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I. Review of Some Solution Techniques for Single First-Order Equations

1. Linear Equations: Let I be an interval and assume that p,q : I — R are
continuous. Given ty € I and zg € R, consider the initial-value problem

(1.1) (1) + p(t)x(t) = q(t),  x(to) = zo.
To solve (1.1) we chose P : I — R such that P(t) = p(t) for all t € I and

put pu(t) = exp(P(t)) for all t € I. (Such a function p is called an integrating
factor.) Observe that

(1.2) Alt) = exp(P(t)) P(t) = u(t)p(t).

Multiplying the differential equation by p and making use of (1.2) we find that

(1.3 p(t)E(0) + b)) = p(t)a(®)
d
(14 SD(0)) = plDa(e),

which can be integrated to find z. The solution of (1.1) is given by
1 t
(15) o) = o [t + [ n(s)a(s)as].
H’(t) to
2. Separation of Variables: Let I and J be open intervals and assume that

g : I — R is continuous and h : J — R is continuously differentiable. Given
to € I and xy € J, consider the initial value problem

(1.6) #(t) = g(H)h(z(t)); x(to) = wo-



It can be shown that either the solution is constant, i.e. z(t) = z¢ for allt € I or
h(x(t)) never vanishes. It is easy to check whether or not the constant function
x(t) = xo satisfies the differential equation. Suppose the solution of (1.6) is
nonconstant. Then A(z(t)) never vanishes and we may rewrite the differential
equation as

(1.7)

Let Jy be the largest interval such that xy € Jy C J and h does not vanish on
Jo. We choose H : Jy — R such that

’ -

(1.8) H'(z) = B for all z € Jj.

>

Then we may rewrite (1.7) as

d

(19) SH((0) = 9(0),

which can be integrated to obtain
t
(1.10) H(z(t)) = H(xo) + / g(s)ds.
to
3. Exact Equations: Let D be a simply connected* open subset of R? and assume
that M, N : D — R are continuously differentiable. Consider the differential
equation

(1.11) M(t,2(t)) + N(t, z(t))i(t) = 0.

Equation (1.11) is said to be ezact if there exists a function ¢ : D — R such
that

(1.12) Y1 =M and ¢ =N on D,

where 11 and 15 are the partial derivatives of ¢ with respect to the first and
second argument. It can be shown that (1.11) is exact if and only if

*See Definition 9.7.



(113) M’Q = N71 on D.

Let us assume now that (1.13) is satisfied and choose a function ¢ : D — R
such that (1.12) holds. If ¢ is constant, I is an interval, and z : [ — R is a
differentiable function such that (¢,z(¢)) € D and ¥ (t,z(t)) = ¢ for all t € I,
then z is a solution of (1.11).

. Remark: Sometimes an equation that is not of any of the forms discussed
above can be converted to one of these forms by a simple device. Three such
devices are mentioned below.

(a) Sometimes a substitution or change of variable can be used to convert a
nonlinear equation to a linear one or a nonseparable equation to a separable
one.

(b) Occasionally a nonlinear equation becomes linear if we interchange the
roles of the independent and dependent variables. What this really amounts
to is looking a differential equation for the inverse function.

(¢) In theory one can always find a nonzero function p such that if we multiply
equation (1.11) by u it becomes exact. In practice, however, this approach
is usually not of much use because it is very difficult to find a suitable p.



