp. Y) the cannonical projections of R? x R? Onto the - (resp. y-)
coordinates. A set G C R? is called monotone if

c(z,y) >0, xz,y€R?
where ¢ = ¢(z,y) is the covariacne-type function given by

C(‘T7y) = (:El - yl)(xQ - yQ)a T,y € G.

We call a monotone set mazimal if it is not a proper subset of another
monotone set, and denote by 91 the collection of maximal monotone sets in
R2.

We denote by P2(R?) the family of Borel probability measures on R?
with finite second moment. For v € Py(R?), we denote by I'(v) the family
of probability measures v = y(dx,dy) € P2(R? x R?) that have v as their
y-marginal and under which the canonical process (X,Y’) becomes a I-step
martingale:

T(v) £ {y € P2(R* x R?) : y(R? dy) = v(dy) and E'(Y|X) = X } .

The backward martingale transport problem, introduced in [9], is to
minimize /c(:r,y) dy over vyeT(v). (3)
This is the problem in its primal formulation, whose dual formulation is to
maximize / padv over G €M, (4)

Where the funCtiOn ¢G iS gi\/en by
1) = inf c(x S R2.
G(y) :EIEG C( ) y)7 )

In this section, we seek to (1) establish existence of dual maximizer,
without refering to problem (3); and (2) obtain martingale property of the
map defined in Theorem 4.3 of [9] as the first order condition of the dual
problem (4). Our arguments for existence rely on local compactness of the
space of non-empty compact sets equipped with the Hausdorff metric, which
will be discussed in the sequel.



2.1 Existence of Dual Optimizer
2.1.1 Some preliminaries

Let (X,d) be a metric space and let C(X) be the space of closed subsets of
X:
C(X)2{AcC X: X is closed}.

For x € X and A € C(X), we write d(z,A) = migd(:c,y). A sequence
ye

(An) C C(X) is said to be Wijsman convergent to a set A € C(X), denoted
An Yo A, if for each = € X,

d(z,Ap) — d(z, A).
For A, B € C(X), the Hausdorff distance between A and B is defined by

51 (A, B) £ max{supd(z, B),supd(y, A)}.
€A yeB

Notice that
0 (A, B) = sup |d(z, A) — d(z, B)|.
zeX
In this sense, Hausdorff convergence is to uniform convergence as Wijsman
convergence is to pointwise convergence.
When restricting our attention to K(X), be the space of non-empty
compact subsets of X:

K(X)&{AC X : Ais non-empty and compact} .

the Hausdorff distance § 7 becomes a metric. It is well-known that (K(X), )
is a compact Polish space if (X,d) is so (see, for instance, [11, Proposi-
tion 2.4.15 and Proposition 2.4.17]). In particular, when X is compact,
convergence in Hausdorff distance is equivalent to the so-called Kuratowsk:
convergence. Namely, a sequence (A,) C K(X) is said to converge to a set
A in Kuratowski sense, denoted A, — A, if

(1) every cluster point of a sequence (z,) with x,, € A, belongs to A, and

(2) for all z € A, there are z,, € A,, such that =, — z.



2.1.2 Main Results and Proofs

We are now ready to prove the following theorem:

Theorem 2.1. There is a solution to problem (4).
We divide the proof into some lemmas.

Lemma 2.2. Let (G,) be a sequence of maximal monotone subsets of R?

and let G C R? be non-empty. Suppose Gy, W G. Then G is also a mazimal
monotone set.

Proof. Let z,y € G. For each n, we can find z,,y, € G, such that
d(z,Gn) =d(z,z,) and d(y,Gp) = d(y,yn).

As (G,,) is Wijsman convergent to G, we deduce that x,, — = and y, — .
Thus,
c(z,y) = lim c(xn,yn) > 0.
n—oo

This shows that G is a monotone set.
Next, suppose G is not maximal. Then there exist z € R?\ G such that
G U{z} is monotone. As G, W, G, we can assume that there exist positive
numbers r and R such that
r <d(z,G,) <R, for all n.

