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X. Linear System: Basic Concepts

Let n be a positive integer and || · || be a norm on R
n. We denote by R

n×n the
set of all n× n matrices with real entries. With the usual notions of matrix addition
and multiplication of a matrix by a scalar, R

n×n is a real linear space of dimension
n2. We define a norm ||| · ||| on R

n×n by

(10.1) |||B||| = max {||Bz|| : z ∈ R
n, ||z|| = 1} for all B ∈ R

n×n.

[The elements of R
n are to be treated as column vectors in situations involving matrix

multiplication.] It follows easily from (10.1) that

(10.2) |||Bz|| ≤ |||B||| · ||z|| for all B ∈ R
n×n, z ∈ R

n.

Observe that different norms on R
n lead to different norms on R

n×n.

Let I ⊂ R be a nonempty open interval and let A : I → R
n×n and g : I → R

n be
given. We assume throughout this section that A and g are continuous on I. Consider
the linear system of differential equations

(L) ẋ(t) = A(t)x(t) + g(t).

If we put D = I × R
n and define f : D → R

n by

f(t, z) = A(t)z + g(t) for all (t, z) ∈ D,

it is easy to see that f is continuous and locally Lipschitzean on D. Consequently,
for each t0 ∈ I, x0 ∈ R

n we have existence of exactly one noncontinuable solution
x of (L) satisfying x(t0) = x0. Moreover, it is straightforward to show that every
noncontinuable solution x of (L) has Dom(x) = I. Therefore, when we speak of a
solution of (L) we shall mean a solution with domain I, unless stated otherwise.

Observe that if x and x∗ are solutions of (L) then x − x∗ is a solution of the
corresponding homogeneous equation

(LH) ẋ(t) = A(t)x(t).

Since multiplication by an element of R
n×n maps R

n×n into R
n×n, it is possible to

consider matrix-valued solutions of (LH). By a matrix-valued solution of (LH) we
mean a differentiable function X : I → R

n×n such that Ẋ(t) = A(t)X(t) for all t ∈ I.
Note that a matrix-valued function X : I → R

n×n is a solution of (LH) if and only if
each column is a solution of (LH).

Proposition 10.1:
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(i) If x and x∗ are solutions of (L) then x − x∗ is a solution of (LH).

(ii) The set of all solutions of (LH) is a (real) linear space.

(iii) If x is a solution of (L) and y is a solution of (LH) then x + y is a solution of
(L).

Proposition 10.2: Let X be a matrix-valued solution of (LH) and let ξ ∈ R
n,

C ∈ R
n×n be given. Define x : I → R

n by x(t) = X(t)ξ and Y : I → R
n×n by

Y (t) = X(t)C for all t ∈ I. Then x is a solution of (LH) and Y is a matrix-valued
solution of (LH).

Proposition 10.3: Let X be a matrix-valued solution of (LH). Then either X(t) is
invertible for all t ∈ I or X(t) is singular for all t ∈ I.

Definition 10.4: A matrix-valued solution X of (LH) is called a fundamental matrix
solution if X(t) is invertible for all t ∈ I.

Proposition 10.5: (LH) has a fundamental matrix solution. (In fact, there are
many.)

Proposition 10.6: Let X be a fundamental matrix solution of (LH) and define
Y : I → R

n×n by Y (t) = (X(t))−1 for all t ∈ I. Then Y satisfies Ẏ (t) = −Y (t)A(t)
for all t ∈ I.

Proposition 10.7: (Abel’s Equation): Let X be a matrix-valued solution of (LH)
and define ϕ(t) = det(X(t)) for all t ∈ I. Then ϕ satisfies

ϕ̇ = [trA(t)]ϕ(t) for all t ∈ I,

where trA(t) denotes the trace of A(t), i.e. the sum of the entries on the main
diagonal.

Proposition 10.8 (Variation of Constants) Let X be a fundamental matrix solution
of (LH) and let t0 ∈ I, x0 ∈ R

n be given. The solution x of (L) satisfying x(t0) = x0

is given by

x(t) = X(t)X(t0)
−1x0 +

∫
t

t0

X(t)X(s)−1g(s)ds.
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