Since each G, is a maximal monotone set, it intersects with the diagnal set

D(z) & {z = (21,22) ER?: 2y — 21 = 29 — Zg} at a unique point z,. In

particular, (z,) is a bounded sequence and thus admits a subsequence, not

relabelled, that converges to some point ' € D(x). As limsupd(G,,z’) <
n

li_>m d(xp,x") = 0, we deduce that

¥ € GND(z) = {z}.
This gives us a contradiction. O

A sequence (4,) C R? is said to escape to infinity if for any R > 0, there
is n € N such that A,, N Bgr = (0, where Bp is the closed ball centered at the
origin with radius R.

Lemma 2.3. Let (G,) C M be a mazximising sequence for problem (4):
i [ oa.dv = ot f 6o d

Then (Gy,) dose not escape to infinity.



Proof. Suppose not. For each k € N, we can find ny large enough such that
Gn, N By, = (). Note that if y € By and if G is a maximal monotone set
such that G N By, = (0, then

) k2
ba(y) = ;gg c(z,y) < -5

Therefore, we have

/¢Gn,€ (y)dv < /¢Gnk (Y)gyen,) dv
k’2
< 7?V(Bk) — —00, k — oo.

This is a contradiction. O

Lemma 2.4. Let (G,) and G be mazimal monotone sets in R%. Suppose
that Gy, W a. Then, for every y,

limfup ba, (y) < da(y). (5)

Proof. Fix y € R? and assume that ¢g(y) > —oo. By extracting a subse-
quence, not relabelled, we may assume that

lim sup ¢¢,, (y) = nh_{lgo oG, (Y)-

For each k € N, find 2 € G such that ¢g(y) < c(z¥,y) < dpa(y) + % As
Gy w, G, we can find 2" € G, such that

1
o™ — 2 < , keN.
| )

It follows that

b0(y) 2 ~lela®, ) — el )| + e 0) —

. 3 3
This readily implies (5). The case where ¢ (y) = —oo is similar. O



Proof of Theorem 2.1. We proceed by a diagonalization argument. Let (Gy,)
be a maximising sequence for the dual problem. From Lemma 2.3, we know
there exists R > 0 such that

GnﬂBR#Q), Vn € N.

From our discussion in section 2.1.1, we know the space (K(Bg+1),0m) is
a compact metric space. Thus, there is a subsequence (s1(n)) C N and a
non-empty compact set G; such that

6 ~
Bri1 N GSl(n) RN Gi.

Next, as (K(Bgr+2),0m) is a compact metric space, we can extract a
further subsequence (s2(n)) C (s1(n)) and find a non-empty compact set Gs
such that R

BprioN GSQ(H) 6—H> Go.

In particular, we have éQ N Bry1 = CA}l.
We can continue this procedure to obtain

e a nested sequence of indices: --- C (sx(n)) C (sk—1(n)) C -+ C
(s1(n)), and

e a sequence of non-empty compact sets (@k) with @k C Bpryy for each
k,

such that

So =~
BRJrk N Gsk(n) = G,

Gr1N Brys =Gy, kel

Hereafter, we write Gy, in place of Gy, () for simplicity. Define G =

Ure, Gy For any k, we have

5 ~
BR+kﬂGn—H>BR+kﬂG, asn — oo

In particular, (G,,) is Wijsman convergent to G. We then deduce from
Lemma 2.3 that G is a maximal monotone set.

As ¢z and ¢g,, are non-positive, the result now follows from Lemma 2.4
and the reverse Fatou lemma. O



Remark 2.5. An unpleasant fact of problem (4) is that the objective is non-
linear and the admissible set 9t is non-convex. To remedy the situation,
[9] considers the family ®,; that contains functions dominated by element
of M. More precisely, ¢ € @, if and only if there is G € 9 such that
¢ < ¢g. In this relaxed formulation, the problem becomes linear and the
constraint set becomes convex. In particualr, existence of optimizer can be
obtained through Komlos lemma (see, for instance, [5, Lemma A1l.1]) and a
characterization of @,/ (see [9, Lemma 2.1]).

2.2 Martingale Property as First Order Condition

This section is compliment to section 4 of [9]. We start by introducing the
notion of optimal map. Let Y = (¥7,Y3) be 2-dimensional random variable
having a finite second moment: Y € £2 = £2(Q, F,P). As usual, we identify
random variables that differ only on a set of measure zero. The optimal map
problem is to

minimize E(¢(X,Y)) over X € X(Y) (6)
for the same cost function ¢(x,y) = (x1 — y1)(x2 — y2) and the constraint
XY)2{X =(X1,X,) € £%: X is Y-measurable and E (Y| X) = X}.

We denote v = Law(Y") and observe that Law(X,Y) € I'(v) for every X €
X (Y). Thus, optimal plan problem (3) may be viewed as a Kantorovich-type
relaxation of optimal map problem (6).

We follow notations used in section 4 of [9] related to a function ¢ = ¢,
where G € 9. In particular, D¢ £ (D$, D§) stands for the differential
operator associated with the cost function ¢ = ¢(z,y):

99 9¢

Dig(y) =y — 372(1/), Ds¢(y) £ yo — aT/l(y), y € dom V¢,

where dom V¢ is the set of points where ¢ is differentiable. We denote by

E¢ = E¢ U E§ the union of the vertical and horizontal line segments of G-
ES(t)={x = (z1,20) € G: z; =t}, teR,

7Y = {teR: E€(t) has more than one point } ,

Ef = |J EF (1), i=12
teTC

(7)



Clearly, the sets (’EG) are countable at most. Define a map by

X =Ylyery + DO(Y)ygry- (8)

The goal of this section is to obtain the martingale property of (X,Y):
E (Y| X) = X, as the first order condition of the dual problem (4). We need
some more notations. Define

Argg(y) = arg%ergin c(z,y) ={z € G: daly) =c(z,y)},

dom Argg, £ {y € R* : Argg(y) # 0},
(ﬂ)?nArgG £ {y € dom Arg, : Args(y) is a singleton} .

For y € dom¢, we call a sequence (z") C G a minimizing sequence of
y if ¢(y) = lim, c(z™,y). We denote by S the collection of points y in
dom Arg \ G that have an unbounded minimizing sequence. Hereafter, we
shall simply write

Arg = Arg,, E;=EFY, Eit)=Et), Ti=TC°.
as the set G is fixed.

Lemma 2.6. The set S is contained in 0dom ¢ and has at most two ele-
ments.

Proof. If y € intdom ¢, then the lines {z : 21 = y1} and {z : 20 = ya}
intersect G at ! and x2, and any minimizing sequence of y will be contained
in the segment of G bounded by z! and z2. Thus, S C 9dom ¢.

From Lemma B.2 of [9], we have that int dom ¢ = (a1, b1) X (az, b2), where
—00 < a; < b; < 0o and (a;, b;) is the interior of the projection of G on the
x;-coordinate. Without loss of generality we can assume that a; > —oo. Let
y%,yt € S be distinct and assume that 30 = yi = a1, ¥9 < y3 < ba. Let
2t € Arg(y'),i = 0,1. Note that

#y') < c(a’,y') = (a7 — y1)(23 — v3)
= (] = y7) (25 — 95) + (2} —y) (43 — v2)
< e(2%,3°) = o(y")
If (2) is an unbounded minimizing sequence of y!, then

lim 2] =a; and lim zy = —ooc.
n—oo n—oo



It follows that

¢(y") < limsup c(2",y")

n—o0

= limsup { (2] — y1)(z5 —y3) + (= —yi)(y3 — ¥3)}

n—o0

= lim (2", y") = ¢(y"),

n—oo
and we obtain a contradiction. O
Let D be the family of graphs of strictly decreasing functions h = h(t)

defined on closed intervals of R such that both h and its inverse h~! are
Lipschitz functions:

1
(=8 Sh(s) = h(t) s K(t—s), s<t,
for some constant K = K(h) > 0.

Definition 2.7. A Borel probability measure ;1 on R? is D-regular if u(D) =
0, DeD.

The standing assumption of this section is that v = Law(Y’) is D-regular.
We now state the main result:

Theorem 2.8. X given by (8) is a martingale map: fori=1,2,

/ R(D6(y)) (DY) — yi) dv = 0, h € Cy(R?).

Proof. From [9, Theorem 2.2], we have v(domArg) = 1. By [9, Theo-
rem B.12],

domArg =FUDU (cﬂ)ﬁArg Ndom Vo),

where D = |J;7 | Dy, D,, € D. Let OF be the set of relative boundary points
of each line segments that constitute E:

2
oE = J |J 9Ei(v).
i=1teT;

Clearly, OF is at most countable. In view of [9, Lemma B.8], the set of points
y € d/o?nArg N dom V¢ such that D¢(y) € OF is a countable union of sets
in D, and thus has v measure zero. Thus, we may assume D@(y) € G\ E
ifye d/o?nArg N dom V.

Let h be a bounded continuous function on G. For each n € N, let
h,, € Cy(R?) be such that

10



(1) hy, =0 outside Bn+%.
(2) hpy=hin G\ (EUU,cor B%(:n))
(3) hp, =0o0n E.

Clearly, hy converges pointwise to hlie gy-
For ¢ > 0,n € N, define

Pne(y) = inf{c(z,y) + ehn(x) (21 = y1)}-

Note that ¢y (y) = infyegne c(z,y), where G™* = {(x1, 22 + chyp(2)) 1 z €
G}. Consider the following two cases.

Fixn € N. Let y € d/o?nArgﬂdom V. In this case, Arg(y) is a singleton
with the unique element 20 = D¢¢(y). For each € > 0, we can find 2 € G
such that

Fne(y) + €2 > (@™, y) +ehn (™) (@) = y1) > d(y) +ehn(a"™) (@) —p1).

On the other hand,

Dne(y) < (2, y) + ehn(2°)(2] — y1) = D(y) + ehn(a°) (2] — y1).

Together, we have lim._o ¢n e = (y) = im0 c(z™®,y) = ¢(y), and

(
n,e T, 1 0 0
=&+ (@) (@) = 1) < Z(Dne(y) = @) < hnla)(21 = y1)-
In view of Lemma 2.6, we may assume that (2™%).> is bounded. As y €
dom Arg, we have lim._qz™° = 2° along a subsequence. By dominated
convergence theorem, we have

. 1
lim —
e—0 Ec &

(bnely) — () dv = / hn(D6(9))(DSB(y) — 1) dv. (9)

c

Next, let y € E. By [9, Lemma B.1], ¢(y) = 0. For each € > 0, we can
find 2™*° € G such that

One(y) = ehn(a™) (@) —y1) + €2 > c(z™%,y) = ¢(y) = 0.

Taking e — 0, we have lim._,g c(z™%,y) = 0. If (™%).>0 is bounded, then
along a subsequence, z™¢ — 2™ € E as € goes to zero. If (z™%).5¢ is

11



unbounded, then there is &, > 0 such that ™* € FNddom ¢ for 0 < € < &,.
Combining these two possibilities, we deduce that

1
lim ~¢n-(y) = lim h,(2™) (2] —y1) = 0.

E—00 £ £—00
Apply dominated convergence theorem, we have

lim E One(y)dv = 0. (10)

E—OO £ E

Now, by optimality of ¢, we have

/(de > /¢n,s dV—/ ¢n,s dv + d)n,s dv
E Ec°

In view of (9) and (10), we have

[ haD5 o) D5oty) ~ ) dv =l [ Z(60c(0) — o) v

e—0 Ec 9

1
< - lim — gbn,s(?/) dv =0
E

E—O £

Replacing h by —h, we obtain

[ 1D 6w (Dfols) ~ ) dv =0, nEN,

The result now follows by sending n to infinity and applying the dominated
convergence theorem. O

3 Duality: A Minimax Argument

This section is devoted to establishing the following strong duality relation:

Theorem 3.1. Let v € Py(R?). Then

i dy = dv. 11
ngrl(g)/dx,y) g gleaggg/céa(y) v (11)

In [9], this relation is obtained as an immediate corollary of the first
order condition of the primal problem (3). Here, our proof relies on a well-
know minimax principle due to Aubin and Ekeland (see, for instance, [2,
Chapter 6.2.7]). We state the theorem here for convenience of the readers.

12



Theorem 3.2. Let X be a convex subset of a topological vector space, and
Y be a convex subset of a vector space. Assume f: X XY — R satisfies the
following conditions:

1. For everyy € Y, the map x — f(x,y) is lower semi-continuous and
CONVeEL.

2. There exists yo such that x — f(x,y0) is inf-compact. That is, the set
{zx € X : f(x,y0) < a} is relatively compact for each a € R.

3. For every x € X, the map y — f(x,y) is convez.

Then, we have

inf su z,y) = sup inf f(x,y).
wexyegf( y) ye%exf( y)

We start with some notations. We denote by proj, (resp. proj,) the
projection of R? x R? onto its z-coordinates (resp. y-coordinates). For a
measuable map 7 : R? — R? and a probability measure p € P2(R?), the
push forward of u by T is given by

Tyn(A) = (71 (A4)), A€ BE).

For v € P»(R?), the support of v, denote by suppv, is the smallest closed
set that has v-measure 1. We denote by II(v) the family of probability
measures on R? x R? with y-marginal given by v, and by II.(v) the elements
of II(v) that have compactly supported z-marginal. If E C R? is measurable,
we denote by IIg(v) the elements of II(v) whose z-marginal has support
contained in E. In summary,

M(v) = {7 € P2(R* x R?) : 4(R? dy) = v(dy)}

I.(v) = {y € II(v) : supp{(proj,)xm} is compact}

p(v) = {y €1(v) : supp{(proj,)4m} C E}.

For a measurable function h : R? — R2, we write
dn(y) & inf {e(z,y) + (h(z),y —2)}, yeR?,
zeR?

where (z,y) = Y2, ;y; denotes the scalar product of R2. We also define a
functional F : II.(v) x C(R? R?) — R by

F(m,h) = /c(ac,y) + (h(x),y — x) dm.

13



where C(R?,R?) (resp. Cp(R?,R?) ) denotes the space of continuous (resp.
bounded continuous) functions on R? with values in R? .
We divide the proof of Theorem 3.1 into a few lemmas.

Lemma 3.3. For € Il.(v), we have

sup  F(m h) = sup F(m,h),
heCp(R2,R2) heCy 4 (R2,R2)

where Cy,(R?, R?) = {h € C(R?,R?) : 1y, is v-integrable}.
Proof. First, as m € II.(v), the inequality

sup  F(m h)> sup F(m, h)
heCy(R2,R?) heC,, ,(R2,R2)

holds trivially. On the other hand, let B, be a ball centered at the origin
with radius r > 0, that contains the support of the z-marginal of 7. For
h € Cp(R?,R?), define

rr rr

h(CC) = h(f)l{zeBr} + [h(m) —x+ m} 1{IER2\BT}'
Then, % is a continuous function such that ¢ is v-integrable. In particular,
F(m,h) = F(m, h) and the result follows. O

Lemma 3.4. For h € C,,(R% R?), the map 7 v+ F(m, h) is lower semi-
continuous on I1(v) under the weak convergence of measures.

Proof. We will use the notation a Ab to denote the minimum between a and
b. Let (m,) be a sequence in II(v), m € II(v) and suppose that 7, converges
weakly to m. We compute

Fh) = [ oy = [ elw) + (h(o).y — a) — (o) dn
= lim [ (c(x,y) + (h(x),y — 2) = ¥n(y)) Amdn
= lim lim [ (c(z,y) + (h(x),y — x) = ¥n(y)) Amdr"
<timinf [ (e(w,y) + (h(o).y ~ 3} ~ ¥n(y)) dr
— lim nf F(x", ) ~ / o (y)dv,

where we have used the monotone convergence theorem in the third line. [J

14



We proceed to the proof of Theorem (3.2).

Proof of Theorem (3.2). Recall the functional F : II.(v) x C(R?, R?) — R is
given by

Flrh) 2 [ ew.g) + (hlz),y = o) dr.
Clearly, it is linear in both of its arguments.

Note that both II.(v) and C,, ,(R?, R?) are convex sets. With the choice
of ho(x) = —z, we may apply the inequality —%cﬂ — 8b% < 2ab to obtain

{rell.(v): F(m ho) <a}C {7r e(v): /ar|2d7r <32(a+ / \yIQdV)}

Under the weak convergence of measures, the set on the right-hand-side is
closed and tight, and thus compact by Prokhorov Theorem. Thus, the map
> F(m, hg) is inf-compact. By Lemma 3.4, the map = — F(m, h) is lower
semi-continuous on II(r) under the weak convergence of measures, for each
h € C,(R% R?). Therefore, we are in the position to apply Theorem 3.2
and obtain
inf sup F(m, h) = sup inf F(m, h). (12)
melle(v) heo,, , (R2,R?) heC, ,(R2,R2) 7€Ml (v)
The martingale property of a probability measure 7 € P2(R? x R?) (i.e.,
E™(Y|X) = X) is equivalent to
sup /(h(x),y —z)dr =0.
heCy(R2,R2)
We then deduce from Lemma 3.3, and (12) that

inf /c(a:,y) dr = inf /C(az,y)dﬂ' + sup /(h(x),y —x)drm
mel(v) mell(v) heC,(R2,R2)

< inf sup  F(m h)
m€lle(v) heC, ,(R2,R2)
— sup mf ,/—'.(777 h‘)

heC, 4 (R2,R2) 7€ (v)
For h € C,4(R? R?), Lemma A.1 shows that

inf F(m, h) <l inf  F(m, h
el (v) (mh) < HOSEP i v (m, )

= limsup / wiéann{c(:c, y)+ (h(x),y —z)} dv

=/;@wm

15



where in the last line we use the monotone convergence theorem. All in all,
we have shown that

inf /c(:n,y) dm < sup /wh )dv < sup /¢h
mel'(v) heC,, ., (R2,R2) heC(R2,R2)

To finish the proof, it suffices to observe that, for h € C(R% R?), the
function vy, belongs to the class ®j;. Indeed, for any ¢ € [0,1] and 3°,y' €
R?, we can take x = (1 —t)y° + ty! in the infimum of ¢}, to obtain

(1= t)n(y”) + ten(y') < (1 —t)e(y®,yh).

The result now follows from [9, Lemma 2.1]. O

4 Continuity of Value Function

In this final section, we establish continuity of the value function:

max/qbg )dv = min /c(az,y) d~y,

Gem v (v)

under the Wasserstein distance:

Wa(u,v) =  inf /x— 2d7r},
(1, WGH(W){ jz— gl

where II(j,v) is the family of probability measures on R? x R? with -
marginal p and y-marginal v. We recall the following equivalent characteri-
zations of convergence in Wy (see [1, Theorem 2.7 and Proposition 2.4]): for
Un, v in Pa(R?),

Wa
o U, —> U
e v, — v weakly and [ |z|2dv,, — [ |z|? dv;

o [ f(z)dv, — [ f(z)dv for every continuous function f = f(z) with
quadratic growth:

If(2)] < K1+ |z)?), zeR2.

This time, we will adopt the primal formulation and write J(vy) =
[ c(z,y)dy. As a result,

V(v) = min J
(1) = min J(3)
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Theorem 4.1. Let (v,) C Pa(R?) be a sequence of probability measures and
let v € P2(R?). Suppose vy, converges to v under Wo. Then
lim V(v,) =V(v).

n—oo

Proof. Let (vy,) C (v,) be a subsequence such that the limit lim V(v,,)

k—o0
exists. For each k, let 7, € I'(v,,) be an optimal plan. By Jensen’s

inequality, martingale property, and the Wa-convergence of (v, ), we have

/!w\Q + |y? dyn, < QSup/ ly|? dvy, < oo. (13)
k

It follows that the sequence (7y, ) is tight. Along a further subsequence, not

relabelled, we have ~,, converges weakly to some probability measure .
Clearly, v has y-marginal given by v. By Skorodhod representation

theorem (see [13, Theorem 17.3|, there are random variables (X", Y "),

k € N, and (X,Y), defined on the probability space ([0, 1], B([0,1]), \), with

values in R? x R?, such that

1. (X, Y™) — (X,Y), A-almost everywhere, and

2. the laws of (X™,Y™) and (X,Y) under A are given by ~,, and 7,
respectively.

Here, A is the Lebesgue measure on the interval [0, 1]. From (13), we deduce
that the sequence (X" Y"k) is uniformly integrable. Therefore, for any
bounded continuous function h € Cy(R?,R?), we have

/ (h(x),y — z) dy = EN(h(X),Y — X))

= lim EM(h(X™), Y™ — X"™)) = 0.
k—o0
Hence, v € I'(v).
Next, we show that « is an optimal plan. Consider the set

1—t)e(a®,y°) + te(a', y')
<t(l—t)e(y’y), vtelo] [
By [9, Theorem 2.2], we deduce from optimality of each v, that supp v, ® v, C

C. Continuity of ¢ = ¢(x,y) implies the set C' is closed. As 7,, ® vy, con-
verges weakly to v ® -, we have

C = {(($O,y0),($1,y1)) ER4XR4 (

7 ® (C) > limsup yn,, @ 1, (C) = 1.
k
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This shows that v is optimal.
Now, as vy, converges to v under W, we have limy_, EXMN|Y™|?) =
EX(|Y]?). Tt follows that Y™ converges to Y in L£2. On the other hand, let

W™ = ENY™ — Y|X")
Z™ = EMNY|X ™).

By Jensen’s inequality, W™+ converges to 0 in Lo, and in particular, A-almost
everywhere along a further subsequence. Therefore, as k — oo,

Z" = X" — W™ — X, Aae. (14)

It is easy to see that the family of random variables (|Z™*|?) is uniformly
integrable. Together with (14), this implies that Z™ converges to X in Lo.
We then deduce that X"+ converges to X in Lo, which in turn implies

Wa
Yn, —> 7Y, as k— oo.

As ¢ = ¢(z,y) is a continuous function with quadratic growth, we conclude
that

lim V(") = lim J(y,,) = J(y) = V(v).
k—ro0 k—ro0

The result now follows from arbitrariness of (vy, ).

A A measurable selection result

We denote by ¥{ the family of analytic sets in R and write o(X}) to
represent the o-algebra generated by %1. A subset A € R? is called univer-
sally measurable if it is p-measurable for any Borel probability measure pu.
Given a set C' C R? x RY, we recall a uniformization of C is a function s
with domain D = proj,(C), such that s(z) € C; for every x € D, where
C: = {y: (z,y) € C} is the z-section of C.

Lemma A.1. Let v € Po(RY), E C R? be a closed set, and f : RTxR? — R
be a Borel measurable function such that the partial minimization

inf
yH;gEf(w,y)

is Borel measurable. Then,

mt / f(w,y) dr = / inf f(e,y)dv

mell(E,v

where II(E,v) = {mr € II(v) : (proj,)um C E}.
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Proof. Let € > 0. Define a function ¢ by ¢(y) = inf,cp f(z,y). By assump-
tion, ¢ is Borel. Therefore, the set

B. = {(@,y) e ExR: [(w,y) < o(y) +¢}

is a Borel set such that no y-section of empty. By the Uniformization The-
orem of Von Neumann and Jankov (see [8, Theorem 18.1]), there exits a
uniformization function s. of B, that is o(X})-measurable. By the Lusin’s
Theorem (see [8, Theorem 29.7]), s. is universally measurable. In particular,
it is v-measurable.

Now, define a probability measurable m. by
7o(A) = (5., D7 (A)), A€ BRY x RY,

where I is the identity function on R?. Clearly, 7. has y-marginal given by
v, and z-marginal given by p = (s;)xv. In particular, p(E) = 1. Therefore,
supp i C E. We then deduce that

nf [ @< [ fewin < [owav e

well(E,v

The result now follows as € > 0 is arbitrary. O
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